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Abstract

Motivation: Drug discovery demands rapid quantification of compound–protein interaction (CPI).

However, there is a lack of methods that can predict compound–protein affinity from sequences

alone with high applicability, accuracy and interpretability.

Results: We present a seamless integration of domain knowledges and learning-based

approaches. Under novel representations of structurally annotated protein sequences, a semi-

supervised deep learning model that unifies recurrent and convolutional neural networks has been

proposed to exploit both unlabeled and labeled data, for jointly encoding molecular representa-

tions and predicting affinities. Our representations and models outperform conventional options in

achieving relative error in IC50 within 5-fold for test cases and 20-fold for protein classes not

included for training. Performances for new protein classes with few labeled data are further

improved by transfer learning. Furthermore, separate and joint attention mechanisms are devel-

oped and embedded to our model to add to its interpretability, as illustrated in case studies for pre-

dicting and explaining selective drug–target interactions. Lastly, alternative representations using

protein sequences or compound graphs and a unified RNN/GCNN-CNN model using graph CNN

(GCNN) are also explored to reveal algorithmic challenges ahead.

Availability and implementation: Data and source codes are available at https://github.com/Shen-

Lab/DeepAffinity.

Contact: yshen@tamu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drugs are often developed to target proteins that participate in

many cellular processes. Among almost 900 FDA-approved drugs as

of year 2016, over 80% are small-molecule compounds that act on

proteins for drug effects (Santos et al., 2017). Clearly, it is of critical

importance to characterize compound–protein interaction (CPI) for

drug discovery and development, whether screening compound

libraries for given protein targets to achieve desired effects or testing

given compounds against possible off-target proteins to avoid

undesired effects. However, experimental characterization of every

possible compound–protein pair can be daunting, if not impossible,

considering the enormous chemical and proteomic spaces.

Computational prediction of CPI has therefore made much progress

recently, especially for repurposing and repositioning known drugs

for previously unknown but desired new targets (Keiser et al., 2009;

Power et al., 2014) and for anticipating compound side-effects or

even toxicity due to interactions with off-targets or other drugs

(Chang et al., 2010; Mayr et al., 2016).
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Structure-based methods can predict compound–protein affinity,

i.e. how active or tight-binding a compound is to a protein; and their

results are highly interpretable. This is enabled by evaluating energy

models (Gilson and Zhou, 2007) on 3D structures of protein-

compound complexes. As these structures are often unavailable,

they often need to be first predicted by ‘docking’ individual struc-

tures of proteins and compounds together, which tends to be a

bottleneck for computational speed and accuracy (Leach et al.,

2006). Machine learning has been used to improve scoring accuracy

based on energy features (Ain et al., 2015).

More recently, deep learning has been introduced to predict

compound activity or binding-affinity from 3D structures directly.

Wallach et al. developed AtomNet, a deep convolutional neural net-

work (CNN), for modeling bioactivity and chemical interactions

(Wallach et al., 2015). Gomes et al. (2017) developed atomic convo-

lutional neural network (ACNN) for binding affinity by generating

new pooling and convolutional layers specific to atoms. Jimenez

et al. (2018) also used 3D CNN with molecular representation of

3D voxels assigned to various physicochemical property channels.

Besides these 3D CNN methods, Cang and Wei represented 3D

structures in novel 1D topology invariants in multiple channels for

CNN (Cang and Wei, 2017). These deep learning methods often im-

prove scoring thanks to modeling long-range and multi-body atomic

interactions. Nevertheless, they still rely on actual 3D structures of

CPI and remain largely untested on lower-quality structures pre-

dicted from docking, which prevents large-scale applications.

Sequence-based methods overcome the limited availability of

structural data and the costly need of molecular docking. Rather,

they exploit rich omics-scale data of protein sequences, compound

sequences [e.g. 1D binary substructure fingerprints (Wang et al.,

2009)] and beyond (e.g. biological networks). However, they have

been restricted to classifying CPIs (Chen et al., 2016) mainly into

two types (binding or not) and occasionally more [e.g. binding, acti-

vating or inhibiting (Wang and Zeng, 2013)]. More importantly,

their interpretablity is rather limited due to high-level features.

Earlier sequence-based machine learning methods are based on shal-

low models for supervised learning, such as support vector

machines, logistic regression, random forest and shallow neural net-

works (Cheng et al., 2012, 2016; Shi et al., 2013; Tabei and

YamaniShi, 2013; Yu et al., 2012). These shallow models are not

lack of interpretability per se, but the sequence-based high-level fea-

tures do not provide enough interpretability for mechanistic insights

on why a compound–protein pair interacts or not.

Deep learning has been introduced to improve CPI identification

from sequence data and shown to outperform shallow models.

Wang and Zeng developed a method to predict three types of CPI

based on restricted Boltzmann machines, a two-layer probabilistic

graphical model and a type of building block for deep neural net-

works (Wang and Zeng, 2013). Tian et al. boosted the performance

of traditional shallow-learning methods by a deep learning-based al-

gorithm for CPI (Tian et al., 2016). Wan et al. exploited feature

embedding algorithm such as latent semantic algorithm (Deerwester

et al., 1990) and word2vec (Mikolov et al., 2013) to automatically

learn low-dimensional feature vectors of compounds and proteins

from the corresponding large-scale unlabeled data (Wan and Zeng,

2016). Later, they trained deep learning to predict the likelihood of

their interaction by exploiting the learned low-dimensional feature

space. However, these deep-learning methods inherit from

sequence-based methods two limitations: simplified task of predict-

ing whether rather than how active CPIs occur as well as low inter-

pretability due to the lack of fine-resolution structures. In addition,

interpretability for deep learning models remains a challenge albeit

with fast progress especially in a model-agnostic setting (Koh and

Liang, 2017; Ribeiro et al., 2016).

As has been reviewed, structure-based methods predict quantita-

tive levels of CPI in a realistic setting and are highly interpretable

with structural details. But their applicability is restricted by the avail-

ability of structure data, and the molecular docking step makes the

bottleneck of their efficiency. Meanwhile, sequence-based methods

often only predict binary outcomes of CPI in a simplified setting and

are less interpretable in lack of mechanism-revealing features or repre-

sentations; but they are broadly applicable with access to large-scale

omics data and generally fast with no need of molecular docking.

Our goal is to, realistically, predict quantitative levels of CPIs

(compound–protein affinity measured in IC50, Ki or Kd) from se-

quence data alone and to balance the trade-offs of previous struc-

ture- or sequence-based methods for broad applicability, high

throughput and more interpretability. From the perspective of ma-

chine learning, this is a much more challenging regression problem

compared to the classification problem seen in previous sequence-

based methods.

To tackle the problem, we have designed interpretable yet com-

pact data representations and introduced a novel and interpretable

deep learning framework that takes advantage of both unlabeled and

labeled data. Specifically, we first have represented compound

sequences in the Simplified Molecular-Input Line-Entry System

(SMILES) format (Weininger, 1988) and protein sequences in novel

alphabets of structural and physicochemical properties. These repre-

sentations are much lower-dimensional and more informative com-

pared to previously adopted small-molecule substructure fingerprints

or protein Pfam domains (Tian et al., 2016). We then leverage the

wealth of abundant unlabeled data to distill representations capturing

long-term, nonlinear dependencies among residues/atoms in proteins/

compounds, by pre-training bidirectional recurrent neural networks

(RNNs) as part of the seq2seq auto-encoder that finds much success

in modeling sequence data in natural language processing

(Kalchbrenner and Blunsom, 2013). And we develop a novel deep

learning model unifying RNNs and convolutional neural networks

(CNNs), to be trained from end to end (Wang et al., 2016b) using

labeled data for task-specific representations and predictions.

Furthermore, we introduce several attention mechanisms to interpret

predictions by isolating main contributors of molecular fragments or

their pairs, which is further exploited for predicting binding sites and

origins of binding specificity. Lastly, we explore alternative represen-

tations using protein sequences or compound graphs (structural for-

mulae), develop graph CNN (GCNN) in our unified RNN/GCNN-

CNN model, and discuss remaining challenges.

The overall pipeline of our unified RNN-CNN method for semi-

supervised learning (data representation, unsupervised learning and

joint supervised learning) is illustrated in Figure 1 with details given

next.

2 Materials and methods

2.1 Data
We used molecular data from three public datasets: labeled compound-

protein binding data from BindingDB (Liu et al., 2006), compound

data in the SMILES format from STITCH (Kuhn et al., 2007) and pro-

tein amino-acid sequences from UniRef (Suzek et al., 2015).

Starting with 489 280 IC50-labeled samples, we completely

excluded four classes of proteins from the training set: nuclear estro-

gen receptors (ER; 3374 samples), ion channels (14 599 samples),

receptor tyrosine kinases (34 318 samples) and G-protein-coupled

receptors (GPCR; 60 238 samples), to test the generalizability of our
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framework. And we randomly split the rest into the training set

(263 583 samples including 10% held out for validation) and the de-

fault test set (113 168 samples) without the aforementioned four

classes of protein targets. The label is in the logarithm form: pIC50.

We similarly curated datasets for Ki and Kd measurements. For un-

labeled compound (protein) data, we used 499 429 (120 000) sam-

ples for training and 484 481 (50 525) for validation. More details

can be found in Supplementary Section S1.1 of Supplementary Data.

2.2 Input data representation
Only 1D sequence data are assumed available. 3D structures of pro-

teins, compounds or their complexes are not used.

2.2.1 Compound data representation

Baseline representation. A popular compound representation is

based on 1D binary substructure fingerprints from PubChem (Wang

et al., 2009). Mainly, basic substructures of compounds are used as

fingerprints by creating binary vectors of 881 dimensions.

SMILES representation. We used SMILES (Weininger, 1988) that

are short ASCII strings to represent compound chemical structures

based on bonds and rings between atoms. 64 symbols are used for

SMILES strings in our data. 4 more special symbols are introduced

for the beginning or the end of a sequence, padding (to align sequen-

ces in the same batch) or not-used ones. Therefore, we defined a

compound ‘alphabet’ of 68 ‘letters’. Compared to the baseline repre-

sentation which uses k-hot encoding, canonical SMILES strings fully

and uniquely determine chemical structures and are yet much more

compact.

2.2.2 Protein data representation

Baseline representation. Previously the most common protein repre-

sentation for CPI classification was a 1D binary vector whose

dimensions correspond to thousands of [5523 in (Tian et al., 2016)]

Pfam domains (Finn et al., 2014) (structural units) and 1’s are

assigned based on k-hot encoding (Cheng et al., 2016; Tabei and

YamaniShi, 2013). We considered all types of Pfam entries (family,

domain, motif, repeat, disorder and coiled coil) for better coverage

of structural descriptions, which leads to 16 712 entries (Pfam 31.0)

as features. Protein sequences are queried in batches against Pfam

using the web server HMMER (hmmscan) (Finn et al., 2015) with

the default gathering threshold.

Structural property sequence (SPS) representation. Although 3D

structure data of proteins are often a luxury and their prediction

without templates remains a challenge, protein structural properties

could be well predicted from sequences (Cheng et al., 2005; Magnan

and Baldi, 2014; Wang et al., 2016a). We used SSPro (Magnan and

Baldi, 2014) to predict secondary structure for each residue and

grouped neighboring residues into secondary structure elements

(SSEs). The details and the pseudo-code for SSE are in Algorithm 1

(Supplementary Data).

We defined 4 separate alphabets of 3, 2, 4 and 3 letters, respect-

ively to characterize SSE category, solvent accessibility, physico-

chemical characteristics and length (Supplementary Table S1) and

combined letters from the 4 alphabets in the order above to create

72 ‘words’ (4-tuples) to describe SSEs. Pseudo-code for the protein

representation is shown as Algorithm 2 in Supplementary Data.

Considering the 4 more special symbols similarly introduced for

compound SMILES strings, we flattened the 4-tuples and thus

defined a protein SPS ‘alphabet’ of 76 ‘letters’.

The SPS representation overcomes drawbacks of Pfam-based

baseline representation: it provides higher resolution of sequence

and structural details for more challenging regression tasks, more

distinguishability among proteins in the same family, and more in-

terpretability on which protein segments (SSEs here) are responsible

for predicted affinity. All these are achieved with a much smaller al-

phabet of size 76, which leads to around 100-times more compact

representation of a protein sequence than the baseline. In addition,

the SPS sequences are much shorter than amino-acid sequences and

prevents convergence issues when training RNN and LSTM for

sequences longer than 1000 (Li et al., 2018).

2.3 RNN for unsupervised pre-training
We encode compound SMILES or protein SPS into representations,

first by unsupervised deep learning from abundant unlabeled data.

We used a recurrent neural network (RNN) model, seq2seq

(Sutskever et al., 2014), that has seen much success in natural lan-

guage processing and was recently applied to embedding compound

SMILES strings into fingerprints (Xu et al., 2017). A Seq2seq model

is an auto-encoder that consists of two recurrent units known as the

encoder and the decoder, respectively (see the corresponding box in

Fig. 1). The encoder maps an input sequence (SMILES/SPS in our

case) to a fixed-dimension vector known as the thought vector.

Then the decoder maps the thought vector to the target sequence

(again, SMILES/SPS here). We choose gated recurrent unit (GRU)

(Cho et al., 2014) as our default seq2seq model and treat the

thought vectors as the representations learned from the SMILES/SPS

inputs. The detailed GRU configuration and advanced variants

(bucketing, bidirectional GRU and attention mechanism which pro-

vides a way to ‘focus’ for encoders) can be found in Supplementary

Section S1.4 of Supplementary Data.

Through unsupervised pre-training, the learned representations

capture nonlinear joint dependencies among protein residues or

compound atoms that are far from each other in sequence. Such

‘long-term’ dependencies are very important to CPIs since corre-

sponding residues or atoms can be close in 3D structures and jointly

contribute to intermolecular interactions.

2.4 Unified RNN-CNN for supervised learning
With compound and protein representations learned from the above

unsupervised learning, we solve the regression problem of

Fig. 1. Our unified RNN-CNN pipeline to predict and interpret compound–pro-

tein affinity
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compound–protein affinity prediction using supervised learning.

For either proteins or compounds, we append a CNN after the

RNN (encoders and attention models only) that we just trained. The

CNN model consists of a one-dimensional (1D) convolution layer

followed by a max-pooling layer. The outputs of the two CNNs

(one for proteins and the other for compounds) are concatenated

and fed into two more fully connected layers.

The entire RNN-CNN pipeline is trained from end to end (Wang

et al., 2016b), with the pre-trained RNNs serving as warm initializa-

tions, for improved performance over two-step training. The

pre-trained RNN initializations prove to be very important for the

non-convex training process (Sutskever et al., 2013). In comparison

to such a ‘unified’ model, we also include the ‘separate’ RNN-CNN

baseline for comparison, in which we fixed the learned RNN part

and train CNN on top of its outputs.

2.5 Attention mechanisms in unified RNN-CNN
We have also introduced three attention mechanisms to unified

RNN-CNN models. The goal is to both improve predictive perform-

ances and enable model interpretability at the level of ‘letters’ (SSEs

in proteins and atoms in compounds) and their pairs.

1. Separate attention. This default attention mechanism is applied

to the compound and the protein separately so the attention

learned on each side is non-specific to a compound–protein pair.

However, it has the least parameters among the three

mechanisms.

2. Marginalized attention. To introduce pair-specific attentions, we

first use a pairwise ‘interaction’ matrix for a pair and then mar-

ginalize it based on maximization over rows or columns for sep-

arate compound or protein attention models, which is motivated

by Lu et al. (2016).

3. Joint attention. We have developed this novel attention model to

fully explain the pairwise interactions between components

(compound atoms and protein SSEs). Specifically, we use the

same pairwise interaction matrix but learn to represent the pair-

wise space and consider attentions on pairwise interactions

rather than ‘interfaces’ on each side. Among the three attention

mechanisms, joint attention provides the best interpretability

albeit with the most parameters.

These attention models (for proteins, compounds or their pairs)

are jointly trained with the RNN/CNN parts. Their learned parame-

ters include attention weights on all ‘letters’ for a given string

(or those on all letter-pairs for a given string-pair). Compared to

that in unsupervised learning, each attention model here outputs a

single vector as the input to its corresponding subsequent 1D-CNN.

More details on unified RNN-CNN and attention mechanisms can

be found in Supplementary Section S1.5 of Supplementary Data.

3 Results

3.1 Compound and protein representations
We compared the auto-encoding performances of our vanilla

seq2seq model and four variants: bucketing, bi-directional GRU

(‘fwþbw’), attention mechanism and attention mechanism with

fwþbw, respectively, in Supplementary Tables S3 and S4. We used

the common assessment metric in language models, perplexity,

which is related to the entropy H of modeled probability distribu-

tion P (PerpðPÞ ¼ 2HðPÞ � 1). First, the vanilla seq2seq model had

lower test-set perplexity for compound SMILES than protein SPS

(7.07 versus 41.03), which echoes the fact that, compared to protein

SPS strings, compound SMILES strings are defined in an alphabet of

less letters (68 versus 76) and are of shorter lengths (100 versus

152), thus their RNN models are easier to learn. Second, bucketing,

the most ad-hoc option among all, did not improve the results

much. Third, whereas bi-directional GRUs lowered perplexity by

about 2 �3.5 folds and the default attention mechanism did much

more for compounds or proteins, they together achieved the best

performances (perplexity being 1.0002 for compound SMILES and

1.001 for protein SPS).

Therefore, the last seq2seq variant, bidirectional GRUs with at-

tention mechanism, is regarded the most appropriate one for learn-

ing compound/protein representations and adopted thereinafter.

3.2 Compound–protein affinity prediction
3.2.1 Comparing novel representations to baseline ones

To assess how useful the learned/encoded protein and compound

representations are for predicting compound–protein affinity, we

compared the novel and baseline representations in affinity regres-

sion using the labeled datasets. The representations were compared

under the same shallow machine learning models—ridge regression,

lasso regression and random forest (RF). As shown in Table 1 our

novel representations learned from SMILES/SPS strings by seq2seq

outperform baseline representations of k-hot encoding of molecular/

Pfam features. For the best performing RF models, using 46% less

training time and 24% less memory, the novel representations

achieved the same performance over the default test set as the base-

line ones and lowered root mean squared errors (RMSE) for two of

the four generalization sets whose target protein classes (nuclear es-

trogen receptors/ER and ion channels) are not included in the train-

ing set. Similar improvements were observed on pKi, pKd and pEC50

predictions in Supplementary Tables S5–S7, respectively.

These results show that learning protein or compound represen-

tations even from unlabeled datasets alone could improve their

context-relevance for various labels. We note that, unlike Pfam-

based protein representations that exploit curated information only

available to some proteins and their homologs, our SPS representa-

tions do not assume such information and can apply to uncharacter-

ized proteins lacking annotated homologs.

3.2.2 Comparing shallow and deep models

Using the novel representations we next compared the performances

of affinity regression between the best shallow model (RF) and vari-

ous deep models. For both separate and unified RNN-CNN models,

we tested results from a single model with (hyper)parameters opti-

mized over the training/validation set, averaging a ‘parameter en-

semble’ of 10 models derived in the last 10 epochs, and averaging a

‘parameterþNN’ ensemble of models with varying number of neu-

rons in the fully connected layers [(300, 100), (400, 200) and (600,

300)] trained in the last 10 epochs. The attention mechanism used

here is the default, separate attention.

From Table 2 we noticed that unified RNN-CNN models outper-

form both random forest and separate RNN-CNN models (the simi-

lar performances between RF and separate RNN-CNN indicated a

potential to further improve RNN-CNN models with deeper architec-

tures). By using a relatively small amount of labeled data that are usu-

ally expensive and limited, protein and compound representations

learned from abundant unlabeled data can be tuned to be more task-

specific. We also noticed that averaging an ensemble of unified RNN-

CNN models further improves the performances especially for some

generalization sets of ion channels and GPCRs. As anticipated, aver-

aging ensembles of models reduces the variance originating from
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network architecture and parameter optimization thus reduces

expected generalization errors. Similar observations were made for

pKi predictions as well (Supplementary Table S8) even when their

hyper-parameters were not particularly optimized and simply bor-

rowed from pIC50 models. Impressively, unified RNN-CNN models

without very deep architecture could predict IC50 values with relative

errors below 100:7¼5 fold (or 1.0 kcal/mol) for the test set and even

around 101:3 ¼ 20 fold (or 1.8 kcal/mol) on average for protein

classes not seen in the training set. Interestingly, GPCRs and ion chan-

nels had similar RMSE but very different Pearson’s r, which is further

described by the distributions of predicted versus measured pIC50 val-

ues for various sets (Supplementary Fig. S5 in Supplementary Data).

3.2.3 Comparing attention mechanisms in prediction

To assess the predictive powers of the three attention mechanisms,

we compared their pIC50 predictions in Supplementary Table S9

using the same dataset and the same unified RNN-CNN models as

before. All attention mechanisms had similar performances on the

training and test sets. However, as we anticipated, separate attention

with the least parameters edged joint attention in generalization

(especially for receptor tyrosine kinases). Meanwhile, joint attention

had similar predictive performances and much better interpretabil-

ity, thus will be further examined in case studies of selective drugs.

3.2.4 Deep transfer learning for new classes of protein targets

Using the generalization sets, we proceed to explain and address our

models’ relatively worse performances for new classes of protein tar-

gets without any training data. We chose to analyze separate attention

models with the best generalization results and first noticed that

proteins in various sets have different distributions in the SPS alphabet

(4-tuples). In particular, the test set, ion channels/GPCRs/tyrosine kin-

ases and estrogen receptors are increasingly different from the training

set (measured by Jensen-Shannon distances in SPS letter or SPS length

distribution) (Supplementary Fig. S3 in Supplementary Data), which

correlated with increasingly deteriorating performance relative to the

training set (measured by the relative difference in RMSE) with a

Pearson’s r of 0.68 (SPS letter distribution) or 0.96 (SPS length distri-

bution) (Supplementary Fig. S4 in Supplementary Data).

To improve the performances for new classes of proteins, we

compare two strategies: re-training shallow models (random forest)

from scratch based on new training data alone and ‘transferring’ ori-

ginal deep models (unified parameterþNN ensemble with the

default separate attention) to fit new data (see Supplementary

Section S1.6 in Supplementary Data). The reason is that new classes

of targets often have few labeled data that might be adequate for re-

training class-specific shallow models from scratch but not for deep

models with much more parameters.

As shown in Figure 2, deep transfer learning models increasingly

improved the predictive performance compared to the original deep

learning models, when increasing amount of labeled data are made

available for new protein classes. The improvement was significant

even with 1% training coverage for each new protein class. Notably,

deep transfer learning models outperformed random forest models

that were re-trained specifically for each new protein class.

3.3 Predicting target selectivity of drugs
We went on to test how well our unified RNN-CNN models could

predict certain drugs’ target selectivity, using three sets of drug–target

Table 1. Comparing the novel representations to the baseline based on RMSE (and Pearson correlation coefficient r) of pIC50 shallow

regression

Baseline representations Novel representations

Ridge Lasso RF Ridge Lasso RF

Training 1.16 (0.60) 1.16 (0.60) 0.76 (0.86) 1.23 (0.54) 1.22 (0.55) 0.63 (0.91)

Testing 1.16 (0.60) 1.16 (0.60) 0.91 (0.78) 1.23 (0.54) 1.22 (0.55) 0.91 (0.78)

ER 1.43 (0.30) 1.43 (0.30) 1.44 (0.37) 1.46 (0.18) 1.48 (0.18) 1.41 (0.26)

Ion channel 1.32 (0.22) 1.34 (0.20) 1.30 (0.22) 1.26 (0.23) 1.32 (0.17) 1.24 (0.30)

GPCR 1.28 (0.22) 1.30 (0.22) 1.32 (0.28) 1.34 (0.20) 1.37 (0.17) 1.40 (0.25)

Tyrosine kinase 1.16 (0.38) 1.16 (0.38) 1.18 (0.42) 1.50 (0.11) 1.51 (0.10) 1.58 (0.11)

Time (core hours) 3.5 7.4 1239.8 0.47 2.78 668.7

Memory (GB) 7.6 7.6 8.3 7.3 7.3 6.3

Note: Bold-faced entries correspond to the best performance for each row (data set).

Table 2. Under novel representations learned from seq2seq, comparing random forest and variants of separate RNN-CNN and unified RNN-

CNN models based on RMSE (and Pearson’s r) for pIC50 prediction

Separate RNN-CNN models Unified RNN-CNN models

RF Single Parameter ParameterþNN Single Parameter ParameterþNN

ensemble ensemble ensemble ensemble

Training 0.63 (0.91) 0.68 (0.88) 0.67 (0.90) 0.68 (0.89) 0.47 (0.94) 0.45 (0.95) 0.44 (0.95)

Testing 0.91 (0.78) 0.94 (0.76) 0.92 (0.77) 0.90 (0.79) 0.78 (0.84) 0.77 (0.84) 0.73 (0.86)

Generalization—ER 1.41 (0.26) 1.45 (0.24) 1.44 (0.26) 1.43 (0.28) 1.53 (0.16) 1.52 (0.19) 1.46 (0.30)

Generalization—Ion Channel 1.24 (0.30) 1.36 (0.18) 1.33 (0.18) 1.29 (0.25) 1.34 (0.17) 1.33 (0.18) 1.30 (0.18)

Generalization—GPCR 1.40 (0.25) 1.44 (0.19) 1.41 (0.20) 1.37 (0.23) 1.40 (0.24) 1.40 (0.24) 1.36 (0.30)

Generalization—Tyrosine Kinase 1.58 (0.11) 1.66 (0.09) 1.62 (0.10) 1.54 (0.12) 1.24 (0.39) 1.25 (0.38) 1.23 (0.42)

Note: Bold-faced entries correspond to the best performance for each row (data set).
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interactions of increasing prediction difficulty. Our novel representa-

tions and models successfully predicted target selectivity for six of

seven drugs whereas baseline representations and shallow models

(random forest) failed for most drugs.

3.3.1 Factor Xa versus thrombin

Thrombin and factor X (Xa) are important proteins in the blood co-

agulation cascade. Antithrombotics, inhibitors for such proteins,

have been developed to treat cardiovascular diseases. Due to throm-

bin’s other significant roles in cellular functions and neurological

processes, it is desirable to develop inhibitors specifically for factor

Xa. Compound DX-9065a is such a selective inhibitor (pKi value

being 7.39 for Xa and <2.70 for thrombin) (Brandstetter et al.,

1996).

We used the learned pKi models in this study. Both proteins were

included in the Ki training set with 2294 and 2331 samples, respect-

ively, but their interactions with DX-9065a were not. Table 3 sug-

gested that random forest correctly predicted the target selectivity

(albeit with less than 0.5-unit margin) using baseline representations

but failed using novel representations. In contrast, our models with

separate and joint attention mechanisms both correctly predicted

the compound’s favoring Xa. Moreover, our models predicted se-

lectivity levels being 2.4 (separate attention) and 3.9 (joint attention)

in pKi difference (DpKi), where the joint attention model produced

predictions very close to the known selectivity margin (DpKi �4.7).

3.3.2 Cyclooxygenase (COX) protein family

COX protein family represents an important class of drug targets

for inflammatory diseases. These enzymes responsible for prosta-

glandin biosynthesis include COX-1 and COX-2 in human, both of

which can be inhibited by nonsteroidal anti-inflammatory drugs

(NSAIDs). We chose three common NSAIDs known for human

COX-1/2 selectivity: celecoxib/CEL (pIC50 for COX-1: 4.09; COX-

2: 5.17), ibuprofen/IBU (COX-1: 4.92, COX-2: 4.10) and rofe-

coxib/ROF (COX-1: <4; COX-2: 4.6) (Luo et al., 2017). This is a

very challenging case for selectivity prediction because selectivity

levels of all NSAIDs are close to or within 1 unit of pIC50. We used

the learned pIC50 ensemble models in this study. COX-1 and COX-

2 both exist in our IC50 training set with 959 and 2006 binding

examples, respectively, including 2 of the 6 compound–protein pairs

(CEL and IBU with COX-1 individually).

From Table 4, we noticed that, using the baseline representa-

tions, random forest incorrectly predicted COX-1 and COX-2 to be

equally favorable targets for each drug. This is because the two pro-

teins are from the same family and their representations in Pfam

domains are indistinguishable. Using the novel representations, ran-

dom forest correctly predicted target selectivity for two of the three

drugs (CEL and ROF), whereas our unified RNN-CNN models

(both attention mechanisms) did so for all three. Even though the

selectivity levels of the NSAIDs are very challenging to predict, our

models were able to predict all selectivities correctly with the cav-

eat that few predicted differences might not be statistically

significant.

3.3.3 Protein-tyrosine phosphatase (PTP) family

Protein-tyrosine kinases and protein-tyrosine phosphatases (PTPs)

are controlling reversible tyrosine phosphorylation reactions

which are critical for regulating metabolic and mitogenic signal

transduction processes. Selective PTP inhibitors are sought for the

treatment of various diseases including cancer, autoimmunity and

diabetes. Compound 1 [2-(oxalyl-amino)-benzoic acid or OBA]

and its derivatives, compounds 2 and 3 (PubChem CID:

44359299 and 90765696), are highly selective toward PTP1B ra-

ther than other proteins in the family such as PTPRA, PTPRE,

PTPRC and SHP1 (Iversen et al., 2000). Specifically, the pKi val-

ues of OBA, compound 2 and compound 3 against PTP1B are

4.63, 4.25 and 6.69, respectively; and their pKi differences to the

closest PTP family protein are 0.75, 0.7 and 2.47, respectively

(Iversen et al., 2000).

We used the learned pKi ensemble models in this study. PTP1B,

PTPRA, PTPRC, PTPRE and SHP1 were included in the Ki training

set with 343, 33, 16, 6 and 5 samples respectively. These examples

just included OBA binding to all but SHP1 and compound 2 binding

to PTPRC.

Results in Table 5 showed that random forest using baseline rep-

resentations cannot tell binding affinity differences within the PTP

family as the proteins’ Pfam descriptions are almost indistinguish-

able. Using novel representations, random forest incorrectly pre-

dicted target selectivity for all 3 compounds, whereas unified RNN-

CNN models with both attention mechanisms correctly did so for

all but one (compound 1—OBA). We also noticed that, although the

separate attention model predicted likely insignificant selectivity

Fig. 2. Comparing strategies to generalize predictions for four sets of new protein classes: original random forest (RF), original param.þNN ensemble of unified

RNN-CNN models (DL for deep learning with the default attention), and re-trained RF or transfer DL using incremental amounts of labeled data in each set

Table 3. Predicted pKi values and target specificity for compound

DX-9065a interacting with human factor Xa and thrombin

Baseline

rep. þ RF

Novel

rep. þ RF

Novel rep. þ
DL (sep. attn.)

Novel rep. þ
DL (joint attn.)

Thrombin 6.36 6.71 5.68 4.77

Factor Xa 6.87 6.54 8.08 8.64

Note: The more favorable value predicted by each model in each column is

bold-faced.
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levels for compounds 2 (DpKi ¼ 0:09) and 3 (DpKi ¼ 0:03), the joint

attention model much improved the prediction of selectivity margins

(DpKi ¼ 0:58 and 0.82 for compounds 2 and 3, respectively) and

their statistical significances.

3.4 Explaining target selectivity of drugs
After successfully predicting target selectivity for some drugs, we

proceed to explain using attention scores how our deep learning

models did so and what they reveal about those compound–protein

interactions.

3.4.1 How do the compound–protein pairs interact?

Given that SPS and SMILES strings are interpretable and attention

models between RNN encoders and 1D convolution layers can report

their focus, we pinpoint SSEs in proteins and atoms in compounds

with high attention scores, which are potentially responsible for CPIs.

We chose 3 compound–protein pairs that have 3D crystal complex

structures from the Protein Data Bank; and extracted residues in dir-

ect contacts with ligands (their SSEs are regarded ground truth for

binding site) for each protein from ligplot diagrams provided through

PDBsum (De Beer et al., 2014). After correcting and marginalizing

joint attention scores, we picked the top 10% (4) SSEs in resulting bi

as predicted binding sites. More detailed procedures could be found

in Supplementary Section S3.1 (Supplementary Data).

Table 6 shows that, compared to randomly ranking the SSEs,

our approach can enrich binding site prediction by 1.7–5.8 fold for

the three CPIs. Consistent with the case of target selectivity

prediction, joint attention performed better than separate attention

did (Supplementary Table S10). One-sided paired t-tests (see details

in Supplementary Section S1.7 of Supplementary Data) suggested

that binding sites enjoyed higher attention scores than non-binding

sites in a statistically significant way. When the strict definition of

binding sites is relaxed to residues within 5Å of any heavy atom of

Table 4. pIC50 predictions and target specificity for three NSAIDs interacting with human COX-1 and COX-2

Baseline rep. þ RF Novel rep. þ RF Novel rep. þ DL (sep. attn.) Novel rep. þ DL (joint attn.)

CEL IBU ROF CEL IBU ROF CEL IBU ROF CEL IBU ROF

COX-1 6.06 5.32 5.71 6.41 6.12 6.13 5.11 6.06 5.67 5.18 5.94 6.00

COX-2 6.06 5.32 5.71 6.57 6.19 6.21 7.60 5.96 6.51 7.46 5.62 6.03

Note: Bold-faced entries correspond to the predicted protein target for each column (drug).

Table 5. Predicted pKi values and target specificity for three PTP1B-selective compounds interacting with five proteins in the human PTP

family

Baseline rep. þ RF Novel rep. þ RF Novel rep. þ DL (sep. attn.) Novel rep. þ DL (joint attn.)

Protein Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3 Comp1 Comp2 Comp3

PTP1B 4.15 3.87 5.17 6.70 6.55 6.71 3.76 3.84 3.92 2.84 4.10 4.04

PTPRA 4.15 3.87 5.17 6.29 6.59 6.27 2.73 2.90 3.44 2.39 2.62 2.12

PTPRC 4.15 3.87 5.17 6.86 6.73 6.87 3.37 3.25 3.19 3.36 3.49 2.97

PTPRE 4.15 3.87 5.17 6.79 6.68 6.81 3.83 3.75 3.85 2.75 2.93 2.61

SHP1 4.15 3.87 5.17 6.71 6.74 6.73 3.37 3.38 3.89 3.42 3.52 3.22

Note: Bold-faced entries correspond to the predicted protein target for each column (drug).

Table 6. Predicting factor Xa binding sites based on joint attentions

Number of SSEs Top 10% (4) SSEs predicted as binding site by joint attn.

Target–drug pair PDB ID total binding site # of TP Enrichment Best rank P value

Human COX2–rofecoxib 5KIR 40 6 1 1.68 4 1.1e�2

Human PTP1B–OBA 1C85 34 5 1 1.70 1 1.1e�10

Human factor Xa–DX9065 1FAX 31 4 3 5.81 2 2.2e�16

A B

Fig. 3. Interpreting deep learning models for predicting factor Xa (A) binding

site and (B) selectivity origin based on joint attention. (A) 3D structure of factor

Xa (colored cartoon representation) in complex with DX-9065a (black sticks)

(PDB ID: 1FAX) where protein SSEs are color-coded by attention scores (bi),

warmer colors indicating higher attentions. (B) Segments of factor Xa are

scored by one less the average of the bi rank ratios for the two compound–pro-

tein interactions where the ground truth of the selectivity origin is in red. (Color

version of this figure is available at Bioinformatics online.)
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the ligand, results were further improved with all top 10% SSEs of

factor Xa being at the binding site (Supplementary Table S11).

We delved into the predictions for factor Xa–DX-9065a inter-

action in Figure 3A (the other 2 are in Supplementary Fig. S6 of

Supplementary Data). Warmer colors (higher attentions) are clearly

focused near the ligand. The red loops connected through a b strand

(resi. 171–196) were correctly predicted to be at the binding site

with a high rank 2, thus a true positive (TP). The SSE ranked first, a

false positive, is its immediate neighbor in sequence (resi. 162–170;

red helix at the bottom) and is near the ligand. In fact, as mentioned

before, when the binding site definition is relaxed, all top 10% SSEs

were at the binding site. Therefore, in the current unified RNN-

CNN model with attention mechanism, wrong attention could be

paid to sequence neighbors of ground truth; and additional informa-

tion (for instance, 2D contact maps or 3D structures of proteins, if

available) could be used as additional inputs to reduce false

negatives.

We also examined attention scores bj on compound atoms (j).

Many high attention scores were observed (Supplementary Fig. S7),

which is somewhat intuitive as small-molecule compounds usually

fit in protein pockets or grooves almost entirely. The top-ranked

atom happened to be a nitrogen atom forming a hydrogen bond

with an aspartate (Asp189) of factor Xa, although more cases need

to be studied more thoroughly for a conclusion.

3.4.2 How are targets selectively interacted?

To predictively explain the selectivity origin of compounds, we designed

an approach to compare attention scores between pairs of CPIs and

tested it using factor Xa-selective DX-9065a with known selectivity ori-

gin. Specifically, position 192 is a charge-neutral polar glutamine

(Gln192) in Xa but a negatively charged glutamate (Glu192) in throm-

bin (Huggins et al., 2012). DX-9065a exploited this difference with a

carboxylate group forming unfavorable electrostatic repulsion with

Glu192 in thrombin but favorable hydrogen bond with Gln192 in Xa.

To compare DX-9065a interacting with the two proteins, we

performed amino-acid sequence alignment between the proteins and

split two sequences of mis-matched SSEs (count: 31 and 38) into

those of perfectly matched segments (count: 50 and 50). In the end,

segment 42, where SSE 26 of Xa and SSE 31 of thrombin align, is

the ground truth containing position 192 for target selectivity.

For DX-9065a interacting with either factor Xa or thrombin, we

ranked the SSEs based on the attention scores bi and assigned each

segment the same rank as its parent SSE. Due to the different SSE

counts in the two proteins, we normalized each rank for segment i

by the corresponding SSE count for a rank ratio ri. For each segment

we then substracted from 1 the average of rank ratios between factor

Xa and thrombin interactions so that highly attended segments in

both proteins can be scored higher. Figure 3B shows that the

ground-truth segment in red was ranked the 2nd among 50 segments

albeit with narrow margins over the next 3 segments.

4 Discussion

We lastly explore alternative representations of proteins and com-

pounds and discuss remaining challenges.

4.1 Protein representations using amino acid sequences
As shown earlier, our SPS representations integrate both sequence and

structure information of proteins and are much more compact com-

pared to the original amino acid sequences. That being said, there is a

value to consider a protein sequence representation with the resolution

of residues rather than SSEs: potentially higher-resolution precision

and interpretability. We started with unsupervised learning to encode

the protein sequence representation with seq2seq. More details are

given in Supplementary Section S1.8 of Supplementary Data.

Compared to SPS representations, protein sequences are

10-times longer and demanded 10-times more GRUs in seq2seq,

which suggests much more expensive training. Under the limited

computational budget, we trained the protein sequence seq2seq

models using twice the time limit on the SPS ones. The perplexity for

the test set turned out to be over 12, which is much worse

than 1.001 in the SPS case and deemed inadequate for subsequent

(semi-)supervised learning. Learning very long sequences is still

challenging and calls for advanced architectures of sequence models.

4.2 Compound representation using chemical graphs:

unified RNN/GCNN-CNN
We have chosen SMILES representations for compounds partly due

to recent advancements of sequence models especially in the field of

natural language processing. Meanwhile, the descriptive power of

SMILES strings can have limitations. For instance, some

Table 7. Comparing the auto-encoding performance between

amino acid and SPS sequences using the best seq2seq model (bi-

directional GRU with attention)

SPS rep.

þattentionþfw/bw

seq. rep.

þattentionþfw/bw

Training error (perplexity) 1.003 11.46

Testing error (perplexity) 1.001 12.69

Time (h) 96 192

Note: Bold-faced entries correspond to the best performance for each row

(data set).

Table 8. Comparing unified RNN-CNN and unified RNN/GCNN-CNN based on RMSE (and Pearson’s r) for pIC50 prediction

SMILES rep. Graph rep.

Single Parameter ParameterþNN Single Parameter ParameterþNN

ensemble ensemble ensemble ensemble

Training 0.47 (0.94) 0.45 (0.95) 0.44 (0.95) 0.55 (0.92) 0.54 (0.92) 0.55 (0.92)

Testing 0.78 (0.84) 0.77 (0.84) 0.73 (0.86) 1.50 (0.35) 1.50 (0.35) 1.34 (0.45)

Generalization—ER 1.53 (0.16) 1.52 (0.19) 1.46 (0.30) 1.68 (0.05) 1.67 (0.03) 1.67 (0.07)

Generalization—Ion Channel 1.34 (0.17) 1.33 (0.18) 1.30 (0.18) 1.43 (0.10) 1.41 (0.13) 1.35 (0.12)

Generalization—GPCR 1.40 (0.24) 1.40 (0.24) 1.36 (0.30) 1.63 (0.04) 1.61 (0.04) 1.49 (0.07)

Generalization—Tyrosine Kinase 1.24 (0.39) 1.25 (0.38) 1.23 (0.42) 1.74 (0.01) 1.71 (0.03) 1.70 (0.03)

Note: Bold-faced entries correspond to the best performance for each row (data set).
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syntactically invalid SMILES strings can still correspond to valid

chemical structures. Therefore, we also explore chemical formulae

(2D graphs) for compound representation.

We replaced RNN layers for compound sequences with graph

CNN (GCNN) in our unified model (separate attention) and kept

the rest of the architecture. This new architecture is named unified

RNN/GCNN-CNN. The GCNN part is adopting a very recently

developed method (Gao et al., 2018) for compound–protein interac-

tions. More details can be found in Supplementary Section S1.9 of

Supplementary Data.

Results in Table 8 indicate that the unified RNN/GCNN-CNN

model using compound graphs did not outperform the unified RNN-

CNN model using compound SMILES in RMSE and did a lot worse

in Pearson’s r. These results did not show the superiority of SMILES

versus graphs for compound representations per se. Rather, they show

that graph models need new architectures and further developments to

address the challenge. We note recent advancements in deep graph

models (Coley et al., 2017; Gilmer et al., 2017; Jin et al., 2018).

5 Conclusion

We have developed accurate and interpretable deep learning models

for predicting compound–protein affinity using only compound

identities and protein sequences. By taking advantage of massive

unlabeled compound and protein data besides labeled data in semi-

supervised learning, we have jointly trained unified RNN-CNN

models from end to end for learning context- and task-specific

protein/compound representations and predicting compound–

protein affinity. These models outperform baseline machine-

learning models. Impressively, they achieve the relative error of IC50

within 5-fold for a comprehensive test set and even that within

20-fold for generalization sets of protein classes unknown to train-

ing. Deeper models would further improve the results. Moreover,

for the generalization sets, we have devised transfer-learning strat-

egies to significantly improve model performance using as few as

about 30 labeled samples.

Compared to conventional compound or protein representations

using molecular descriptors or Pfam domains, the encoded represen-

tations learned from novel structurally annotated SPS sequences and

SMILES strings improve both predictive power and training

efficiency for various machine learning models. Given the novel rep-

resentations with better interpretability, we have included attention

mechanism in the unified RNN-CNN models to quantify how much

each part of proteins, compounds, or their pairs are focused while

the models are making the specific prediction for each compound–

protein pair.

When applied to case studies on drugs of known target-

selectivity, our models have successfully predicted target selectivity

in nearly all cases whereas conventional compound/protein repre-

sentations and machine learning models have failed many.

Furthermore, our analyses on attention weights have shown promis-

ing results for predicting protein binding sites as well as the origins

of binding selectivity, thus calling for further method development

for better interpretability.

For protein representation, we have chosen SSE as the resolution

for interpretability due to the known sequence-size limitation of

RNN models (Li et al., 2018). One can easily increase the resolution

to residue-level by simply feeding to our models amino-acid sequen-

ces instead of SPS sequences, but needs to be aware of the much

increased computational burden and much worse convergence when

training RNNs. For compound representation, we have started with

1D SMILES strings and have also explored 2D graph representa-

tions using graph CNN (GCNN). Although the resulting unified

RNN/GCNN-CNN model did not improve against unified RNN-

CNN, graphs are more descriptive for compounds and more devel-

opments in graph models are needed to address remaining

challenges.
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