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Abstract

Zwitterionic polysaccharides (ZPSs) activate T-cell-dependent immune responses by major 

histocompatibility complex class II presentation. Herein, we report the first synthesis of a 

Morganella morganii ZPS repeating unit as an enabling tool in the synthesis of novel ZPS 

materials. The repeating unit incorporates a 1,2-cis-α-glycosidic bond; the problematic 1,2-trans-

galactosidic bond, Gal-β-(1 → 3)-GalNAc; and phosphoglycerol and phosphocholine residues 

which have not been previously observed together as functional groups on the same 

oligosaccharide. The successful third-generation approach leverages a first in class glycosylation 

of a phosphoglycerol-functionalized acceptor. To install the phosphocholine unit, a highly effective 

phosphocholine donor was synthesized.

Graphical abstract

INTRODUCTION

The capsule is a protective structure on the surface of a number of microbes. Its surface is 

coated with capsular polysaccharides (CPSs), incorporating residues that differ significantly 

in structure from those of the mammalian glycome.1,2 Due to their incongruity, CPSs are 

ligands for the human immune system.3,4 CPSs are antigens that work by activating B cells 

through cross-linking of cell surface receptors (Figure 1A). These B cells are partially 

activated and differentiate into plasma B cells that produce low-affinity IgM antibodies. In 

the absence of external mediators, only a T-cell-independent humoral response is induced.
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Unlike other carbohydrate antigens, zwitterionic polysaccharides (ZPSs) possess an 

alternating charge motif and elicit a T-cell-dependent response from the immune system 

(Figure 1B).5,6 Mechanistically, an antigen-presenting cell (APC) consumes and lyses the 

ZPS. Next, antigenic fragments are loaded onto major histocompatibility class II (MHC-II) 

receptors. The APC then presents the resulting antigen/MHC-II complex on the cell surface. 

Helper T cells (Th cells) bind to the antigen/MHC-II complex through the T-cell receptor 

(TCR), initiating cytokine release from the Th cell which activates cytotoxic T cells (CTLs). 

B cells are also activated. In a parallel pathway, activated Th cells bind to antigen-bound B 

cells to produce cytokines that fully activate B cells. This action results in immunoglobulin 

class switching and affinity maturation to produce high affinity IgG antibodies and memory 

B cells. Memory B cell formation is central to a long- lasting immune response.

Due to their immuno-stimulatory properties, ZPSs have been studied in a number of 

immunology settings. For example, ZPSs function as adjuvants when coadministered with 

poorly immunogenic antigens. In studies by the Wack group, ZPSs coadministered with the 

tetanus toxoid antigen were observed to increase antibody titers in vivo.7

The most common use of ZPSs is in cancer immunotherapy as substitutes for carrier 

proteins in vaccine development. ZPSs offer several advantages over carrier proteins such as 

keyhole limpet hemocyanin (KLH).8–13 Carrier protein–antigen conjugates are difficult to 

synthesize and characterize. They also elicit low levels of IgG antibodies in patients.14,15 It 

is believed this profile is due to the strong immune response elicited by carrier proteins 

themselves and their inadvertent suppression of immune responses to the antigen.16 The 

most well-characterized ZPS is PS-A1 (1), a Bacteroides fragilis CPS (Figure 1C).17 

Foundational work by the Andreana lab has shown that, when administered to rodents, PS-

A1 conjugates to tumor-associated carbohydrate antigens (TACAs) elicit high antibody 

titers.18–21 Moreover, the antibodies are highly selective for their respective antigen. The 

Seeberger and Andreana laboratories have independently completed total syntheses of PS-

A1 to better characterize its immunostimulatory properties.22,23

Recently, we took note of the Morganella morganii ZPS (MM-ZPS, 2).24 In vitro binding 

assays revealed that 2 engages the MHCII in a manner competitive with PS-A1. Moreover, 

cellular studies suggest that 2 activates CD4+ T-cells. Antibody binding assays of 

hydrolyzed fragments and oligomers of the repeating unit revealed that the phosphocholine 

functional group was the dominant element of the epitope. Isolating MM-ZPS from the 

microbial cell surface for further evaluation is challenged by two problems. First, extraction 

and purification are complex and result in the isolation of small, impure batches. Second, the 

isolation process can alter the ZPS. Thus, there is an unmet need to synthesize structurally 

defined antigens. While it is general practice in the field to synthesize repeating units that 

are ready for chemical polymerization, our strategy differs in that we plan to use the 

repeating unit as ink to “print” unnatural ZPS nanomaterials.25 Indeed, three-dimensional 

(3D) printing is a frontier area of nanoscience due to its ability to produce 3D objects in 

advanced applications in areas ranging from tissue engineering to biomaterials. We 

hypothesize that nanoprinting can be used to synthesize ZPS materials, in the absence of 

traditional conjugation handles, through deposition of the ZPS onto polyelectrolyte (PE) 
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complexes with nanometer precision in all dimensions. Described herein is the first step in 

that process, the total synthesis of the MM-ZPS trisaccharide repeating unit.

RESULTS AND DISCUSSION

At the planning stage, we were drawn to repeating unit 3 which features a tetra-substituted 

galactose residue housing three of the repeating unit’s four charges (Figure 2). This 

molecule also contains two sites of phosphorylation, including a phosphocholine residue 

which is rarely observed on carbohydrates.26 Each residue is galactose derived, and one of 

the glycosidic bonds is a Gal-β-(l → 3)-GalNAc linkage. Regardless of the conditions 

employed, installing this 1,2-trans-galactosyl bond is regularly accompanied by orthoester 

formation (when participating groups are located at C2).27–32 Based on these considerations, 

our first-generation approach focused on stepwise functionalization of a central 

epoxygalactal residue 5. After forming the 1,2-cis-α-glycosidic bond (GalN3-α-(l → 3)-

Gal) (step i), we planned to install the phosphoglycerol arm using phosphoramidite 6 (step 

ii). Installation of the 1,2-trans-β-glycosidic bond and second oxygen–phosphorus bond 

would hinge on ring opening of the epoxide (steps iii and iv, respectively).33,34

The synthesis started from Schmidt trichloroacetimidate 8,35 prepared in seven steps from 

D-galactose (Scheme 1A). BF3∙Et2O-mediated glycosylation with known 6-O-TBS galactal 

acceptor36 9 proceeded selectively at C3 to provide α−10 in 65% yield as the major product. 

The high α-selectivity can be attributed to solvent participation in a β-fashion by diisopropyl 

ether.37 To avoid temporarily protecting the C3′ position, we installed the phosphoglycerol 

unit using phosphoramidite 6.38–40

Subsequent oxidation of the intermediate phosphorus(III) species with mCPBA provided 

phosphate ester 11 in 87% yield as an inseparable mixture of phosphorus epimers. Next, 

epoxidation of the glycal with DMDO gave intermediate epoxide 12.34 Unfortunately, ring 

opening the epoxide was intractable. To circumvent this issue, glycal 11 was converted to 

thioglycoside donor 15 using a sequence of epoxidation, thiylation, and acylation of the 

resultant C2′ alcohol (Scheme 1B).41 Interestingly, glycosylation of 15 with acceptor 13 
provided orthoester 16 instead of glycoside 14. Based on literature precedence, we 

hypothesized that the orthoacetate could be rearranged to the desired glycoside under 

Kochetkov conditions.42,43 However, exposing 16 to acidic media resulted in hydrolysis and 

decomposition over prolonged reaction times. Derivatives containing electron-deficient acyl-

protecting groups at C2 were also examined as donors (see SI) as electron-withdrawing 

groups have been shown to slow competitive orthoester formation.37 Orthoester formation 

dominated regardless of the protecting group at C2.

As we terminated the first-generation approach, it was clear that the Gal-β-(l → 3)-GalNAc 

bond was more difficult to install than we anticipated. In fact, with few exceptions, a large 

number of routine glycosylation procedures favor orthoester formation over glycosidic bond 

formation.27–29,31,32,44–49 One obscure tactic used to generate this bond is to mask the C2 

amine of the galactosamine acceptor as an azide.27,50 We incorporated this maneuver into a 

second-generation approach targeting 3 (Figure 3). The plan called for Gal-β-(l → 3)-

GalNAc glycosidic bond formation early in the synthesis (step i). Following conversion of 
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the azide to an acetamide (step ii), we would install the α-glycosidic bond (step iii). The 

final steps would involve installation of the phosphoglycerol (step iv) and phosphocholine 

(step v) arms. Installing the phosphoglycerol unit in the latter stages of the synthesis would 

minimize the number of subsequent steps requiring handling and characterization of 

phosphorus epimers.

Donor 18 and acceptor 19 were synthesized from d-galactose in 651 and 12 steps, 

respectively (see SI). Glycosylation between donor 18 and 19 was followed by 

saponification to provide β-linked disaccharide 20 in 91% yield over two steps (Scheme 2). 

Subsequent acetonide protection of the C3′-C4′ alcohols and PMB protection of the C2′ 
alcohol (selected to allow for C4′ protecting group orthogonality in subsequent steps) gave 

fully protected disaccharide 21. Exchange of the C2 amine-protecting group at this stage 

proved critical as the C2 and C2″ amines are differentially functionalized in the final 

product. Thus, we planned to use a GalN3-based glycosyl donor to establish the trisaccharide 

core. LiAlH4 reduction of the C2 azide and protection of the resulting amine as its diacetyl 

imide afforded 22 in quantitative yield.

Next, deprotection of the C3′–C4′ acetonide with CuCl2∙H2O gave the C3′–C4′ diol 

acceptor 23 in modest yield along with recovered starting material which could be recycled. 

Conventional methods of acetonide removal (80% AcOH, p-TsOH/MeOH, aq. TFA, etc.) 

proved unsuccessful and resulted in hydrolysis of the glycosidic bond or conversion of the 

diacetyl imide to the acetamide. Leveraging the enhanced nucleophilicity of the equatorial 

C3′ alcohol over the axial C4′ alcohol, we examined glycosylation with imidate donor 8. 

While optimized conditions gave a complex mixture of every possible glycosylation product, 

the desired α-anomer 24 was the major product in 40% yield. Efforts to improve this 

reaction by esterifying the C4′ position proved futile as the modification curtailed the 

nucleophilicity of the C3′ alcohol. Having established the trisaccharide core, we next 

focused on phosphorylation. The C4′ phosphoglycerol residue was installed by coupling 24 
with phosphoramidite 6 and subsequently oxidizing at phosphorus using mCPBA. 25 was 

isolated in 85% yield. At this stage, completion of the MM-ZPS 2 required installation of the 

C2′ phosphocholine residue and global deprotection. Unfortunately, oxidative removal of 

the C2′ PMB ether was unsuccessful. Both traditional (DDQ,52 CAN) and nontraditional 

(HCl/HFIP,53 TfOH,54,55 CBr4-TPP,56,57 silver(I),58 thermolysis,59 MgBr2,59 and 

homogeneous electron transfer60) conditions proved ineffective. Reassessing the route, we 

hypothesized the central galactose residue was too hindered to allow for installation of all 

substituents. Accordingly, we identified a new target repeating unit where the 

phosphoglycerol residue was shifted to the reducing end (Figure 4). This modification 

transfers a substituent away from the central residue and eliminates synthesis of a repeating 

unit with an unnatural O-alkyl capping unit at the reducing end.

At the planning stage (Figure 5), it was clear that the synthesis of this new target (2) would 

maintain its novelty as the strategy would now feature an unprecedented glycosylation 

reaction, use of a phosphoglycerol-containing acceptor (step i). We opted to use 

thioglycoside donors to form each glycosidic bond due to their stability and scalability. The 

trisaccharide backbone would be constructed from its nonreducing end to its reducing end to 

minimize waste of the more valuable acceptor (steps ii and iii). The final challenge would be 
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installation of the phosphocholine unit (step iv), which has thus far proved elusive. Thus, we 

anticipated developing a new reagent to install this motif.

The third-generation approach commenced with an NIS-TMSOTf-promoted coupling of 

thioglycoside 31 to phosphoglycerol acceptor 32 (see SI). After glycosylation, NaOCH3-

mediated removal of the C3 acetate gave β−34 in 93% yield over two steps (Scheme 3). 

Presumably, neighboring group participation from the C2 trichloroacetamide assisted in 

exclusive formation of the β-anomer. Subsequent NIS-TMSOTf-promoted glycosylation 

with thioglycoside 30 occurred in 91% yield to give 35.

Again, the high β-selectivity can be attributed to neighboring group participation, this time 

from the C2′ acetate. Next, we moved forward with liberating the C3′ alcohol, which 

would serve as the acceptor in the final glycosylation event. To our surprise, we encountered 

difficulties while removing the silyl ether. The most productive conditions, HF-pyridine 

buffered by additional pyridine, provided acceptor 36 in 69% yield. A third NIS-TMSOTf-

promoted glycosylation with thioglycoside 29 (see SI) gave trisaccharide 37 in 71% yield as 

a 2.4 to 1 mixture of α and β anomers. A number of α-selective additives (DMF, thioethers, 

and ethers) were evaluated in the reaction. Ultimately, 25 equiv of diisopropyl ether was the 

most α-selective additive. Finally, NaOCH3-mediated removal of the C2′ acetate provided 

trisaccharide 38 in 95% yield.

With the trisaccharide core in hand, we arrived at the most critical step of the synthesis, 

installation of the phosphocholine residue (Scheme 4). The initial approach to 

phosphorylation focused on using the well-established cyclic phospholanes 40 and 41. In 

theory, following phosphorylation, the 5-membered ring of 42 can be opened by 

trimethylamine to provide the phosphocholine unit. Unfortunately, this line of inquiry was 

met by two challenges. First, the C2′ alcohol of 38 proved to be both too sterically hindered 

and poorly nucleophilic to couple with either phospholane. Second, cyclic phospholanes are 

vulnerable to heat, moisture, and silica gel chromatography.

To introduce this residue, we synthesized a new phosphocholine donor, choline-2-cyanoethyl 

N,N-diisopropyl-phosporamidate tetraphenylborate 44, which functioned very well when 

using tetrazole as an activator. After formation of the oxygen–phosphorus bond (33 + 38), 

subsequent oxidation to the phosphate was achieved using tert-butyl hydroperoxide (TBHP). 

Finally, exposure to DBU led to removal of the cyanoethyl group, via β-elimination, to 

provide the desired phosphodiester 45 in 75% yield over the three steps.

With the complete core structure in hand, the final maneuver in the synthesis was a 

remarkable, exhaustive catalytic hydrogenation of 45. This reaction served to remove three 

benzylidene acetals, one PMB ether, and three benzyl ethers. The reductive environment also 

converted the C2 trichloroacetamide to the acetamide and the C2″ azide to an amine. 

Starting from 330 mg (0.2 mmol) of 45, purification using size exclusion chromatography 

(P2-Biogel) gave 155 mg of MM-ZPS 2 in 89% isolated yield. Charge-deconvoluted ESI FT 

ICR (electron spray ionization Fourier transformation ion cyclotron resonance) mass 

spectrometry revealed molecular mass spectral peaks in agreement with the desired 

calculated mass (calcd [M + H] for C28H55N3O23P2 = 864.2780, found 864.2772). 1H NMR 
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coupling constants revealed the presence of one α glycosidic bond at C1″ (J = 5.33, 3.6 Hz) 

and two β glycosidic bonds at C1′ (J = 4.70, 7.9 Hz) and C1 (J = 4.46, 7.6 Hz). 2-D NMR 

experiments, including 1H–31P HSQC, enabled full assignment of the ZPS’s glycosidic 

bonds and phosphorus functionality. Additionally, the NMR data from the synthetic 

repeating unit 2 are in complete agreement with the data reported for the naturally occuring 

MM-ZPS polymer (Table S1).

CONCLUSION

In summary, we have completed the first total synthesis of the repeating unit of MM-ZPS 2. 

Key steps include: (1) early stage phosphoglycerol glycosylation occurring in high yield and 

excellent β-selectivity, (2) formation of the challenging Gal-β- (l → 3)-GalNAc bond 

without generating any undesired orthoacetate byproduct, and (3) installation of the 

phosphocholine group using a new choline donor. As studies with the naturally occurring 

MM-ZPS demonstrated that single repeating units do not elicit an immune response, current 

efforts are focused on using the synthetic repeating unit to synthesize non-natural ZPS 

materials. Studies regarding the synthesis and immunological properties of these materials 

are currently underway.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a),(b) Immunological response to carbohydrate antigens. (c) Structures of PS-A1 (1) and 

MM-ZPS (2).
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Figure 2. 
First-generation analysis.
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Figure 3. 
Second-generation analysis.
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Figure 4. 
Target repeating unit frameshift.
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Figure 5. 
Third-generation analysis.
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Scheme 1. 
(a) First-Generation Approach and (b) Alternative Donor Leading to an Undesired 

Orthoester Producta aReagents and conditions: (a) BF3∙Et2O, 4:1 iPr2O/CH2Cl2, −40 °C → 
25 °C, 1 h, 4 Å MS, 65% α-only; (b) 6 (1.5 equiv), 1H-tetrazole (1.5 equiv), CH3CN, 0 °C 

→ 25 °C, 0.5 h then mCPBA (1.5 equiv), CH2Cl2, −78 °C → 0 °C, 2 h, 87%; (c) DMDO 

(1.2 equiv), CH2Cl2, −78 °C → 0 °C, 1 h, then 13 (1.2 equiv), ZnCl2 (2.5 equiv), −78 °C → 
25 °C, >3 days, <5%; (d) DMDO (1.2 equiv), CH2Cl2, 0 °C, 20 min, then EtSH (28 equiv), 

TFAA (0.1 equiv), CH2Cl2, −78 °C → 0 °C, 1 h then Ac2O (10 equiv), Et3N (10 equiv), 
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DMAP (0.1 equiv) CH2Cl2, 0 °C, 10 h, 57% over 3 steps; (e) 13 (2.5 equiv), NIS (1.2 

equiv), TMSOTf (0.15 equiv), CH2Cl2, −78 °C → 25 °C, 2.5 h, <5%; (f) TMSOTf (0.15 

equiv) or TfOH (0.15), CH2Cl2, −78 °C→ 25 °C, 2.5 h.

Keith and Townsend Page 16

J Am Chem Soc. Author manuscript; available in PMC 2020 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Second-Generation Approacha aReagents and conditions: (a) TMSOTf (0.15 equiv), CH2Cl2, 

0 °C → 25 °C, 1 h, β-only, 91%; (b) NaOCH3, CH3OH, 25 °C, 2 h, > 95%; (c) 2,2-DMP, p-

TsOH, CH2Cl2, 25 °C, 0.5 h, 93%; (d) PMBCl (1.2 equiv), NaH (2.0 equiv), DMF, 0 °C → 
25 °C, 1 h, 94%; (e) LiAlH4, THF, 0 °C → 25 °C, 1 h then Ac2O, pyr., DMAP, 0 °C → 
25 °C, 2 h then AcCl, DIPEA, 2:3 CH2Cl2/CH3CN, μwave 85 °C, 3 h, >95% over three 

steps; (f) CuCl2·H2O, CH3CN, 0 °C → 25 °C, 3 h, 58% with 27% RSM; (g) 8 (2.5 equiv), 

TMSOTf (0.15 equiv), CH2Cl2, −78 °C→ −40 °C, 2.5 h, α-only, 40%; (h) 6 (1.5 equiv), 

1H-tetrazole (1.5 equiv), CH3CN, 0 °C → 25 °C, 0.5 h then mCPBA (1.5 equiv), CH2Cl2, 

−78 °C → 0 °C, 2 h, 85%.
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Scheme 3. 
Third-Generation Approacha aReagents and conditions: (a) NIS (2.0 equiv), TMSOTf (0.15 

equiv), CH2Cl2, 4 Å MS, 0 °C → 25 °C, 1.0 h, β-only, 93%; (b) NaOCH3, CH3OH, 25 °C, 

2 h, >95%; (c) 30 (1.5 equiv), NIS (1.5 equiv), TMSOTf (0.10 equiv), CH2Cl2, 4 Å MS, 

−78 °C, 1.0 h, β-only, 91%; (d) HF-pyridine (10.0 equiv), pyridine, 25 °C, 3 h, 69%; (e) 29 

(1.4 equiv), NIS (2.0 equiv), TMSOTf (0.15 equiv), 2.4:1 CH2Cl2/iPr2O, 4 Å MS, −60 °C 

→ 0 °C, 5.0 h, 2.4:1 α/β, 71%; (f) NaOCH3, CH3OH, 25 °C, 2 h, >95%.
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Scheme 4. 
(a) Phosphocholine Coupling and (b) Completion of the Total Synthesisa aReagents and 

conditions: (a) 33 (1.2 equiv), 1H-tetrazole (1.2 equiv), CH3CN, 0.5 h, 25 °C then TBHP 

(1.2 equiv), CH3CN, 0 °C, 1 h then DBU (5.0 equiv), CH2Cl2, 25 °C, 18 h, 78% over three 

steps; (b) Pd/C (15% w/w), H2 (balloon), CH3OH, 25 °C, 88 h, 89%.

Keith and Townsend Page 19

J Am Chem Soc. Author manuscript; available in PMC 2020 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical abstract
	INTRODUCTION
	RESULTS AND DISCUSSION
	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Scheme 4.

