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Circulating microRNA profile as a 
potential biomarker for obstructive 
sleep apnea diagnosis
Fernando Santamaria-Martos   1, Iván Benítez   1,2, Francisco Ortega   3,4, Andrea Zapater1, 
Cristina Giron1, Lucía Pinilla1, Lydia Pascual1, Anunciación Cortijo1, Mireia Dalmases1, 
Jose M. Fernandez-Real3,4, Ferran Barbé1,2 & Manuel Sánchez-de-la-Torre1,2

Evaluation of microRNAs (miRNAs) could allow characterization of the obstructive sleep apnea (OSA) 
and help diagnose it more accurately. We aimed to examine circulating miRNA profiles to establish 
the differences between non-OSA and OSA patients. Additionally, we aimed to analyse the effect 
of continuous positive airway pressure (CPAP) treatment on the miRNA profile. This observational, 
longitudinal study included 230 subjects referred to the Sleep Unit due to suspected OSA. Expression 
profiling of 188 miRNAs in plasma was performed in 27 subjects by TaqMan-Low-Density-Array. OSA-
related miRNAs were selected for validation by RT-qPCR in 203 patients. Prediction models were built 
to discriminate between non-OSA and OSA: 1) NoSAS-score, 2) differentially expressed miRNAs, and 3) 
combination of NoSAS-score plus miRNAs. The differentially expressed miRNAs were measured after 6 
months of follow-up. From the 14 miRNAs selected for validation, 6 were confirmed to be differentially 
expressed. The areas under the curve were 0.73 for the NoSAS-score, 0.81 for the miRNAs and 0.86 
for the combination. After 6 months of CPAP treatment, miRNA levels in the OSA group seem to 
approximate to non-OSA levels. A cluster of miRNAs was identified to differentiate between non-OSA 
and OSA patients. CPAP treatment was associated with changes in the circulating miRNA profile.

Obstructive sleep apnea (OSA) is a prevalent disease that affects approximately 10–17% of the adult population1,2. 
OSA is characterized by repetitive episodes of upper airway collapse during sleep leading to arousal, nocturnal 
hypoxemia and changes in intrathoracic pressure. Altogether, these events link OSA to the risk of cardiovascular 
diseases, metabolic disturbances, and cancer and to higher overall mortality mechanisms3–6. This association is 
of special relevance in the young population, in which OSA could have a higher damaging effect, as the observed 
cancer incidence is increased in young patients7 and the impact of OSA on cardiovascular diseases may not be 
reversible when treatment is delayed8. Thus, new methods of early diagnosis of the disease are needed.

Up to 80% of individuals with moderate-to-severe OSA remain undiagnosed9. Diagnosis requires overnight 
recordings, including time- and resource-consuming procedures9. High-throughput diagnostic systems may 
improve the underdiagnoses of the disease and could reduce unnecessary procedures, decreasing the use of 
healthcare resources.

Currently, the NoSAS score is one of the best-validated tools for screening OSA populations (area under the 
curve (AUC) 0.74). The NoSAS score performed significantly better than did the STOP-Bang and Berlin scores10. 
NoSAS is based on a questionnaire and does not include any molecular variables that could help with diagnosis. 
The search for biomarkers that can help physicians not only diagnose OSA but also understand the physiopathol-
ogy of the disease is a research priority in the field9,11. In this context, microRNAs (miRNAs) have emerged as an 
opportunity in the era of precision medicine for the screening, diagnosis and management of several diseases12–16. 
miRNAs are a class of small non-coding RNAs that negatively regulate gene expression post-transcriptionally by 
binding to target messenger RNA (mRNA), leading to either degradation or translational repression and protein 
synthesis17. They play a pivotal role in several biological processes, such as stress response, apoptosis, proliferation 
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and differentiation, and many studies suggest that they are deregulated in several diseases, including cardiovas-
cular diseases, metabolic disturbances and cancer18. miRNAs are present in body fluids, resistant to degradation 
and easily and rapidly (8–10 hours) measurable, fulfilling the criteria of an ideal biomarker in an era of evolving 
precision medicine19.

We aimed to examine circulating miRNA profiles to establish the differences between non-OSA and OSA 
patients and to explore their clinical significance and contribution to disease diagnosis. Moreover, we aimed to 
evaluate changes in miRNA patterns after 6 months of continuous positive airway pressure (CPAP) treatment.

Methods
Study cohort and sample collection.  A total of 230 consecutive subjects who were aged between 18 
and 60 years, were referred because of suspected OSA and had undergone full polysomnography were enrolled 
at the Sleep Unit of the Arnau de Vilanova-Santa Maria University Hospital of Lleida (NCT03513926). Subjects 
were grouped according to their Apnea-Hypopnea Index (AHI) gain into the following: 1) non-OSA group (sub-
jects without moderate-to-severe OSA: AHI <15 events/h), 2) OSA group (moderate to severe OSA: AHI ≥15 
events/h). Patients in the TaqMan low-density array (TLDA) cohort were carefully selected. Only patients tak-
ing medications related to the most habitual OSA associated pathologies (e.g., hypertension, dyslipidaemia, and 
cardiovascular events) were not excluded. No patients were excluded from the validation cohort, except those 
with previous CPAP use or any condition that, in the opinion of the responsible physician investigator, made 
the person unsuitable for the study (e.g., pregnancy, drug or alcohol consumption, or less than one year of life 
expectancy). On the other hand, patients without samples or with a haemolysed sample were excluded from the 
analyses. Additionally, samples with a recovery of RNA less than 1% were excluded (Fig. 1). All recruited patients 
signed an informed consent form, and the ethics committee of the centre (Clinical Research Ethics Committee 
of the Arnau de Vilanova-Santa Maria Hospital University Hospital) approved the study. All methods were per-
formed in accordance with current clinical practice guidelines and regulations.

A venous fasting blood sample was obtained from each patient at baseline in the morning immediately after 
the sleep study between 08:00 and 09:00 a.m. An additional fasting blood sample was obtained at the 6-month 
follow-up between 08:00 and 09:00 a.m. The blood samples were centrifuged to separate plasma, and all speci-
mens were immediately aliquoted, frozen, and stored in a dedicated −80 °C freezer. No freeze-thaw cycles were 
performed during the experiment.

Clinical measurements.  All patients underwent full polysomnography at baseline. Apnea was defined as 
an interruption or reduction in oronasal airflow ≥90% that lasted at least 10 seconds. Hypopnoea was defined as 
a 30% to 90% reduction in oronasal airflow for at least 10 seconds associated with oxygen desaturation of at least 
3% or an arousal on the electroencephalogram. The AHI was defined as the number of apnea and hypopnoea 

Figure 1.  Flowchart of the study. Patients who were referred because of suspected OSA were divided into the 
TLDA cohort and the qPCR cohort and further divided for study on the basis of non-OSA and OSA. Six non-
OSA and 21 OSA patients were used to perform a general screening of 188 miRNAs. Differentially expressed 
miRNAs were validated in an independent cohort. The analyses in the validation cohort were stratified by sex.
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events per hour of sleep. The NoSAS score for screening sleep-disordered breathing was evaluated. The NoSAS 
score ranges from 0–17 based on neck circumference, body mass index (BMI), age, and gender10. All patients 
were evaluated at baseline and after 6 months of follow-up. Following the National Clinical Guidelines20, patients 
with OSA were treated with CPAP.

Circulating RNA extraction and purification.  RNA was extracted from 300 μL of plasma using a mir-
Vana PARIS isolation kit (Applied Biosystems, Vilnius, Lithuania) according to the manufacturer’s instructions. 
Non-human cel-miR-39 was spiked into the plasma immediately before extraction. RNA isolation efficiency was 
examined by RT-qPCR quantification of cel-miR-39 to guarantee homogeneous retrotranscription and cDNA 
synthesis.

Circulating miRNA profiling with taqman low density array.  To identify plasma miRNA profiles 
that could help to diagnose OSA, we performed a general screening of 188 circulating miRNAs that have been 
reported as the most consistent and reliable miRNAs in human plasma samples21,22. This circulating profile was 
evaluated in a cohort of 27 patients (TLDA cohort) that included 6 non-OSA and 21 OSA patients matched by 
nearest neighbor matching (a procedure to match each OSA patient to a non-OSA subject with the most similar 
value of the estimated propensity score)23 for age and body mass index (Fig. 1). At this point, due to sample size, 
only male subjects were evaluated. Multiple real-time (RT)-PCRs were performed using a customized TaqMan 
Low Density Array (TLDA, Life Technologies, Foster City, CA, USA). Briefly, a fixed volume of 3 μL of RNA 
solution from the 40 μL of RNA isolation eluate was used as the input for the retrotranscription, using a TaqMan 
MicroRNA Reverse Transcription Kit and TaqMan MicroRNA Multiplex RT Assays, which are customized to 
run TLDAs. Preamplification was performed using TaqMan PreAmp Master Mix and Megaplex PreAmp Primers 
for our selected miRNAs. RT-PCR was carried out using an Applied Biosystems QuantStudio™ 7 Flex Real-Time 
PCR System. Data were processed with the Relative Quantification tool (powered by Thermo Fisher cloud), with 
a minimal threshold above the baseline (ΔRn = 0.012) and less than 35 thermal cycles (Ct). The results were nor-
malized using a mean-centre normalization method, the gold-standard method when screening a large number 
of miRNAs24.

Analysis of individual miRNAs.  The most reliable and consistent candidates for endogenous control 
(i.e., hsa-miR-106a and hsa-miR-186) were identified in TLDA analyses and were used together with spike-in 
(cel-miR-39) for normalization25. Then, individual TaqMan hydrolysis probes (Applied Biosystems) were applied 
to analyse the expression of the set of differentially expressed miRNAs in the qPCR cohort (Fig. 1). Additionally, 
to assess the evolution of miRNAs after CPAP treatment, we evaluated the changes in miRNA expression of the 
validated candidates after 6 months of CPAP treatment, comparing non-OSA subjects with OSA patients treated 
with CPAP.

Enrichment analysis.  The web-based computational tools miRWalk, DIANA-mirPath, TargetScan, DAVID 
and miRanda were used to predict the target genes and altered pathways of the differentially expressed miRNAs.

Statistical analysis.  To prevent biases due to differential miRNA pattern expression, all analyses were strat-
ified by gender. Comparability between non-OSA and OSA patients was assessed using the Mann-Whitney U 
test for quantitative characteristics and Fisher’s exact test for qualitative variables. The differences in miRNA 
expression between groups were evaluated by relative quantification using linear models for arrays (LIMMA)26. 
Spearman’s rank correlation coefficient was used to evaluate the association between miRNA levels and polysom-
nography parameters. False discovery rate-adjusted p-values were calculated to adjust for the performance of 
multiple paired comparisons.

Three logistic models were fitted for OSA risk modelling: 1) miRNAs showing differential expression in the 
validation phase, which were dichotomized by selecting the cut-off point as the point on the receiver operating 
characteristic (ROC) curve closest to the upper left corner of the unit square and were included in the model; 2) 
NoSAS score as a continuous variable; and 3) The combination of NoSAS and differentially expressed miRNAs. 
The Hosmer-Lemeshow test was used to test model calibration. A nonparametric test comparing the AUC of 
ROC curves27 was evaluated. The AUC of the combined model (NoSAS and miRNA) was evaluated in a 10-fold 
cross-validation. The effect of CPAP on the changes in miRNA expression at the six-month follow-up was esti-
mated by the difference in the mean change between treated OSA patients and non-OSA patients. R software (R 
Project for Statistical Computing, Vienna, Austria) was used for statistical analysis.

Results
Patient characteristics.  Of the 338 patients evaluated, 230 were ultimately included (Fig. 1). Patients 
were mainly middle aged, overweight-obese and male, especially in the OSA group (Table 1). Significant dif-
ferences were identified in baseline characteristics between non-OSA and OSA groups in age (median 47 vs. 51 
years old, p-value = 0.002), BMI (median 27.5 vs. 31.7 kg/m2, p-value = 0.015) and sex (68.6% vs. 83.8% male, 
p-value < 0.001).

Identification of plasma miRNAs relevant to OSA.  The miRNA profiles were used to identify miRNAs 
related to OSA in the TLDA cohort (a cohort of men paired by BMI and age). After the analysis, a subset of 14 
miRNAs was selected based on an individual p-value < 0.05 when comparing non-OSA and OSA groups and/
or a high correlation (r > 0.4) with the AHI or arousal index (Table 2). miR-451, miR-486-3p and miR-133a were 
selected based on their p-values. On the other hand, miR-181a, hsa-let-7d, miR-199a and miR-199b were selected 
because of their high correlations with the sleep parameters. Finally, miR-181a-2, miR-495, miR-486, miR-660, 
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miR-345, miR-340 and miR-107 were selected because they met both criteria. From the 14 miRNAs selected, 8 
seemed to have less expression in the OSA patients than in the non-OSA patients.

Validation of plasma miRNAs relevant to OSA.  All potential OSA-related miRNAs selected from 
TLDA were validated in the qPCR cohort. Among men, the analysis confirmed that the circulating concen-
trations of hsa-miR-181a, hsa-miR-199b, hsa-miR-345, hsa-miR-133a, hsa-miR-340 and hsa-miR-486-3p were 
decreased in the OSA group after adjustment for BMI and age (Table 3 and Fig. 2). Of these, miR-181a seemed 
to be correlated with the AHI (rho = 0.29) and with the arousal index (rho = 0.25) and miR-345 with the AHI 
(rho = 0.21). To further explore the results, mild OSA patients were removed in order to confidently report the 
results between non-OSA (AHI <5 events/h) and OSA (AHI ≥15 events/h) subjects. This analysis reported 
increased differences between non-OSA and OSA subjects (except for miR-199b and miR-486-3p) (see e-Table 3).

Among women, only hsa-miR-451 (fold change = 1.6 and p-value = 0.057) seemed to be differentially 
expressed after adjustment for BMI and age, but this significance is lost after FDR correction (corrected 
p-value = 0.54) (see e-Table 4).

All Non-OSA (AHI < 15) OSA (AHI ≥ 15)

p-valueN = 230 N = 70 N = 160

Demographic and clinical variables

   Age (years) -median [IQR]- 49.0 [44.0;55.0] 47.0 [40.0;52.0] 51.0 [45.0;55.0] 0.002

   Sex (men), n (%) 182 (79.1%) 48 (68.6%) 134 (83.8%) 0.015

   BMI (kg/m2) -median [IQR]- 30.9 [26.5;34.7] 27.5 [25.4;31.9] 31.7 [28.1;35.2] <0.001

   Systolic blood pressure (mmHg) -median [IQR]- 134 [123;146] 127 [116;137] 136 [127;148] <0.001

   Diastolic blood pressure (mmHg) -median [IQR]- 86.0 [79.5;94.5] 81.8 [75.2;87.8] 88.5 [82.5;95.0] <0.001

Smoking status: -n(%)- 0.564

   Non-smoker 81 (35.5%) 28 (40.0%) 53 (33.5%)

   Former smoker 79 (34.6%) 24 (34.3%) 55 (34.8%)

   Smoker 68 (29.8%) 18 (25.7%) 50 (31.6%)

Respiratory parameters

   AHI (events/h) -median [IQR]- 29.5 [12.1;51.0] 8.44 [5.00;11.4] 43.8 [27.4;63.9] <0.001

   TSat90 (%) -median [IQR]- 2.40 [0.21;12.7] 0.05 [0.00;0.58] 5.15 [2.00;20.6] <0.001

   Arousal index (events/h) -median [IQR]- 33.8 [21.1;53.6] 18.9 [13.7;25.9] 43.3 [32.1;60.7] <0.001

   Minimum SaO2 (%) -median [IQR]- 82.0 [73.0;87.0] 89.0 [86.0;91.0] 79.0 [71.0;83.0] <0.001

Mean SaO2 (%) -median [IQR]- 93.0 [91.0;94.0] 94.0 [93.0;95.0] 93.0 [91.0;94.0] <0.001

   ESS (0–24) -median [IQR]- 10.0 [7.00;13.0] 10.0 [7.00;14.0] 10.0 [7.00;13.0] 0.469

Table 1.  Baseline characteristics of the patients. Abbreviations: BMI = Body Mass Index; AHI = Apnea-
Hypoapnea Index; TSat90 = Night Time with Oxygen Saturation Less Than 90%; ESS = Epworth Sleepiness 
Scale.

miRNA
Fold 
change p-value

AHI 
correlation

Arousal index 
correlation

hsa-miR-181a-2 3.72 0.001 −0.51 −0.42

hsa-miR-495 2.22 0.004 −0.58 −0.79

hsa-miR-451 0.52 0.006 0.18 −0.06

hsa-miR-486 0.52 0.007 0.54 0.28

hsa-miR-660 0.65 0.015 0.42 0.22

hsa-miR-345 0.69 0.021 0.47 0.41

hsa-miR-340 1.51 0.026 −0.61 −0.49

hsa-miR-107 1.62 0.029 −0.63 −0.45

hsa-miR-486-3p 0.55 0.03 0.38 0.31

hsa-miR-133a 0.37 0.049 −0.13 −0.06

hsa-miR-181a 0.73 0.066 0.47 0.5

hsa-let-7d 1.35 0.1 −0.52 −0.67

hsa-miR-199a 1.3 0.157 −0.28 −0.41

hsa-miR-199b 0.81 0.332 0.42 0.36

Table 2.  miRNA candidates that were differentially expressed between non-OSA and OSA male subjects. 
Fourteen miRNAs were selected based on their fold change and their correlation with the AHI and arousal 
index.
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Prediction model.  Logistic regression models were generated for male patients as a tool to differentiate 
between non-OSA and OSA patients. Three multivariate models were fitted to classify the patients: A) the NoSAS 
score; B) the validated miRNAs and C) a combination of NoSAS score and validated miRNAs (Fig. 3). All the 
models exhibited good calibration and discrimination. The AUCs were 0.73 for the NoSAS score, 0.81 for the 
miRNAs and 0.86 for the combination. A comparison of the models based on AUC showed that the combination 
of NoSAS score and miRNAs was the best model for discriminating OSA patients (Table 4). The AUC of the com-
bined model showed similar results in cross-validation (AUC = 0.83).

Changes in validated plasma miRNAs after CPAP treatment.  We evaluated the miRNAs that 
were differentially expressed and validated, at baseline and after 6 months of follow-up. We found that in OSA 
CPAP-treated patients (median adherence 5.24 h/night), miRNA levels seem to increase, except for miR-486-3p, 
compared to those in non-OSA patients. Despite this observation, only changes in miR-345 reached statistical 
significance (Table 5).

Bioinformatic analysis.  The enrichment analysis, including the 6 miRNAs confirmed as differentially 
expressed between non-OSA and OSA patients at baseline, revealed 69 dysregulated pathways. A total of 1,743 
genes were identified to be deregulated; 352 genes were targeted by miR-133a, 188 genes by miR-181, 167 genes 
by miR-199b, 47 genes by miR-340, 185 genes by miR-345, and 804 genes by miR-486-3p. Of the 1,743 predicted 
targeted genes, only 626 were unique genes, and IGF1R, KRAS, RUNX1T1 and SLC9A8 were regulated by 3 
miRNAs.The most frequently enriched pathways were categorized under biological processes connected with 
cancer (renal cell carcinoma, melanoma, etc.), cardiovascular diseases (dilated cardiomyopathy, hypertrophic 
cardiomyopathy, etc.), and signalling (sphingolipid signalling, adrenergic signalling of cardiomyocytes, etc.) (see 
e-Table 6 and e-Fig. 6).

miRNA Fold change p-value FDR correction

hsa-miR-181a 0.59 0.001 0.013

hsa-miR-199b 0.42 0.008 0.056

hsa-miR-345 0.71 0.014 0.056

hsa-miR-133a 0.47 0.016 0.056

hsa-miR-340 0.67 0.029 0.072

hsa-miR-486-3p 0.64 0.031 0.072

hsa-miR-181a2 0.51 0.066 0.133

hsa-miR-199a 0.54 0.184 0.318

hsa-miR-660 0.79 0.214 0.318

hsa-miR-451 0.82 0.227 0.318

hsa-let-7d 0.93 0.591 0.752

hsa-miR-486 1.06 0.665 0.776

hsa-miR-107 1.07 0.817 0.832

hsa-miR-495 0.93 0.832 0.832

Table 3.  Validation of miRNA candidates. Six miRNAs were found to be differentially expressed between non-
OSA and OSA patients. P-values adjusted for age and BMI. FDR <0.1 was considered statistically significant.

Figure 2.  Delta Ct plot means of validated miRNAs (FDR < 0.1).
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Discussion
A singular male-specific cluster of miRNAs functionally associated with sleep, cardiovascular diseases, metabolic 
disorders and cancer significantly contributes to the discrimination between non-OSA and OSA patients in the 
sleep unit. The present study also showed that CPAP use is associated with changes in the miRNA profile that 
could influence the overall risk of suffering OSA-related diseases.

Circulating concentrations of 6 miRNAs were significantly reduced in OSA subjects compared with those 
in non-OSA subjects. We also investigated the discriminatory ability of the miRNAs. We compared the NoSAS 
score, miRNAs and a combination of both. The NoSAS score AUC was consistent with previous results, with an 
AUC of 0.73, but lower than that obtained with miRNAs (AUC = 0.81)10,28. The correlation between both AUCs 
is very low (0.01), which could be argued because NoSAS and miRNAs could explain different components of 
OSA, resulting in a higher AUC of 0.86 for the combination of both, which could represent a very powerful 
tool that combines anthropometric and molecular variables to explain OSA variability. Finally, the longitudi-
nal study showed that after CPAP treatment, miRNAs seem to increase their circulating concentration, at least 
partially recovering the non-OSA phenotype. Decreased blood pressure could have contributed to the miRNA 
changes detected after CPAP treatment. In fact, as previously reported by our group, CPAP treatment changes the 
miRNA profile, and these changes correlate with blood pressure changes that occur following CPAP treatment. 
Additionally, these changes are associated with the response to treatment of the patient14.

This study identifies the utility of miRNAs as biomarkers that could contribute to the personalized manage-
ment of OSA in the sleep unit. Recent studies have demonstrated the importance of miRNAs in the control of 
many processes in health and disease14,19,21. To the best of our knowledge, this is one of the first studies to use 

Figure 3.  Discriminatory ROC plot of the models for screening OSA using (A) NoSAS; (B) 6 miRNAs; and (C) 
a combination of NoSAS and miRNAs.

Comparison AUC difference p-value Correlation

A vs. B −0.08 0.16 0.01

A vs. C −0.13 0.002 0.54

B vs. C −0.04 0.065 0.76

Table 4.  Comparison of ROC models. A) NoSAS scores, B) miRNA model, C) combination.

miRNA
Estimate 
difference

Lower 
bound

Upper 
bound p-value

hsa-miR-181a −0.514 −1.524 0.495 0.314

hsa-miR-199b −0.372 −1.714 0.971 0.581

hsa-miR-345 −1.419 −2.416 −0.423 0.006

hsa-miR-133a −0.216 −1.443 1.012 0.728

hsa-miR-340 −0.418 −1.477 0.642 0.435

hsa-miR-486-3p 0.550 −0.567 1.668 0.330

Table 5.  Post-pre mean differences in differentially expressed miRNAs between non-OSA and OSA patients 
after 6 months of CPAP treatment.
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miRNAs to identify a signature and characterize OSA in patients who are referred to a sleep unit. A similar study 
was conducted29, in which the researchers identified that in a preliminary phase, 104 miRNAs were differentially 
expressed in serum between OSA and non-OSA subjects. Of these miRNAs, only 4 were validated by qPCR. We 
also attempted to validate miR-107 and miR-199 in our study. In both studies, miR-199 was downregulated when 
comparing OSA patients vs. non-OSA subjects; however, in our study, miR-107 was not confirmed to be differ-
entially expressed. These possible discrepancies could be due to the different sample types utilized (plasma vs. 
serum) and our different normalization methods (endogenous control + spike-in vs. spike-in). Additionally, the 
data reported in this previous study did not seem to be adjusted by confounding variables.

A total of 6 miRNAs have been identified to be differentially expressed between non-OSA and OSA patients. 
This set of miRNAs seems to have the ability to differentiate between non-OSA and OSA patients, which is effec-
tive and practical for clinical use and enables the identification of patients with OSA. Recently, a seminal study 
developed by our group identified miRNAs as a useful tool in the management of patients with OSA and resistant 
hypertension14. In this study, we demonstrated the utility of miRNAs by identifying a singular cluster of miRNAs 
(HIPARCO-Score) that identifies those patients who will have a favourable blood pressure response to CPAP 
treatment. The present study corroborates the clinical usefulness of miRNAs for the diagnosis of OSA at sleep 
unit level.

The set of 6 miRNAs that are differentially expressed between non-OSA and OSA patients is related to relevant 
canonical pathways. First, we identified that miRNAs are misregulating pathways related to cardiovascular dis-
eases, specifically several cardiomyopathies, in concordance with the hypothesis of a difference in cardiovascular 
risk between non-OSA and OSA patients. Second, identifying the molecular pathways related to both cancer 
and OSA is one of the hallmarks of OSA research. Additionally, an early diagnosis of OSA could be especially 
important because the association of OSA with cancer incidence is limited to young people7. Several studies have 
shown the association of OSA with several types of cancer, especially in young patients30. In the present study, 
we identified several cancer-related pathways that could be altered in patients with OSA, and some of the altered 
pathways are related to melanoma. These results are in accordance with previous literature in which the impact of 
OSA on melanoma and some of the intermediate pathways have been addressed31,32. Similar results were found in 
a previous work25, where bioinformatic analyses showed that OSA could alter cardiovascular and cancer-related 
pathways.

Specifically, these miRNAs play an important role in some pathways related to common diseases associated 
with OSA. OSA is well known to be related to deregulated nutrient sensing, especially glucose. Patients with OSA 
are more likely to develop insulin resistance due to oxidative stress and a lower concentration of oxygen in pan-
creatic ß-cells33. Recently, miR-486 has been associated with the HOMA index and fasting levels of glucose and 
insulin34. Moreover, miR-340 seems to deregulate IGF1R gene expression, as shown in bioinformatic analyses. 
Previous studies observed associations between OSA and melanoma. Additionally, miR-340 is known to regulate 
MITF gene expression, which is a gene that plays a key role in melanocyte development. Recently, one study 
found that miR-340 regulates RAS–RAF–mitogen activated protein kinase (MAPK) signalling by modulating the 
expression of multiple components of this pathway35, and this association could explain, at least in part, the rela-
tionship between OSA and melanoma. Several genes regulated by these miRNAs are involved in cardiovascular 
diseases. miR-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the 
heart36 and is dysregulated in human myocardial infarction37. Finally, miR-199b is involved in the response to 
the hypoxia-repressing HIF1A gene38. HIF1A is a key gene in the response to hypoxic stress, and its expression 
is deregulated in OSA patients39. Moreover, IGF1R, KRAS, RUNX1T1 and SLC9A8 are regulated by 3 miRNAs. 
All these genes are related to melanoma pathways and play an important role in the transformation of melano-
cytes. Recently, one study assessed the molecular relationship between OSA and melanoma, concluding that OSA 
increased circulating VCAM-1 levels in melanoma patients31. This relationship could be an indirect consequence 
of IGF1R, KRAS, RUNX1T1 and SLC9A8 regulation.

Notably, all miRNAs validated in the present study were downregulated in patients with OSA. As previously 
reported, chronic hypoxia impairs Dicer (DICER1) expression and activity, resulting in global downregulation 
of miRNA expression40.

Diagnostic and personalized therapeutic decision-making tools are needed to manage OSA, especially in the 
young population9,10,41. Together, these results suggest that the use of miRNAs in OSA management could be a 
powerful tool for the diagnosis of OSA and to establish the benefits of the treatment for this complex chronic 
disease.

The present study has several limitations that deserve comment. First, only patients between 18 and 60 years 
old were studied, and larger studies should be performed to determine the validity of this tool in patients of other 
ages. The validation showed poor results in women, reflecting the different physiopathology of OSA between 
women and men. Recent studies have shown that miRNAs have sex-dimorphic expression patterns42. Because of 
the ages of the subjects, oestrogens could play a very important role in these expression patterns. As previously 
reported, sex-related differences may cause abnormal miRNA expression, and for this reason, stratified analyses 
are recommended. Further studies are needed to evaluate the whole profile of miRNAs in women with OSA. 
Despite, RNA isolation efficiency was measured with spike-in cel-miR-39 to guarantee homogeneous retrotran-
scription and cDNA synthesis; no data about RNA integrity or quantity are available. Although we performed 
a quantification of a large number of miRNAs (a total of 188 miRNAs) that were previously identified as the 
most stable miRNAs in plasma and were quantified in at least 70% of the subjects21,22, we did not perform whole 
miRNA quantification. This approximation permits us to use gold standard technology and enables an accurate 
quantification in a short period of time, with the highest dynamic range43. By last, this tool is not able to distin-
guish mild OSA patients from non-OSA subjects; further studies including a higher number of patients with AHI 
<5 events/h is required. The strengths of this study reside in a large number of patients who were analysed in 
two different sets for the TLDA and qPCR cohorts, which permitted us to detect high-magnitude associations. 
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Additionally, some of the basal associations were modified after CPAP use, confirming the importance of these 
miRNAs in OSA. Finally, all patients were recruited from the sleep unit, performing gold-standard methods for 
OSA diagnosis (polysomnography) and for miRNA measurement (RT-qPCR).

A singular male-specific cluster of miRNAs was identified that specifically differentiates between non-OSA 
and OSA patients. This miRNA model, which improves the discriminatory ability, is based in anthropometric and 
clinical variables. Finally, the use of CPAP treatment was associated with changes in the circulating miRNA profile 
that partly recovered the non-OSA phenotype.
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and Societat Catalana de Pneumologia (SOCAP). The work is supported by IRBLleida Biobank (B.0000682) 
and PLATAFORMA BIOBANCOS PT17/0015/0027”. F.S.-M. is the recipient of a predoctoral fellowship from 
“AGAUR-University of Lleida” and Convocatòria d’Ajuts 2018 de Promoció a la Recerca en Salut.

Author Contributions
M.S.T. is the guarantor of the study. F.S.M., I.B., J.M.F.R., F.B., F.O. and M.S.T. contributed to study design F.S.M., 
A.Z., C.G., L.P., L.P., A.C., M.D., F.O., M.S.T. contributed to data acquisition F.S.M., I.B., F.O., M.S.T. contributed 
to data analysis and interpretation F.S.M., I.B., A.Z., C.G., L.P., L.P., A.C., M.D., J.M.F.R., F.B., F.O. and M.S.T. 
contributed to drafting of the manuscript F.S.M., I.B., A.Z., C.G., L.P., L.P., A.C., M.D., J.M.F.R., F.B., F.O. and 
M.S.T. contributed to revision of the manuscript for intellectual content and approval of the final version.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-49940-1.
Competing Interests: The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-49940-1
https://doi.org/10.1038/s41598-019-49940-1
http://creativecommons.org/licenses/by/4.0/

	Circulating microRNA profile as a potential biomarker for obstructive sleep apnea diagnosis

	Methods

	Study cohort and sample collection. 
	Clinical measurements. 
	Circulating RNA extraction and purification. 
	Circulating miRNA profiling with taqman low density array. 
	Analysis of individual miRNAs. 
	Enrichment analysis. 
	Statistical analysis. 

	Results

	Patient characteristics. 
	Identification of plasma miRNAs relevant to OSA. 
	Validation of plasma miRNAs relevant to OSA. 
	Prediction model. 
	Changes in validated plasma miRNAs after CPAP treatment. 
	Bioinformatic analysis. 

	Discussion

	Acknowledgements

	Figure 1 Flowchart of the study.
	Figure 2 Delta Ct plot means of validated miRNAs (FDR < 0.
	Figure 3 Discriminatory ROC plot of the models for screening OSA using (A) NoSAS (B) 6 miRNAs and (C) a combination of NoSAS and miRNAs.
	Table 1 Baseline characteristics of the patients.
	Table 2 miRNA candidates that were differentially expressed between non-OSA and OSA male subjects.
	Table 3 Validation of miRNA candidates.
	Table 4 Comparison of ROC models.
	Table 5 Post-pre mean differences in differentially expressed miRNAs between non-OSA and OSA patients after 6 months of CPAP treatment.




