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Discrepant gut microbiota markers 
for the classification of obesity-
related metabolic abnormalities
Qiang Zeng1, Dongfang Li2,3,4, Yuan He5, Yinhu Li6, Zhenyu Yang7, Xiaolan Zhao8, 
Yanhong Liu3,4, Yu Wang9, Jing Sun10, Xin Feng3,4, Fei Wang1, Jiaxing Chen6, Yuejie Zheng4,11, 
Yonghong Yang4,11, Xuelin Sun12, Ximing Xu7, Daxi Wang3,4, Toby Kenney13, Yiqi Jiang6, 
Hong Gu13, Yongli Li14, Ke Zhou2, Shuaicheng Li6 & Wenkui Dai6

The gut microbiota (GM) is related to obesity and other metabolic diseases. To detect GM markers for 
obesity in patients with different metabolic abnormalities and investigate their relationships with clinical 
indicators, 1,914 Chinese adults were enrolled for 16S rRNA gene sequencing in this retrospective study. 
Based on GM composition, Random forest classifiers were constructed to screen the obesity patients 
with (Group OA) or without metabolic diseases (Group O) from healthy individuals (Group H), and high 
accuracies were observed for the discrimination of Group O and Group OA (areas under the receiver 
operating curve (AUC) equal to 0.68 and 0.76, respectively). Furthermore, six GM markers were shared 
by obesity patients with various metabolic disorders (Bacteroides, Parabacteroides, Blautia, Alistipes, 
Romboutsia and Roseburia). As for the discrimination with Group O, Group OA exhibited low accuracy 
(AUC = 0.57). Nonetheless, GM classifications to distinguish between Group O and the obese patients 
with specific metabolic abnormalities were not accurate (AUC values from 0.59 to 0.66). Common 
biomarkers were identified for the obesity patients with high uric acid, high serum lipids and high blood 
pressure, such as Clostridium XIVa, Bacteroides and Roseburia. A total of 20 genera were associated with 
multiple significant clinical indicators. For example, Blautia, Romboutsia, Ruminococcus2, Clostridium 
sensu stricto and Dorea were positively correlated with indicators of bodyweight (including waistline and 
body mass index) and serum lipids (including low density lipoprotein, triglyceride and total cholesterol). 
In contrast, the aforementioned clinical indicators were negatively associated with Bacteroides, 
Roseburia, Butyricicoccus, Alistipes, Parasutterella, Parabacteroides and Clostridium IV. Generally, these 
biomarkers hold the potential to predict obesity-related metabolic abnormalities, and interventions 
based on these biomarkers might be beneficial to weight loss and metabolic risk improvement.

Obesity is an epidemic health issue with a prevalence that reached 39% worldwide according to a survey from the 
World Health Organization (WHO) in 20161. Prior studies have suggested that obesity increases the risks of other 
chronic diseases2–4. For instance, excessive lipid accumulation in obese patients suppresses insulin signaling2, and 
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results in the occurrence of insulin resistance and type 2 diabetes (T2D)2. Moreover, adipocyte dysfunction gives 
rise to systematic inflammation and vascular stiffness, leading to hypertension5, chronic kidney diseases (CDK)3 
and cardiovascular diseases (CVD)4.

Increasing evidence has demonstrated that altering gut microbiota (GM) propels the emergence of obesity6,7 
and correlates with other metabolic disorders in obese patients, such as hypertension8, T2D9, CDK10 and CVD11. 
Through lipopolysaccharides (LPS) derived from bacterial membranes, the GM can trigger inflammatory pro-
cesses associated with T2D9, obesity12 and insulin resistance13. On the other hand, GM-derived short-chain fatty 
acids (SCFAs) can enhance insulin sensitivity14, affect blood pressure15 and stimulate the release of satiety hor-
mones16. In addition, GM alterations were identified in different kinds of weight loss, such as calorie restriction17, 
probiotic exposure18, drug intervention19 and even stomach surgery20. Reshaping the GM is effective in weight 
loss and ameliorating metabolic diseases6. However, how the gradual changes in the GM21 during weight gain and 
the onset of metabolic abnormalities in obesity is still unclear.

Emmanuelle Le Chatelier et al. have reported GM biomarkers for the early diagnosis of obesity in Europeans22, 
and for obese patients with T2D in other ethnic populations23. Moreover, the enrichment of Enterococcus, Blautia, 
Sutterella, Klebsiella and Collinsella were found in Chinese obese children and adolescents, as well as the reduc-
tion of Bacteroides, Parabacteroides, Anaerotruncus and Coprobacillus24. Given that GM components are shaped 
by various factors, including age25, diet26, ethnicity27 and diseases28, specific GM biomarkers should be explored 
for obese adults in China, and biomarker discrepancies need to be described for patients with different metabolic 
abnormalities.

In this study, 1,914 Chinese adults were enrolled to investigate physiological and GM characteristics in a 
healthy cohort and an obesity cohort, with or without metabolic abnormalities. We aimed to elucidate: (I) univer-
sal GM biomarkers for obese patients, (II) specific GM biomarkers to discriminate obese patients from metabolic 
abnormalities, and (III) the associations between GM and metabolism relevant indicators. These findings will 
provide extensive insights into a variety of GM targets for weight loss in obese patients with different clinical 
symptoms.

Results
Characteristics of the cohorts and data output.  The recruited 1,914 individuals, who averaged 41 years 
of age, were from Changchun, Chongqing, Longkou and Quanzhou city, representing four typical lifestyles and 
living conditions in China (Supplementary Table 1). Of the participants, 58% were male and 11% were healthy 
individuals with normal body weight and BMI (Supplementary Table 1). The participants were classified into a 
healthy group (Group H), an obesity group without metabolic abnormalities (Group O) and an obesity group 
with abnormal clinical indicators (Group OA), depending on their physical examination results and body mass 
index (BMI) (Table 1). Moreover, Group OA was further classified into 15 subgroups following clinical standards 
(detailed in Methods, Table 1).

The sequencing of the 16S rRNA V3-V4 region generated 165,608,482 raw reads with 300 bp paired-end 
strategy, which were then filtered and connected into 69,726,546 tags for taxonomic identification. After RDP 
database alignment by DADA2, each sample contained 36,430 ± 19,567 (Mean ± SD) annotated tags, which can 
be classified into 4.29 ± 0.85 phyla and 29.06 ± 8.49 genera, respectively. In addition, both Group H and Group 
O exhibited higher genus numbers than those of Group OA (P < 0.001, FDR < 0.001), and the averaged number 
were 31 ± 9, 32 ± 9 and 28 ± 8 for Group H, Group O and Group OA, respectively (Table 2, Supplementary figure 
1). The Shannon index was significantly higher in Group O (1.84 ± 0.60) than in Group H (1.62 ± 0.52, P < 0.001, 
FDR < 0.001) and Group OA (1.65 ± 0.59) (P < 0.001, FDR < 0.001, Table 2, Supplementary Fig. 1).

Discrepant GM structure identified among Group H, Group O and Group OA.  With principal coor-
dinates analysis (PCoA), we discovered that samples from Group H clustered together, and they were separated 
from Group OA (Fig. 1). Moreover, samples from Group O partially overlapped with those from Group H and 
Group OA, while Group OA contained samples with more diversified GM (Fig. 1). Principal component analysis 
(PCA) was also performed to examine the GM distributions with different metabolic disorders, regions and gender, 
but no special pattern was observed (Supplementary Fig. 2). In addition, PERMANOVA analysis indicated that the 
GM composition was significantly associated with geographic region (P = 0.001), BMI (P = 0.001), uric acid (UA, 
P = 0.001), triglyceride (TG, P = 0.001) and low density lipoprotein (LDL, P = 0.001) (Supplementary Table 2).

Group OA can be discriminated from Group H with higher accuracy than Group O.  Using the 
Random forest classifier, we identified 13 microbial genus markers discriminating Group O from Group H 
(Table 3, Supplementary Fig. 3a) with an AUC (area under the receiver operating curve) value equals to 0.68 
(Fig. 2a, Table 3). In comparison, the patients from Group OA can be discriminated from the healthy individuals 
by 47 biomarkers with higher accuracy (AUC = 0.76, Fig. 2a, Table 3). Considering each metabolic abnormality 
as a separate factor, we detected microbial biomarkers for obese patients with specific metabolic abnormities 
(Supplementary Fig. 3b–f), and high accuracy were also observed for these obesity subgroups (AUC values from 
0.68 to 0.77, Table 3, Fig. 2a). Based on the above Random forest classifiers, 6 common biomarkers were dis-
covered for the obese patients with or without metabolic abnormalities, including Bacteroides, Parabacteroides, 
Blautia, Alistipes, Romboutsia and Roseburia (Supplementary Fig. 3).

GM biomarkers to differentiate Group OA from Group O.  In total, 24 GM biomarkers were discov-
ered to discriminate Group OA from Group O (Table 3) with AUC equals to 0.57 (Fig. 2b, Table 3). To under-
stand the GM characteristics in obese individuals with specific metabolic abnormalities, GM biomarkers were 
detected among subgroups in Group OA and Group O (Supplementary Fig. 4b–e), and their AUC values ranged 
from 0.59 to 0.66 (Fig. 2b, Table 3), which were lower than those between obese patients and healthy individuals 
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(AUC values from 0.68 to 0.77, Fig. 2a, Table 3). Despite of diversified metabolic abnormalities, Clostridium 
XIVa, Bacteroides, and Roseburia were discovered for the classification of Group O1, Group O2, and Group O3 
(Supplementary Fig. 4). Moreover, Gemmiger, Dorea, Faecalibacterium, Blautia and Coprococcus were GM bio-
markers that shared in obese patients with different metabolic abnormalities (Supplementary Fig. 4).

GM biomarkers are correlated with multiple clinical indicators that are also involved in complex 
relationships.  A total of 20 microbial genera were associated with multiple significant clinical indicators 
(Fig. 3, Supplementary Table 3). As a dominant genus, Bacteroides was negatively correlated with LDL (r = −0.13, 
P < 0.001, FDR < 0.001), waistline (WL, r = −0.10, P < 0.001, FDR < 0.001) and BMI (r = −0.09, P < 0.001, 
FDR = 0.001). Meanwhile, Roseburia, Parabacteroides, Parasutterella, Alistipes, Clostridium IV and Butyricicoccus 
were negatively correlated with a variety of clinical indicators, including body weight (including BMI and WL), 
serum lipids (including LDL, TG and total cholesterol (TC)), blood pressure (including systolic blood pressure 
(SBP) and diastolic blood pressure (DBP)), blood glucose (GLU) and uric acid (UA) (Fig. 3, Supplementary 
Table 3). Conversely, Blautia was positively correlated with LDL (r = 0.20, P < 0.001, FDR < 0.001), TC (r = 0.09, 
P < 0.001, FDR < 0.001), and WL (r = 0.06, P = 0.005, FDR = 0.014) (Fig. 3, Supplementary Table 3). Moreover, 
Romboutsia, Ruminococcus2, Clostridium sensu stricto and Dorea were positively and significantly associated with 
body weight, serum lipids and UA (P < 0.05, FDR < 0.05, Fig. 3, Supplementary Table 3).

A positive association between WL and BMI (r = 0.78, P < 0.001, FDR < 0.001, Fig. 4) was also identified in 
Chinese adults, and the levels of SBP (r = 0.30, P < 0.001, FDR < 0.001) and UA (r = 0.32, P < 0.001, FDR < 0.001) 
augmented BMI (Fig. 4). WL was positively correlated with GLU (r = 0.32, P < 0.001, FDR < 0.001), TG (r = 0.31, 
P < 0.001, FDR < 0.001) and UA (r = 0.41, P < 0.001, FDR < 0.001), which are potential indicators for diabe-
tes, hyperlipaemia and hyperuricaemia, respectively (Fig. 4). Furthermore, we discovered a positive association 
between UA and TG (r = 0.33, P < 0.001, FDR < 0.001, Fig. 4).

Primary groups Subgroups Sample NO. Clinical feature

Group H Group H 209 Healthy

Group O Group O 307 Obesity

Group OA

Group O1 211 Obesity and high UA

Group O2 289 Obesity and high serum lipid

Group O3 161 Obesity and high blood pressure

Group O4 43 Obesity and abnormal renal function

Group O5 28 Obesity and high serum glucose

Group O1-2 258 Obesity, high UA and high serum lipid

Group O1-3 66 Obesity, high UA and high blood pressure

Group O1-4 39 Obesity, high UA and abnormal renal function

Group O1-5 8 Obesity, high UA and high serum glucose

Group O2-3 143 Obesity, high serum lipid and high blood pressure

Group O2-4 55 Obesity, high serum lipid and abnormal renal function

Group O2-5 47 Obesity, high serum lipid and high serum glucose

Group O3-4 18 Obesity, high blood pressure and renal function

Group O3-5 29 Obesity, high blood pressure and high serum glucose

Group O4-5 3 Obesity, abnormal renal function and high serum glucose

Table 1.  Summary of group information.

Genus number Shannon index

Group H 31 ± 9 1.62 ± 0.52

Group O 32 ± 9 1.84 ± 0.60

Group OA 28 ± 8 1.65 ± 0.59

Comparison on genus number

P-value FDR

Group H vs Group O 0.364 0.364

Group H vs Group OA <0.001 <0.001

Group O vs Group OA <0.001 <0.001

Comparison on Shannon index

P-value FDR

Group H vs Group O <0.001 <0.001

Group H vs Group OA 0.445 0.445

Group O vs Group OA <0.001 <0.001

Table 2.  Distribution of genus number and microbial diversity.
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Discussion
In this retrospective study, we detected the GM characters of obese patients with various metabolic abnormalities. 
Although studies have revealed the decreased bacterial diversity in obese patients29,30, in current study higher 
bacterial diversity was detected in obese patients without metabolic abnormalities than in healthy individuals. 
Therefore, we hypothesized that specific bacteria and their associations with obesity should be understood, other 
than bacterial diversity which might be affected by diet, body size and other factors31. With the onset of metabolic 
abnormalities in obese adults, aggravated GM dysbiosis brings about dwindling bacterial diversity and genus 
number29. Moreover, obvious inter-group GM discrepancy was observed between Group H and Group OA after 
PCoA analysis, while the Group O seemed to be the intermediate state of healthy and obese with metabolic 
abnormalities. We therefore suggest that gradual GM changes occurred with the aggravation of obesity and the 
occurrence of other metabolic diseases.

To differentiate obese patients from healthy individuals, six universal biomarkers were identified through 
random forest classifiers, including Bacteroides, Parabacteroides, Blautia, Alistipes, Romboutsia and Roseburia. 
Interestingly, most of those genera have been found to interact with host immune system. For example, 
Bacteroides has been revealed to promote the differentiation of regulatory T cells (Treg) and protect against 
inflammatory reactions32. Meanwhile, systemic inflammatory responses can be suppressed by Parabacteroides 
through its regulations of IL-10 and Treg cells33. Conversely, Alistipes would trigger inflammatory reactions in 
hosts, and the genus was also found abundant in Chinese T2D patients9. Based on their close relationships with 

Figure 1.  PCoA analysis of Bray-Curtis distance. Green dots, pink triangles and blue squares stand for the 
samples from Group H, Group O and Group OA, respectively. Ellipses round the geometric represent the 
standard deviations of the samples.

Classifier Biomarker NO. Accuracy Sensitivity Specificity Precision F1 score AUC

Group H vs Group O 13 0.65 0.51 0.76 0.60 0.54 0.68

Group H vs Group OA 47 0.70 0.53 0.80 0.62 0.56 0.76

Group H vs Group O1 23 0.68 0.72 0.64 0.67 0.69 0.77

Group H vs Group O2 17 0.73 0.66 0.79 0.71 0.67 0.76

Group H vs Group O3 11 0.62 0.74 0.46 0.65 0.69 0.68

Group H vs Group O1-2 10 0.70 0.65 0.74 0.67 0.65 0.74

Group H vs Group O2-3 20 0.72 0.80 0.58 0.77 0.77 0.76

Group O vs Group OA 24 0.51 0.45 0.57 0.48 0.46 0.57

Group O vs Group O1 44 0.59 0.75 0.35 0.63 0.68 0.61

Group O vs Group O2 15 0.61 0.61 0.61 0.62 0.61 0.65

Group O vs Group O3 19 0.64 0.80 0.32 0.70 0.74 0.63

Group O vs Group O1-2 19 0.56 0.64 0.46 0.59 0.61 0.59

Group O vs Group O2-3 42 0.71 0.90 0.27 0.74 0.81 0.66

Table 3.  Assessment of the Random forest classifiers.
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host immune system, these biomarkers can be applied for the early diagnosis of obesity and other metabolic risks, 
given the observed high accuracy (AUC ranged from 0.68 to 0.77). Furthermore, these biomarkers seem to be 
population specific. For a Danish population22, 18 biomarkers have been identified to differentiate obese and lean 
individuals, including species from Bacteroides, Clostridium, Faecalibacterium and Ruminococcus. However, only 
one biomarker was commonly found in our Chinese cohort. On the other hand, nine obese-associated genera 
were reported in Chinese children24, and three of them were consistent with the findings in this study, including 
Bacteroides, Parabacteroides and Blautia. These outcomes enlightened us that specific GM interventions should 
be considered for different populations with various lifestyles27.

Compared to the obese patients without abnormalities, the patients with metabolic abnormalities demon-
strated altered GM components, and Clostridium XIVa contributed to the discrimination of obese patients with 
high UA, serum lipid or blood pressure. A previous report documented that Clostridium XIVa could produce 
butyrate34, and it would suppress systemic inflammatory responses. In addition, Roseburia was also applied for 
the differentiation of obese patients with high UA, serum lipid or blood pressure. As a butyrate-producing bac-
terium35, Roseburia could stimulate the differentiation of Treg cells, which was beneficial for the alleviation of 

Figure 2.  Validation tests of the Random forest classifiers between healthy and obese subjects. (a) Cross-
validation test was used to detect the accuracy of the biomarkers between healthy and obesity individuals, and 
their ROC curves were drawn with different colours. (b) The accuracy of the biomarkers and Random forest 
classifiers to discriminate obese patients with different metabolic abnormalities.

Figure 3.  Relationships between GM components and clinical indicators. A Spearman correlation analysis was 
executed between GM components and clinical indicators. A total of 20 genera were selected, and each genus 
was significantly correlated with more than one phenotype. Red and green colour indicate positive and negative 
relationships, respectively. FDR-adjusted P values were indicated by asterisks (one, two and three asterisks 
indicate P values smaller than 0.05, 0.01 and 0.001, respectively).
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inflammation. Despite of distinct clinical symptoms, the obese patients with different metabolic abnormalities 
shared some GM biomarker, such as Blautia, Dorea and Gemmiger. As an acetate producer36, Blautia can drive 
insulin release and promote metabolic syndromes, such as hypertriglyceridaemia, fatty liver disease and insulin 
resistance16. Meanwhile, Dorea was negatively associated with insulin resistance37, and Gemmiger would aggregate 
inflammatory reactions in the hosts through its colonization factors38. These biomarkers indicated the common 
GM alterations in obese patients with different metabolic abnormalities, so other factors (such as genetic varia-
tion) might involve in the occurrence of the different metabolic diseases39. Based on such observations, we also 
speculated that obesity-related GM alterations laid the foundation for the occurrence of metabolic disorders, and 
other specific pathogenic perspectives need to be explored beyond the GM dysbiosis.

The associations between bacterial components and the clinical indicators were explored. Since 
Faecalibacterium and Butyricicoccus could secret butyrate40 and boost insulin sensitivity41, their negative corre-
lations with LDL, GLU, UA, TC and BMI were discovered. In contrast, Blautia was positively correlated with the 
aforementioned clinical indicators due to acetate secretion36. Given that Faecalibacterium and Butyricicoccus play 
opposite roles as compared with Blautia, we speculated that synergism and antagonism inside the microbial com-
munity were also crucial for obesity development. In addition, Parabacteroides33 and Clostridium IV42 could sup-
press inflammatory responses, and they were negatively associated with the blood pressure, blood lipid and GLU. 
Since some of the aforementioned bacteria were GM biomarkers in the obese patients, we deduced that these 
bacteria might be the potential targets for the interference of metabolic disorders, and the corresponding clinical 
symptoms would possibly be relieved based on these host-microbial relationships. In addition, the relationships 
among physiological parameters suggested that fat primarily accumulated at the waist in Chinese populations 
when obesity occurred43, and increased waistline was positively associated with elevated blood pressure, blood 
sugar, UA and TG. Hence, waistline can be recognized as a signal for the occurrence of metabolic abnormalities 
in Chinese adults.

A limitation of the current research is that the validation accuracy of the biomarkers was not testified in differ-
ent populations. Since GM composition was affected by ethnicity and lifestyles27, the obesity cohorts from other 
populations would benefit to understand the application scope of the biomarkers. In further study, addition work 
is also imperative: I) examine the genetic characters in patients with different metabolic diseases; II) perform 
metagenomic sequencing to evaluate the microbial functions; III) explore the alteration of intestinal metabolites 
in patients with metabolic diseases, and their associations with gut microbiome.

Figure 4.  Associations among different clinical indicators. The relationships among different phenotypes were 
suggested by Spearman correlation coefficients. The correlations were kept when the coefficients were larger 
than 0.3 or smaller than −0.3 (P < 0.001, FDR < 0.05), and the coefficients of linear regression were suggested 
by the red lines in the pictures.
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In conclusion, the study detected the GM features in the Chinese obese adults with large cohort, furnished 
genus markers for obese patients with different metabolic abnormalities, and illustrated the associations between 
bacterial commensals and various clinical indicators. These findings suggested the roles of GM in the pathogen-
esis of metabolic diseases, and offered potential GM targets for the adjuvant interventions on the treatment of 
obesity with metabolic abnormalities.

Methods
Ethics statement.  This study was approved by the Ethics Committee of The General Hospital of the People’s 
Liberation Army (PLAGH) under registration number S2016-068-01, and the research was carried out according 
to The Code of Ethics of the World Medical Association. All participants provided signed informed consents, and 
volunteered to be investigated for scientific research.

Participant recruitment.  Randomized volunteers were recruited in four hospitals in China: The 180th 
Hospital of People’s Liberation Army of China (Quanzhou, China), China-Japan Union Hospital (Changchun, 
China), Southwest Hospital (Chongqing, China) and Longkou People’s Hospital (Longkou, China). A total of 
2,058 Han Chinese joined the study, and they completed physical testing including height, weight, waistline and 
blood pressure. By using a blood auto-analyzer (Beckman Coulter AU5800, Brea, CA, USA), blood testing was 
carried out in the participants to evaluate the health condition consist of GLU, TC, TG, LDL, high density lipo-
protein (HDL), UA and eGFR (Supplementary Table 1).

The participants who satisfied the following criteria were excluded from this study: (I) younger than 18 years 
or older than 75 years; (II) exposed to antibiotic, probiotics or proton pump inhibitor 1 month before physi-
cal examination; (III) suffered from diarrhoea, constipation, haematochezia or other gastrointestinal infectious 
diseases 1 month prior to physical examination; (IV) experienced enema or other gastroenterology opera-
tions 1 month before physical examination; (V) suffered from mental disorders (e.g., depression, anxiety and 
post-traumatic stress), autoimmune diseases (e.g. type 1 diabetes, rheumatoid arthritis, multiple sclerosis and 
psoriasis.) or hereditary diseases (e.g., thalassemia, hereditary deafness and phenylketonuria); (VI) had drug 
abuse history; (VII) exposed to antibiotic, probiotic, or proton pump inhibitors 4 weeks prior to the study. Finally, 
1,914 individuals, from whom faecal samples were collected, were enrolled in the study between Jan. 2016 and 
Sep. 2016.

Grouping based on clinical indicators.  The participants were first divided into 2 groups: a healthy group 
and an obesity group. The healthy group (Group H) included individuals who passed their physical examinations 
with a normal BMI (between 18.5 and 23.99)44. On the other hand, overweight and obese patients, whose BMI 
was larger than 24, were assigned to the obesity group in this study. Using published previously clinical standards, 
five kinds of metabolic abnormalities were defined in the obesity cohorts, including high UA45 (>416 µmol/L in 
male or >350 µmol/L in female), high serum lipid46 (TC ≥ 6.22 mmol/L, TG ≥ 2.26 mmol/L, LDL ≥ 4.14 mmol/L 
and/or HDL < 1.04 mmol/L), high blood pressure47 (SBP ≥ 140 mmHg, DBP ≥ 90 mmHg), abnormal renal func-
tion48 (eGFR < 60 ml/Min/Hight2) and high serum glucose49 (≥7.0 mmol/L). Relying on clinical indicators and 
personal confirmation, the obese patients were divided into obesity groups with (Group OA) or without meta-
bolic abnormalities (Group O), and then Group OA was subdivided into 15 obesity groups with different meta-
bolic abnormalities (Table 1). To avoid data deviation, groups with less than 100 individuals were removed from 
subsequent analysis.

Faecal sample collection.  The sterile stool collection tubes (Axygen, California, USA) were delivered to the 
participants, and fresh stools were collected from them when they underwent physical examination. Two kinds of 
tools were prepared to collect different types of stool: I) a swab (Huachenyang Technology CO., LTD, Shenzhen, 
China) was used to collect hard stools, and approximately 5 grams of stools was obtained from each person; II) 
a dropper (Shanghai Truelab Lab, Shanghai, China) was applied to collect loose stools, and approximately 5 ml 
of stools was acquired from each person. The stool samples were preserved in stool collection tubes, and then 
transferred to a −80 °C refrigerator for long-term storage within half an hour. Contamination from urine or the 
environment was avoided during stool sample collection.

DNA extraction, library construction and sequencing.  Microbial DNA was extracted from stool 
samples using a Power Soil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, USA). The V3-V4 region of the 
16S rRNA gene was amplified by primers 338F and 806R using a PCR kit (TransGenAP221-02, Peking, China). 
The quality of the PCR products was detected by Qubit (Thermo Fisher, Singapore), and the qualified DNA was 
prepared for library construction (TruSeq DNA PCR-Free kit, Illumina, San Diego, USA). The libraries were 
sequenced on an Illumina Miseq sequencing platform (Illumina, San Diego, USA) with 300 base pairs.

Data filtering and taxonomical annotation.  Raw sequenced reads were first paired-filtered for 
adapter contamination (>15 bases), low quality (10 bases with <Q20), and N contained (>1 base) using a 
self-programmed script. Then, the filtered reads were processed with the DADA2 (v1.6.0) package50 in R (v3.4.4). 
Bases were trimmed from the reads if their quality scores were lower than 2, and the trimmed reads were dis-
carded if their lengths were shorter than 200 bps. Then, the sequence variants were inferred for each sample with 
default parameters and merged into tags. After chimeras removal, qualified tags were aligned to the RDP 16S 
rRNA database (trainset 16/release 11.5)51 to obtain corresponding taxonomic profiling. The Shannon index was 
calculated to evaluate samples biodiversity by using the vegan package in R.
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PCoA and PCA analysis.  Based on the genus profiling, Bray-Curits distances among samples were calcu-
lated by using package “vegdist” in R. Then, the Bray-Curits matrix was used for PCoA analysis by using “pcoa” in 
R (Supplementary scripts). With genus profiling, PCA was performed using package “ade4” in R. The PCoA and 
PCA results were plotted with the package ggplot2 in R.

PERMANOVA to evaluate the influence of physical indices.  With the GM composition of all sam-
ples, PERMANOVA52 (Permutational Multivariate Analysis of Variance) was carried out to assess the impacts of 
various physical indices, which are listed in Supplementary Table 2. Based on the Euclidean distances among the 
samples, the environmental factors which affect GM compositions significantly were detected by using the vegan 
package in R with 9,999 permutations. The related script was contained in Supplementary scripts.

Associations between GM composition and clinical indicators.  The genera were screened if their 
abundances lower than 0.05% in more than 50% of samples (Supplementary Table 3), and Spearman correlation 
analysis was executed between the filtered genera and clinical indicators with all samples (using “cor” in R). 
Meanwhile, the relationships among different clinical indicators were also analyzed with Spearman correlation, 
and the significant relationships (r > 0.3, P < 0.05) were kept for further study.

Construction of random forest models and selection of GM markers.  With the relative abundances 
of genera, random forest classifiers53 were constructed using a three-step scheme using package randomForest in 
R. Firstly, the samples in each group were randomized into 2 sets: a discovery data set (70% of the samples) and 
a validation data set (30% of the samples). Secondly, random forest models were constructed by the discovery 
data sets comprising the two compared groups. Finally, the constructed models were applied to the validation 
data sets comprising the compared groups, and compared with the actual category of the samples. The model 
validity was evaluated with precision, sensitivity, specificity, precision, F1 score and AUC value with 10 repeats, 
and the ROC curves were plotted using the R package “pROC”. The detailed script and parameters were shown 
in Supplementary scripts.

GM biomarkers were obtained from the constructed random forest models. Based on the optimal branch 
number and Gini values, genera were selected as candidate biomarkers. Since the models were constructed with 
10 repeats, candidate biomarkers that arose over 8 times among 10 repeats were selected as final GM biomarkers 
for discrimination of the two compared groups.

Statistics.  All statistical analyses were performed in R (version 3.4.1). Wilcoxon rank-sum test was executed 
on Shannon index and genus number between different obese groups by using “Wilcox.test” in R, and the sta-
tistical difference was examined among Group H, Group O and Group OA using “kruskal.test” or “chisq.test” 
in R. Spearman correlation was used to evaluate the associations between GM and clinical indicators, and the 
relationships among different clinical indicators (using “cor” in R). Statistical results from the previous tests were 
adjusted with Benjamini-Hochberg method (FDR < 0.05) using “p.adjust”, and were plotted using the package 
“ggplot2” in R.

Data Availability
The DNA sequencing data is available in NCBI Sequence Read Archive (SRA) under the Accession Number 
SRP125854.
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