Skip to main content
. 2019 Aug 30;19(17):3755. doi: 10.3390/s19173755
Algorithm 1: solve (25) by ALM
Input: attractor matrix Xn1×n2
Parameter: number of anchor points: q; local weight coefficient matrix: Kn1×n2; regularization parameter: λ=1/max(n1,n2)
for all i=1:q, parallel do
  1. select si(ai,bi) uniformly in X
   for all a=1: n1, do
    K(ai,a)=1d2(ai,a)
   end for all b=1:n2, do
    K(bi,b)=1d2(bi,b)
   end for all a[1,n1],b[1,n2]
    K(a,b)=K(ai,a)K(bi,b)
   end
  2. T(si)=KX
  Initialize: Lsi0=Esi0=Y0=0, τ0=1e3, τmin=1e10, β=0.9, ε=1e8
  while not converged do
   3. fix the others and update Lsik+1 by
    Lsik+1=argminLsi:Lsi*+12τkLsi+EsikT(si)+YkF2
   4. fix the others and update Ssik+1 by
    Esik+1=argminEsi:λEsi1+12τkLsik+1+EsiT(si)+YkF2
   5. update the Lagrange multiplier Y: Yk+1=Yk+T(si)Lsik+1Esik+1
   6. update τ: τk+1=max(ρτk,τmin)
   7. check the convergence conditions:
    Lsik+1Lsikε, Esik+1Esikε, Lsik+1+Esik+1T(si)ε
  end
end
output: Ls1,,Lsq