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Abstract: A portable sensor system for the simultaneous detection of multiple environmentally
relevant volatile organic compounds (VOCs) in real seawater based on Fourier transform infrared
fiber-optic evanescent wave spectroscopy (FT-IR-FEWS) was developed. A cylindrical silver halide
(AgX) fiber with an ethylene/propylene copolymer (E/P-co) coated flattened segment was used as
an active optical transducer. The polymer membrane enriches the hydrophobic analytes, while
water is effectively excluded from the penetration depth of the evanescent field. Determination
of multicomponent mixtures (i.e., 10 VOCs in real-world seawater samples) collected in Arcachon
Bay, France revealed a high accuracy and reproducibility with detection limits down to 560 ppb.
The measurement showed no significant influence from changing water conditions (e.g., salinity,
turbidity, and temperature or other interfering substances). The time constants for 90% saturation of
the polymer ranged from 20 to 60 min. The sensor system is capable of being transported for on-site
monitoring of environmental pollutants in aqueous matrices with efficient long-term stability, thus
showing great potential to be utilized as an early warning system.

Keywords: mid-infrared; fiber-optic evanescent field sensor; optical chemical sensor; chemosensor;
IR sensor; Fourier transform infrared spectroscopy; silver halide fiber; polymer coating; enrichment;
environmental monitoring; volatile organic compound; VOC

1. Introduction

Increasing industrialization and population of coastal regions and the use of the ocean as a
dumping ground for contaminated dredged material, sewage sludge, industrial, and domestic waste
has led to increased pollution of the oceans, which is one of the most important environmental
problems [1]. In particular, organic contaminants such as volatile organic compounds (VOCs) are the
most commonly detected pollutants [2]. VOCs are in part carcinogenic, mutagenic, and toxic, and
may damage the health of humans and the marine ecosystem [3]. The widespread use of VOCs in
the manufacturing and handling of paints, solvents, adhesives, fuels, pharmaceuticals, deodorants,
fumigants, and refrigerants or leaking underground pipelines, solvent storage vessels, landfill, and
manufacturing effluents has led to releases into the environment [4–6]. More than half of the total
number of identified substances originating from sea-based sources results from offshore gas/oil
activities (39%) and shipping (32%) [1]. Maritime traffic on the world’s seas, with about 215 million
tons of chemicals in 2015, has led to discharges, even though this is illegal [1].

Certain VOCs may persist in groundwater and move into drinking water supplies. Therefore,
VOCs have been detected in aqueous matrices such as in ground and surface waters [7–11], drinking
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water [12–16], river water [17–19], and seawater [20–28]. In general, organic pollutants that might have
a toxicological impact have been found in many marine areas (e.g., northwestern Mediterranean Sea, the
Adriatic Sea, the harbor of Naples, Haifa, the Saronikos Gulf, the Sea of Marmara, and the northwestern
Black Sea) [29,30]. Of all of the substances released into seawater, most contaminants originate from
offshore oil and gas operations [1]. For example, as of September 2015, over 528,000 releases from
underground petroleum storage tanks and pipes have been reported since the underground storage
tank program was implemented [31]. Every year, 10%–15% of the oil entering the oceans, and thus
VOCs, are from oil tanker accidents [1].

Therefore, the protection of global waters and the reduction of discharges, emissions, and losses of
hazardous substances and maintaining public health are of substantial communal, political, legislative,
and economic interest for several commissions such as the US Environmental Protection Agency
(US EPA) and the European Analytical Quality Control in support of the Water Framework Directive
for sustained health of the marine ecosystem.

In order to protect marine oceans and the surrounding ecosystems, monitoring hazardous
pollutants in seawater with an adequate method is necessary. Conventionally, the detection of
VOCs is performed using high-pressure liquid chromatography (HPLC) or gas chromatography
coupled with mass spectrometry (GC-MS), which offers high sensitivity in the low ppb range. For
sample preconcentration, purge-and-trap [32,33] or solid-phase microextraction [34–36] are mostly
used. Furthermore, spectroscopy-based methods such as ultra-violet (UV) [37,38], Raman [39], near
infrared [40], and fluorescence [41] spectroscopy have been applied for VOC detection. However,
these methods are expensive and time-consuming due the bulky instrumentation required, therefore,
the sample is collected discontinuously and transported to a well-equipped laboratory. Sample
pretreatment steps (purification and extraction) may lead to erroneous results due to sample losses
from the volatile nature of the analytes to be investigated [42]. Therefore, skilled personnel are required
during this work.

In particular, detection in seawater is challenging due to its complex matrix such as high ionic
strength and the presence of marine humus, resulting from organic matter like cellular debris,
humic acids, and metabolic products as well as other interfering dissolved organic substances and
bio-organisms. The diversity of the analytes and the permanent changing concentrations and conditions
both spatially and temporally that are related to estuaries or effluents makes detection challenging.
Consequently, a rapid in situ and real-time screening sensor for on-site measurement of VOCs in
aqueous matrices is envisaged such as infrared attenuated total reflection (IR-ATR) spectroscopy.

IR-ATR spectroscopy has the advantage of being a non-destructive method, and can analyze
pollutants in situ and in real-time since sampling and the sample pre-treatment steps are not necessary.
In the mid-infrared (MIR) spectral range (3–20 µm), well-structured substance-specific absorption
bands are caused, in particular, in the so-called fingerprint region (below 1100 cm−1) by the excitation
of the fundamental vibrational states of the analyte molecules.

The principle of ATR is exemplarily illustrated with AgX fiber as an optical transducer in Figure 1.
The light is totally internal reflected at both sides of the waveguide at the interface to the surrounding
medium (E/P-co), if the incident IR beam is at an angle of incidence θi larger than the critical angle θc.
The refractive index of the waveguide n1 (i.e., the AgX fiber) has to be larger than the refractive index
of the surrounding medium n2 (E/P-co polymer coating), as defined by Snell’s law:

θC = arcsin
n2

n1
(1)
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Figure 1. Schematic attenuated total reflection principle of an E/P-co polymer coated AgX fiber. The 
number of total internal reflections is increased within the flattened section of the AgX fiber. Analyte 
molecules in an aqueous solution (dark blue) enrich into the polymer layer (light blue) and are 
detected within the penetration depth 𝑑 of the exponentially decaying evanescent field. 𝜃 is the 
angle of incident light, 𝑛ଵ and 𝑛ଶ are the refractive indices of the AgX fiber and E/P-co polymer, 
respectively, 𝐸 is the intensity of the evanescent field depending on the distance 𝑥. 

The theoretical number of total internal reflections 𝑁 within a waveguide can be calculated 
with the following equation: 𝑁 = 𝐿𝑎 = 𝐿𝑑 tan 𝜃 (2)where 𝐿 and 𝑑 are the length of the sensing region and the waveguide thickness, respectively. 𝑎 is 
the distance between each reflection. By decreasing the waveguide thickness, the angle of incidence 
changes, leading to an increased penetration depth and number of total internal reflections, and 
therefore, an increased sensitivity. Hence, a segment of cylindrical AgX fiber (700 µm) was press 
tapered to a diameter of 150 µm.  

Due to interference of the incident and reflected light, an evanescent field is generated that 
penetrates into the polymer layer depending on the wavelength of the incident beam 𝜆, the refractive 
indices 𝑛ଵ = 2.2 (AgX fiber) and 𝑛ଶ = 1.48 (E/Pco), and the angle of incidence 𝜃 = 45°: 𝑑 = 𝜆2𝜋ඥ𝑛ଵଶ sinଶ 𝜃 − 𝑛ଶଶ (3)

The maximum penetration depth at 12.65 µm (790 cm−1) was calculated as 4.20 µm. The intensity 
of the evanescent field decays exponentially with the distance 𝑥: 𝐸ሺ𝑥ሻ = 𝐸 exp ቆ− 𝑥𝑑ቇ (4)

where 𝐸 is the intensity at the interface.  
Conventionally, chalcogenides glasses, heavy metal fluorides, tellurium halides, and AgX are 

used as fiber-optic materials [43]. AgX fibers (AgClxBr1−x; 0 ൏ 𝑥 ൏ 1) are among the most promising 
materials for MIR sensing applications as they have the advantage of being flexible, and transparent 

Figure 1. Schematic attenuated total reflection principle of an E/P-co polymer coated AgX fiber. The
number of total internal reflections is increased within the flattened section of the AgX fiber. Analyte
molecules in an aqueous solution (dark blue) enrich into the polymer layer (light blue) and are detected
within the penetration depth dp of the exponentially decaying evanescent field. θi is the angle of
incident light, n1 and n2 are the refractive indices of the AgX fiber and E/P-co polymer, respectively, E
is the intensity of the evanescent field depending on the distance x.

The theoretical number of total internal reflections N within a waveguide can be calculated with
the following equation:

N =
L
a
=

L
d tanθi

(2)

where L and d are the length of the sensing region and the waveguide thickness, respectively. a is
the distance between each reflection. By decreasing the waveguide thickness, the angle of incidence
changes, leading to an increased penetration depth and number of total internal reflections, and
therefore, an increased sensitivity. Hence, a segment of cylindrical AgX fiber (700 µm) was press
tapered to a diameter of 150 µm.

Due to interference of the incident and reflected light, an evanescent field is generated that
penetrates into the polymer layer depending on the wavelength of the incident beam λ, the refractive
indices n1 = 2.2 (AgX fiber) and n2 = 1.48 (E/Pco), and the angle of incidence θi = 45

◦

:

dp =
λ

2π
√

n2
1 sin2 θi − n2

2

(3)

The maximum penetration depth at 12.65 µm (790 cm−1) was calculated as 4.20 µm. The intensity
of the evanescent field decays exponentially with the distance x:

E(x) = E0 exp
(
−

x
dp

)
(4)

where E0 is the intensity at the interface.
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Conventionally, chalcogenides glasses, heavy metal fluorides, tellurium halides, and AgX are
used as fiber-optic materials [43]. AgX fibers (AgClxBr1−x; 0 < x < 1) are among the most promising
materials for MIR sensing applications as they have the advantage of being flexible, and transparent in
the entire MIR spectral range, depending on its composition [44]. Cylindrical fibers [45–47], flattened
fibers [48], and flattened fibers with cylindrical extensions on both ends [49–51] have already been
investigated. In this study, a planar AgX fiber with cylindrical extension was used since it has been
reported to have enhanced absorbance signals when compared to cylindrical fibers while maintaining
good properties of incoupling the IR radiation [51].

The surface of the waveguide (i.e., flattened segment) was coated with a polymer membrane acting
as a solid-phase extractor to enable the continuous measurement of pollutants over a long period of time.
The hydrophobic polymer only enriches hydrophobic analytes (i.e., pollutants), which interact with
the generated evanescent field. In MIR spectroscopy, high water absorption bands interfere with the
specific absorption features of the analytes. Due to the hydrophobic nature of the polymer membrane,
water is effectively excluded from the evanescent field. This enables MIR spectroscopy sensing in
aqueous matrices with an increased sensitivity. At the same time, the polymer coating prevents the
AgX fiber from being exposed to UV radiation and chloride ions. Otherwise, a water soluble silver
complex [AgCl2]− is formed, and degradation of the optical fiber will take place [52]. The thickness
of the coating layer must exceed the penetration depth of the evanescent field in order to efficiently
restrain the water molecules. However, too thick membranes will lead to long enrichment times to
obtain steady-state conditions. A wide variety of polymeric materials for the enrichment membrane
have already been investigated including polyisobutylene (PIB) [53–55], low-density polyethylene
(LDPE) [56], E/P-co [49,57], Teflon®AF [58,59], or poly(dimethylsiloxane) [59,60]. Based on the superior
enrichment properties due to its amorphous nature, and therefore, its high free volume, the E/P-co
polymer was used within this study. The feasibility of MIR-FEWS for pollutant monitoring in aqueous
matrices (i.e., water and artificial seawater) through the use of a polymer coated polycrystalline AgX
fiber as a sensing element has already been demonstrated by several research teams [47,49,50,61–65].
However, these studies have shown simultaneous detection up to six (chlorinated) hydrocarbons in
water using a liquid nitrogen-cooled detector. Due to the liquid nitrogen, this is not applicable for
in-field environmental analysis. Kraft et al. [61] have demonstrated the detection of five VOCs in
artificial seawater through the use of a Stirling-cooled detector. Salinity, turbidity, inorganic ions, and
marine humus do not influence the performance of the sensor. Additionally, they investigated cross
interferences ranging from highly hydrophobic (n-hexane) to hydrophilic (methanol and pyridine)
substances, showing that enrichment factors and sensor response remained constant [66].

The present study describes a field-deployable portable IR spectroscopic sensor system developed
during a European Union project (SCHeMA, “Integrated in situ chemical mapping probes”, Grant
Agreement Number 614002 [67] toward the required detection limits for continuous in situ and
real-time environmental pollution monitoring, especially regarding detection in complex matrices (i.e.,
real seawater). Therefore, implementation as a “threshold alarm sensor” was envisaged. The MIR
sensor system is capable of analyzing simultaneously multiple VOCs (i.e., environmental pollutants).
Therefore, a mixture of ten VOCs in real seawater collected from Arcachon Bay, France were successfully
qualified and quantified. Detection limits in the low ppm region with a rapid and reversible enrichment
were achieved. Therefore, the developed MIR sensor system facilitates a variety of applications
including wastewater or effluent monitoring, underground fuel storage tanks and pipeline monitoring,
and controlling drinking water supplies directly on-site from the point of intake and discharge.

2. Experimental

2.1. Materials and Reagents

Tetrachloroethylene (TeCE, ≥99.9%), (+)-3-carene (CAR, 90%), p-xylene (pXYL, 99%), ethylbenzene
(EB, ≥99%), 1,2-dichlorobenzene (12DCB, ≥98%), 1,2,4-trichlorobenzene (124TCB, ≥98%), and methanol
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(99.8%) were purchased from Merck KGaA (Darmstadt, Germany). Myrcene (MYR, 90%) and
p-cymene (pCYM, 99%) were obtained from Acros Organics (Geel, Belgium). E/P-co (60:40) was
supplied by Aldrich Chemical Company (Milwaukee, WI, USA). Trichloroethylene (TCE, ≥99.5%)
and 1,3-dichlorobenzene (13DCB, 98%) was obtained from Sigma-Aldrich Chemie GmbH (Munich,
Germany). n-hexane was obtained from Carl Roth GmbH + Co. KG (Karlsruhe, Germany). The
chemicals were used without further purification.

The flattened AgX fiber (AgCl0.3Br0.7) with cylindrical extensions used as a sensing element
was provided by the research team of Abraham Katzir (Tel Aviv University, Tel Aviv, Israel). The
dimensions were as follows: flattened section: length of 45 mm, width of 5 mm, and thickness of
150 µm; cylindrical end facets: length: 15 mm and diameter: 0.7 mm. The AgX fiber was located inside
a flow cell produced by the machine shop of Ulm University. According to Equation (4), the evanescent
field intensity dependent on the distance from the waveguide surface was calculated. Therefore, E0

was measured using a thermopile detector (Gentec-EO, Quebec City, QC, Canada). The intensity of
the evanescent field at the penetration depth of 4.2 µm (compared to Equation (3)) at each internal
reflection was reduced to 37% of E0.

2.2. Polymer Coating

A total of 0.5 g of the E/P-co polymer was dissolved in n-hexane under reflux for 30 min. The hot
solution was dip-coated with an Eppendorf pipette onto both sides of the AgX fiber, 80 µL, each. The
polymer film produced was kept at room temperature for at least 2 h until the solvent. The cross-section
of the polymer-coated (on top and bottom) AgX fiber using scanning electron microscopy is illustrated
in Figure 2. A uniform layer was obtained using the dip-coating method with an Eppendorf pipette.
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With differential weighing, the membrane thickness was calculated as 13.7 ± 0.2 µm with
differential weighing [54]:

d =
mPolymer

ρPolymer·A
(5)

where d = the E/P-co thickness, mPolymer = the mass of the polymer (obtained from weighing the AgX
fiber before and after the coating process), ρPolymer = density of the polymer membrane (0.86 g/cm3) [56],
and A = the coated surface area (2.25 cm2).

Before starting the first measurement, the E/P-co polymer coating was equilibrated to water since
a small amount diffuses into the membrane, thus causing a baseline shift. Due to the water absorption,
a baseline shift occurs. The water diffusion reached equilibrium after at least 24 h of exposure.

2.3. Sample Preparation

All analytes (TeCE, TCE, MYR, CAR, pXYL, EB, 12DCB, 13DCB, 124TCB, and pCYM) were
dissolved in pure methanol in 20 mL headspace vials resulting in a final concentration of 2000 ppm
each. The stock solution was freshly produced daily to ensure no evaporation loss. Sample solutions
were prepared prior to the measurements. Therefore, a certain quantity of stock solution was dissolved
in the seawater, which was directly collected from Arcachon Bay (Arcachon, France). The amount
of methanol in the sample solution, which acted as a solubility mediator, was 1% (v/v). As already
described by M. Kraft and B. Mizaikoff [66], spectral interferences did not occur.

2.4. Instrumentation and Data Processing

A compact Alpha FT-IR spectrometer in the OEM (original equipment manufacturer) version (Bruker,
Ettlingen, Germany) was used as the MIR light source. The IR radiation was focused via a gold-coated
elliptical mirror (Thorlabs, Dachau, Germany) and an off-axis parabolic mirror (OAPM, focal length:
25.4 mm, Thorlabs, Dachau, Germany) on the cylindrical end facet of the AgX fiber, which acted as the
internal reflection element. Two consecutive OAPMs (Thorlabs, focal length: 25.4 mm and 50.8 mm, Dachau,
Germany) were used to focus the IR radiation emanating from the AgX fiber onto a thermoelectrically-cooled
MCT (mercury cadmium telluride) detector (Vigo, Poland). For system control and data evaluation, an
industrial computer (NST GmbH) was used. All components were mounted on top of an optical breadboard.
A schematic and optical image of the MIR-FEWS sensor system is shown in Figure 3. The entire sensor
system was reduced in size to 650 × 210 mm2 and fit inside a stainless-steel housing for transportation
for on-site measurements (i.e., in this study, at Arcachon Bay, France). The sample solution was pumped
via polytetrafluoroethylene tubes and tubing connectors inside and out of the flow cell using a peristaltic
pump (Watson-Marlow, Cornwall, UK) at a flow rate of 3.2 mL/min. For the rinsing process, the flow rate
was set to 4.0 mL/min for a faster regeneration of the polymer coating.
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Figure 3. (a) Schematic of the experimental setup showing the respective components, FT-IR (Fourier
transform infrared) spectrometer, coupling optics, thermoelectrically-cooled MCT detector, and µ-flow
cell. The latter included the waveguide element (i.e., AgX fiber). (b) Entire miniaturized MIR sensor
system (size: 650 × 210 mm2) comprising of the optical components, a small computer for data
generation and analysis, and a peristaltic pump.
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Spectra were recorded in the spectral range from 4000 to 790 cm−1 with a spectral resolution of
2 cm−1, and 50 scans were averaged per spectrum. Clean seawater from Arcachon Bay was used as the
background spectrum. A manual baseline correction was applied to the obtained spectra and evaluated
via the univariate method (i.e., peak area analysis). The integration limits are listed in Table 1.

Table 1. Integration limits used for the univariate data evaluation (i.e., peak area analysis).

Substance Peak Area (cm−1)

13DCB 1583–1574
pCYM 1521–1506

EB 1498–1489
12DCB 1437–1431
124TCB 104–1028

CAR 1002–981
TCE 939–926
TeCE 915–899
MYR 898–883
pXYL 803–793

3. Results and Discussion

3.1. Analysis of Pollutants in Seawater

The AgX fiber was coated with the hydrophobic E/P-co polymer (thickness: 13.7 ± 0.2 µm) in
order to enrich the hydrophobic pollutants dissolved in seawater. Therefore, molecules within the
penetration depth of the evanescent field were simultaneously detected. Figure 4 shows an exemplary
IR absorption spectrum of 10 analytes in seawater with a concentration of 25 ppm each, after being
enriched into the polymer membrane. The spectrum was recorded after an enrichment time of 80 min.
Each analyte featured one or more clearly visible characteristic absorption bands in the fingerprint
region due to the molecule-specific C–H and C–Cl stretching and deformation vibrations. The IR
peaks were labeled for clarity: MYR (1594 cm−1 and 892 cm−1), 13DCB (1577 cm−1 and 1412 cm−1),
pCYM (1515 cm−1 and 815 cm−1), EB (1495 cm−1), 124TCB (1457 cm−1, 1094 cm−1, 1035 cm−1, and
868 cm−1), 12DCB (1434 cm−1), CAR (1384 cm−1 and 989 cm−1), TCE (931 cm−1), TeCE (910 cm−1),
and pXYL (795 cm−1). Therefore, a multivariate data evaluation was not required. The absorption
peaks were consistent in the frequency positions when compared to measurements from the literature
performed in deionized water [68]. For univariate data analysis, one peak for each analyte was selected
(compare Table 2). The IR spectrum of the E/P-co polymer revealed an absorption band at 804 cm−1 [54].
This peak overlapped the peak occurring from pCYM at 815 cm−1, therefore, the peak at 1515 cm−1

was used for evaluation. Spectral interferences from water absorption bands did not occur (i.e., the
polymer coating successfully restrains the water from the evanescent field). Furthermore, the complex
and corrosive seawater matrix with its variety of organic matter did not influence the IR signature.
Macro-molecules (e.g., humic acids) were not enriched into the E/P-co polymer due to steric hindrance.
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Table 2. Summary of calibration functions (i.e., linear fit, r2-value, LOD and LOQ derived from peak
area analysis) over a concentration range from 1 ppm to 25 ppm.

VOC Wavenumber (cm−1) Linear Fit r2 LOD (ppm) LOQ (ppm)

13DCB 1577 0.03046x + 0.06101 0.99458 1.385± 0.030 4.618± 0.101
pCYM 1515 0.03421x + 0.05186 0.9882 0.669± 0.011 2.229± 0.035

EB 1495 0.00428x + 0.01347 0.99631 1.474± 0.045 4.914± 0.150
12DCB 1434 0.00414x + 0.00982 0.99958 5.943± 0.173 19.809± 0.576
124TCB 1035 0.04119x + 0.01743 0.99912 0.639± 0.006 2.131± 0.020
CAR 989 0.02025x− 0.01699 0.99918 1.219± 0.020 4.064± 0.068
TCE 931 0.01358x− 0.01522 0.97704 1.074± 0.035 3.581± 0.117
TeCE 910 0.07841x + 0.15213 0.98604 0.560± 0.014 1.866± 0.047
MYR 892 0.01831x + 0.06601 0.98826 2.262± 0.075 7.540± 0.251
pXYL 795 0.02739x− 0.0645 0.97921 4.762± 0.307 15.873± 1.024

3.2. Enrichment Process

The partitioning process (i.e., integrated peak area over the enrichment time) of TeCE into the
amorphous E/P-co polymer is exemplarily illustrated in Figure 5 for 10 ppm. For all analytes at the
respective concentration, similar enrichment functions could be obtained. The t90-value (i.e., the time
until 90% of saturation was achieved), ranged from 3 to 60 min. However, the t90-value of most of the
analytes was around 30 min.

3.3. Regeneration

The polymer membrane can be regenerated by flushing a mixture of methanol and clean seawater
(20:80, v/v) through the flow cell. In order to achieve fast regeneration, the flow rate was set to maximum
speed (i.e., 4 mL/min). The regeneration process was performed until the peak area decreased to the
initial peak area. The diffusion out of the polymer layer over the time is exemplarily shown for TCE
in Figure 6. The membrane was fully regenerated after approx. 20 min. Depending on the type of
analyte, the regeneration process was longer (50–80 min). The methanol fraction in the rinsing solution
did not destroy the E/P-co polymer layer. In order to reduce the time needed for regeneration, the
methanol fraction in the mixture can be increased. Therefore, the hydrophobic polymer could be used
for multiple measurement cycles, thus maintaining the enrichment properties and protection of the
AgX fiber against the corrosive chloride ions contained in seawater.
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3.4. Sensor Calibration

In Figure 7, the established calibration functions of all simultaneously detected VOCs in seawater
obtained with the developed IR evanescent field sensor are shown. To achieve optimum accuracy, the
data were evaluated using the equilibrium method. Therefore, the equilibrium concentration was
used to obtain the calibration functions. In order to ensure steady-state conditions were achieved, 10



Sensors 2019, 19, 3644 10 of 18

repetitive measurements were executed after 80 min of enrichment time. The concentration for the
respective analyte ranged from 1 ppm to 25 ppm. Calibration functions were obtained by plotting the
peak area versus the respective concentration and applying a linear fit.Sensors 2019, 19, 3644 10 of 18 
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Figure 7. Established calibration functions of the simultaneously determined volatile organic
compounds (VOCs) in seawater by the developed MIR chemical sensor. The concentration ranged
from 1 to 25 ppm. Data points were obtained by peak area integration. (a) 13DCB, (b) pCYM, (c) EB,
(d) 12DCB, (e) 124TCB, (f) CAR, (g) TCE, (h) TeCE, (i) MYR, and (j) pXYL.

All obtained linear fits resulted in r2-values (goodness of the fit) greater than 0.97. For 12DCB,
124TCB, and CAR, the r2-value was even higher than 0.999. The limit of detection (LOD) and limit
of quantification (LOQ) were calculated according to the International Union of Pure and Applied
Chemistry (IUPAC) through the 3σ- or 10σ-criteria, respectively (3- or 10-times the standard deviation
of the smallest concentration value measured). Table 2 summarizes the calibration parameters, LOD,
and LOQ for each analyte. Ten VOCs were successfully measured qualitatively and quantitatively
in seawater. This is the first time that ten VOCs were simultaneously detected with the resulting
detection limits in the low-ppm to ppb concentration range by applying only 50 averaged scans. The
quantification of pXYL might be unreliable due to the cut-off wavelength of the thermoelectric MCT
detector at 793 cm−1, however, pXYL can be determined qualitatively. The r2-value, LOD, and LOQ
can be further decreased by increasing the number of averaged scans. However, the main purpose of
the developed MIR sensor is the rapid detection of VOCs in seawater (i.e., threshold alarm sensor),
hence the number of averaged scans for measurements was reduced, thus reducing the time for a single
measurement. The use of a liquid nitrogen-cooled MCT detector would lead to enhanced sensitivity
as already demonstrated by several research teams [49,50,56,57,63]. However, liquid nitrogen is
not applicable for environmental analysis. Changes in salinity (28–34 PSU), turbidity (2.2–14 NTU),
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temperature (17–22 ◦C), and pH (7.8–8) over the measurement period revealed no significant influence
on the sensor performance, as already described by Mizaikoff [69].

3.5. Reproducibility

The reproducibility of the developed MIR sensor system was investigated through five repetitive
samples. Each sample was prepared successively. The standard deviation of the respective measurement
number represents 10 consecutive measurements after the diffusion equilibrium has been achieved.
Based on the five independent measurements, the mean peak area and standard deviations were
determined. The mean peak area values vs. the number of measurements (i.e., sample number) are
shown for each VOC in Figure 8.
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4. Conclusions

A sensor for the simultaneous detection of multiple VOCs in a real seawater matrix based on
MIR evanescent field spectroscopy was presented. The developed sensor comprised a compact FT-IR
spectrometer, coupling optics, and a thermoelectrically-cooled MCT detector. A AgX fiber, located
inside a µ-flow cell, was used as a waveguide. The actively transducing part (i.e., flattened segment)
was coated with an E/P-co polymer. This hydrophobic membrane effectively excluded the water from
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the penetration depth of the evanescent field, therefore, the seawater matrix did not influence the
absorption features of the respective VOC. Furthermore, protection of the AgX fiber was preserved. A
mixture containing 10 different VOCs in seawater, which had been sampled from the coastal region
of Arcachon, France, were successfully enriched into the E/P-co polymer layer. Linear calibration
functions were established with detection limits in the low ppm to ppb concentration range, which
were comparable to the literature based on the low number of averaged scans applied during the
individual measurements. It has been demonstrated that the MIR chemical sensor showed reversible
enrichment behavior due to the recovery of the polymer membrane by flushing a methanol/water
mixture through the flow cell. Hence, multiple measurement cycles over a long-time period are
guaranteed. Five repetitive measurements of the same concentration showed good reproducibility.
During the measuring period, changing seawater conditions (i.e., salinity, turbidity, temperature, pH,
and other unidentified organic matters) did not significantly affect the performance of the sensor. The
entire sensor system was miniaturized in size and fit inside a transportation housing, thus enabling
direct analysis at the point of discharge. In contrast to conventionally used techniques such as GC-MS
or HPLC, the sensor is capable of being deployed on-boat or on-buoy. Future integration into a
submersible housing for application in deep sea can be enabled, therefore, the MIR sensor is applicable
for threshold alarm sensing (i.e., on-line wastewater or effluent monitoring or controlling underground
fuel storage tanks, pipelines, producing oil platforms, and deep-water dumpsites) for the protection of
global waters and the marine ecosystem. For drinking water monitoring, the LOD has to be further
decreased to achieve the guidelines set by the European Union and other commissions (US EPA, the
World Health Organization). Therefore, the number of averaged scans or the number of total internal
reflections (i.e., new waveguide design) should be increased. Further improvements can be achieved
by optimizing the flow cell design.
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