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Fig. 1. Global representation of the trends and variability in ice and water mass recovered by GRACE within 15 years. The plot is 
based on the 1-arc degree mascon solution by CSR RL05M4. A linear trend, annual and semi-annual model is fit to each pixel for the 
entire mission duration, assuming temporally uniform uncertainties. The temporal linear part of that fit is mapped in a and b the 
standard deviation shown in c is calculated after the removal of the temporal linear trend. The trends have been corrected for glacial-
isostatic adjustment using the model of Peltier et al.12 computed by Wahr( should this be Wahr, rather than A?) et al.124.
Fig. 2 and Ice sheets and glaciers. Time series of ice sheet mass change are based on GRACE Level 2 data of CSR RL05 obtained with 
an inversion approach based on forward modelling 18,125. For Antarctica the GIA correction is AGE1125 (ca. 48 ± 28 Gt/yr), for 
Greenland it is GGG1D 126(ca. 17 Gt/yr).Uncertainties are calculated based on the formal monthly uncertainties provided by the 
processing centers, scaled by the RMS residual after subtracting temporal fluctuations longer than three months. Temporal linear 
trends for the entire GRACE period are estimated using uncertainty-weighted least squares. Annual balances are estimated using an 
unweighted piecewise linear model with breakpoints on January 1st. Uncertainties for the temporal linear trends and the annual 
balances are obtained by error propagation.
Fig. 3 and Terrestrial water storage. Time series of zonal mean of the terrestrial water storage anomalies in mid latitudes are based on 
CSR RL05M Mascons4. Uncertainties are calculated as RMS residual of the zonal mean after subtracting the linear trend, offset, 
annual and sub-annual temporal components and fluctuations shorter than five months. The RMS uncertainty (ca. 2 cm equivalent 
water height along the latitude, 2-SD) is then used to scale the formal, time-dependent uncertainties provided by the processing center 
CSR. Then the temporal model is refit and propagated uncertainties are calculated. The annual amplitude is shown on the right part of 
the figure. The anomalies shown in the left part of the figure are the residuals with respect to the fitted temporal model.
Fig. 4 and Sea-level change and ocean dynamics. Global Mean Sea-level (GMSL) and its components. GSML from altimetry is based 
on data provided by the University of Colorado (http://sealevel/colorado.edu) 87. Ocean mass changes are derived from GRACE Level 
2 data of three processing centers (CSR RL05, JPL RL05 and GFZ RL05) using an averaging kernel method and scaling98, available 
from the University of South Florida (http://http://xena.marine.usf.edu/~chambers/SatLab/Home.html). Global mean steric sea level 
anomalies are based on Argo data provided by NOAA (https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/basin_fsl_data.html). 
To unify the temporal sampling, we adopt three-month (seasonal) averages, which is limited by sampling period of the Argo data 
obtained from NOAA. These were computed after first fitting and removing annual and semi-annual sinusoids from the altimetry and 
GRACE monthly averages. An annual and semi-annual sinusoid was also estimated and removed from the 3month thermometric time-
series for consistency. The correction for glacial-isostatic adjustment to the GRACE data is based on the ICE5G ice model12, 

computed by Wahr et al.124. Further details can be found in Chambers et al. 201792.
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Preface

Time-resolved satellite gravimetry has revolutionized understanding of mass transport in the Earth 

system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled 

monitoring of the terrestrial water cycle, ice sheet and glacier mass balance, sea level change and 

ocean bottom pressure variations and understanding responses to changes in the global climate 

system. Initially a pioneering experiment of geodesy, the time-variable observations have matured 

into reliable mass transport products, allowing assessment and forecast of a number of important 

climate trends and improve service applications such as the U.S. Drought Monitor. With the 

successful launch of the GRACE Follow-On mission, a multi decadal record of mass variability in 

the Earth system is within reach.

Global observations of water and ice mass redistribution in the Earth system at monthly to 

decadal time scales are critical for understanding the climate system and for investigating its 

change. Together with other observations, they provide information on Earth’s energy 

storage, ocean heat content, land surface water storage and ice sheet response to global 

warming. Interactions between the different climate system components involve mass 

variations in continental surface and sub-surface water storage (rivers, lakes, ground water, 

snow cover and polar ice sheets and mountain glaciers), as well as the mass redistribution 

within and between ocean and atmosphere. These mass movements are inherent to the 

evolution of droughts, floods, large-scale ocean currents, ice sheets and glacier change and 
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sea level rise. Launched in 2002, the Gravity Recovery and Climate Experiment (GRACE) 

satellite mission1 added a unique observable to the existing suite of Earth observations: time-

resolved gravity measurements of global mass redistribution, a fundamental building block 

crucial to understanding the complex interactions and transitions involved in today’s 

changing climate.

Measurement principle of GRACE mission

The GRACE mission was launched on March 17, 2002 in a collaboration between the 

National Aeronautics and Space Administration (NASA) and the German Aerospace Center 

(DLR), in response to recommendations resulting from decades of study2,3. The primary 

objective of GRACE was to apply monthly-aggregated measurements of the Earth’s gravity 

field to track mass changes in the hydrosphere, cryosphere and oceans. In contrast to single 

satellite approaches with one dedicated sensor, GRACE uses a constellation of two satellites, 

orbiting one behind the other, featuring a suite of measurement systems (see Box 1). The 

fundamental measurement is derived from micron level tracking of the satellite-to-satellite 

distance, which varies due to individual gravitational attractions on the satellites as they 

overfly the Earth’s surface.

After a month, the collected measurements allow an estimate of a global spherical harmonic 

model of the Earth’s gravity field, which is then used to estimate mass changes on the Earth 

surface. Processing choices made by the Science Data System (SDS) centers and the users 

can lead to differences between mass time series from GRACE4–6. To ease the use of 

GRACE data in diverse Earth science applications, the SDS centers now provide quality-

controlled gridded and basin-integrated mass change products (Level 3 data) (Additional 

information).

Success of a pioneering mission

The GRACE science mission ended on October 12, 2017 due to battery failure, after 

providing paradigm-shifting near-continuous measurements for over 15 years – ten years 

longer than the nominal mission lifetime. The mission data record provides 163 monthly 

solutions of the time varying gravity field out of 187 months possible, along with a highly 

accurate mean field. For the first time, GRACE enabled the quantification of mass trends 

and mass fluctuations of terrestrial water storage, continental aquifers, and glaciers and ice 

sheets (Fig. 1), and enlightened our view of large-scale mass redistribution associated with 

glacial isostatic adjustment and earthquakes. With this data, GRACE contributed to 

quantifying global and regional changes, from both natural variability and anthropogenic 

influence, in the hydrological cycle, ice sheet mass balance, ocean circulation and sea-level 

change. The following review highlights some representative breakthroughs, selected from 

numerous scientific publications based on GRACE observations in the fields of cryosphere, 

hydrology and ocean sciences, as well as in service applications.
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Ice sheets and glaciers

Today’s changes in continental ice mass sensitively indicate active transitions in the 

atmosphere and oceans that have, in the past centuries to millennia, sustained ice sheets and 

glaciers as stable geographic features. As the oceans and atmosphere have warmed over the 

past decades, ice sheets and glaciers have experienced increased melting7. Outlet glaciers 

that terminate in the ocean and that have experienced increased subaqueous melting have 

sped up (increased rates of discharge) in response to reduced buttressing at glacier fronts. 

These changing oceanic and atmospheric conditions have led to sharp increases in rates of 

mass loss from nearly all glacierized regions on Earth8,9, causing more than half of the 

global mean sea-level rise10.

Without GRACE, satellite observations are restricted to measuring changes of the ice sheet 

surface with radar (ERS-1/2, Envisat, CryoSat-2) and laser (ICESat 1/2) altimetry, which are 

influenced by changes in the surface properties and firn compaction and provide only 

indirect measurements of the net mass change (precipitation – evaporation – runoff – ice 

discharge). Alternatively, the components of the net mass change can be addressed by 

estimating precipitation and runoff with regional climate models and measuring discharge 

with Interferometric Synthetic Aperture Radar (InSAR)11 and optical feature/speckle 

tracking. GRACE provided the first direct measurement of ice mass change. While altimetry 

estimates are restricted to multi-annual trends of height change due to sampling issues and 

their sensitivity to snow at the ice sheet surface, GRACE-derived ice sheet and glacier mass 

changes are obtained with an unprecedented temporal resolution of one month. The long-

term mass trends for the ice sheets derived from GRACE are less influenced by sampling 

issues or unknown surface properties than the other methods9.. However, particularly for 

Antarctica, problems remain in correcting for often poorly known mass redistribution related 

glacial isostatic adjustment (GIA) -- a slow rebound of the Earth’s underlying lithosphere 

and mantle following readjustment from past ice sheet retreat12,13.

Mass balance of Greenland and Antarctica

Within two years after mission launch, GRACE data analysis revealed a clear signal of ice-

mass loss in Greenland and Antarctica14,15. Mass trends became more robust and accurate 

with extension of the mission measurement period to longer than five years. Increased 

quality of the gravity field solutions themselves also contributed to this robustness16. Further 

GRACE analysis isolated the largest mass imbalance in southeast Greenland5 and the 

Amundsen Sea Embayment, West Antarctica17. Over the GRACE life span, the mass loss in 

Greenland encompassed the entire margin of the ice sheet. In Antarctica, the Amundsen Sea 

Embayment of the ice sheet dominates the mass loss in response to changed oceanic 

conditions (Fig. 1).

The Greenland GRACE time series are in general accord with independent estimates derived 

from satellite altimetry and the component approach. This allowed the inference that 60% of 

the total mass loss is due to enhanced melt production in response to Arctic warming trends, 

while 40% is due to an increase in ice-dynamic outflow7,11,18. With the increasing length of 

the GRACE time series, acceleration of mass loss was inferred to be statistically significant 
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for some regions of both ice sheets19. However, although an acceleration of mass loss is 

expected as the ice sheets adapt to increasing global temperatures, Wouters et al.27 showed 

that natural variability of the ice sheet mass can lead to a misinterpretation of the 

accelerations deduced from satellite records covering one or two decades. Recent years have 

shown reduced annual mass loss of the Greenland ice sheet (Fig. 2), decreasing the values of 

acceleration detected through the year 201220. For many regions, the significance and cause 

of the variations in the mass change are still are matter of debate.

As an update to previous studies, we note that during the period April 2002 to June 2017, 

Greenland showed an negative average annual balance of −258 ± 26 Gt/yr (2-SD; 

propagated and GIA uncertainty), with a measured year-to-year variability of ±137 Gt/yr 

(±53 % w.r.t. the average). For the Antarctic ice sheet, the average annual mass balance 

determined by GRACE is −137 ± 41 Gt/yr (2-SD; propagated and GIA uncertainty), with a 

considerably larger year-to-year variability of ±208 Gt/yr (Fig. 2). The largest ice-mass loss 

is caused by a speed-up of glaciers feeding into the Amundsen Sea Embayment, for which 

GRACE recorded mass changes of – 120 ± 14 Gt/yr (2-SD) with an acceleration of – 7 ± 2 

Gt/yr2 (2-SD; Fig. 2).

Mass signatures of changes in global atmospheric circulation

Apart from the long-term trends, GRACE enabled a direct relation of inter-annual 

fluctuations in the mass of the ice sheets and the global variability in atmospheric circulation 

patterns. For example, the anomalous melt event in Greenland in 2012 (Fig. 2) was driven by 

the advection of warm air from the mid-latitudes due to strong atmospheric blocking 

conditions over Greenland21. GRACE showed that estimates of melt-enhanced mass loss 

were double in 2012 (−543 ± 27 Gt/yr, 2-SD), compared to the average for 2003–2011 (Fig. 

2).

It has also been shown that West Antarctic accumulation fluctuations from GRACE correlate 

well with El Niño Southern Oscillation (ENSO) modulated moisture flux to the continent22. 

Atmospheric pressure patterns create southward moisture transport that delivered snowfalls 

of 300 Gt in 2009 and 2011 along the Atlantic Sector of the Antarctic ice sheet29. With the 

extended mission data, Mémin et al.23 used GRACE measurements to identify a periodic 

signal of about four to six years in the coastal precipitation, connected to the Antarctic 

Circumpolar Wave and ENSO. For the cold regions of the Earth, GRACE measurements of 

large-scale accumulation variations are important for validating the net continental balance 

of moisture flux in weather and climate models24, which otherwise are largely dependent on 

sparse and expensive in-situ networks.

Monitoring glacier fluctuations and trends with global coverage

GRACE has proven to be an invaluable tool for the challenging measurement of mass trends 

of glacier regions outside of Greenland and Antarctica. Even though glaciers are highly 

localized features, the imprint of their collective imbalance is well detected in the regional 

gravity field. Advantageous for recovering these small-scale features is the higher spatial 

resolution of GRACE in high latitudes which is possible with denser ground track spacing. 
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Thus, GRACE helped identify a large bias in the in situ glacier-monitoring network, which 

traditionally aggregate individual measurements to estimate glacier contributions to sea level 

rise8. Furthermore it has been shown that GRACE-derived trends in glacier mass are in 

accord with satellite laser altimetry25–27 and surface mass balance models26,28. Regionally, 

trends were successfully quantified for Alaska29,30, Patagonia31,32, Iceland, Canadian Arctic 

and Svalbard16, and later for all glaciated regions8,33.

Terrestrial water storage

Among the most impactful contributions of the GRACE mission has been in the unveiling of 

Earth’s changing freshwater landscape, which has profound implications for water, food and 

human security. Global estimates of GRACE trends, such as the one shown in Fig. 1 suggest 

increasing water storage in high and low latitudes (wetting), with decreasing storage in mid-

latitudes (drying)34,35. Though the GRACE record is relatively short, this observation of 

large-scale changes in the global hydrological cycle has been an important early 

confirmation of the changes predicted by climate models through the 21st century36,37. 

Nevertheless, projections of future water availability remain quite model dependent and 

require a systematic evaluation of soil moisture trends from models, such as Coupled Model 

Intercomparison Project Phase 5 (CMIP5), with GRACE and other measurements. Wetting 

in high and low latitudes, drying mid-latitudes, and falling water tables in mid-latitude 

aquifers38, all indicate potential changes in future access to fresh water, with implications 

for the sustainability of water for humane consumption, irrigation and food security and 

industrial uses. Of the world’s 37 largest aquifer systems, 13 were found to be suffering 

critical depletion during the GRACE observational period38.

Terrestrial water storage and climate variability

Measurements of continental water mass change from GRACE have been examined in the 

context of climate variability in several recent studies34,35,39–42. As an example, Fig. 3 (right 

panel) shows that the GRACE-derived zonal mean of the annual amplitude of the terrestrial 

water storage (TWS) – that is the sum of snow, ice, surface water, soil moisture and 

groundwater – ranges between ± 17 cm equivalent water height. As indicated in Fig. 3, 

climate driven perturbations of annual TWS variation are often associated with flood43,44 

and drought45–47 years in low to mid-latitudes. GRACE TWS data also helped to establish 

the current state of the water cycle48 so that ongoing and future hydro-climatic change can 

be detected. Further, since 2011 such zonal mean water mass plots have been included in 

annual climate reports as indicators of TWS and groundwater variability49.

The importance of terrestrial water storage variability to understanding climate is also 

exemplified by the fact that the global sea level record contains substantial annual variability 

around an underlying secular trend. Natural variability in TWS can be a significant source or 

sink in the global ocean mass budget, of similar order to the Greenland Ice Sheet, which 

contributed on average in the GRACE period 0.7 mm each year to sea-level rise (see Fig. 2). 

The fluctuations in TWS influences on sea level range from interannual to decadal time 

scales50, masking or augmenting the underlying trend20,34, or even reversing sign of the rate 

of sea-level rise when more water is stored on the continents44. This interplay between land 
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water storage and sea level is of critical importance in interpreting the global sea level 

record.

A recent study correlated that annual variations in TWS with the rate of carbon uptake by 

the land51. The study concluded that the growth rate of atmospheric carbon dioxide is faster 

during dry years than during wet years, and that terrestrial water storage is a better indicator 

of these rates than precipitation. This fascinating development further demonstrates the 

interdisciplinary utility of the GRACE measurements and suggests pathways for the 

improvement of climate models.

Detecting trends of anthropogenic groundwater depletion

Embedded within the drying mid-latitudes, hot spots for water loss during the GRACE 

mission emerge (Fig. 1), many of which correspond to the world’s major aquifer systems. 

GRACE-derived changes have enabled large-scale water balance closure48,52,53 and the first-

ever estimates of groundwater storage changes from space54,55. These studies confirm 

excessive rates of groundwater depletion from individual aquifers56–61 around the 

world35,38,62,63. Rodell et al.35 provide a comprehensive attribution of all the major 

GRACE-observed hydrological trends to natural variations, anthropogenic climate change, 

or to human water management practices.

Hydrological flux estimation and climate model improvement

TWS change, precipitation, runoff, and evapotranspiration are all essential elements of the 

water cycle and are difficult to quantify, particularly at a global scale. Applying mass 

conservation, GRACE measurement of the TWS change allows the derivation of basin-scale 

flux estimates of evapotranspiration52,64, river discharge65 and precipitation minus 

evapotranspiration66. In cold mountainous regions, monthly-mean precipitation estimates 

based on GRACE appear to be advantageous, particularly in the winter months when 

uncertainties in conventional hydrometeorological observing systems are large due to the 

presence of light rain, snow, and mixed-phase precipitation 24. TWS changes from GRACE 

together with meteorological data are critical for characterizing streamflow in ungauged 

river basins67, or for estimating important land-atmosphere interactions.

GRACE trend and amplitude data can be used to validate68 or calibrate69 the land 

component of global climate models (i.e. land surface model) and evaluate their 

performance. For example, GRACE measurements helped to identify model 

shortcomings42,70, and to refine both model structural elements and parameters68,71,72. 

GRACE terrestrial water storage information now provides a new assimilation component 

for land-surface model simulation5,73–78.

The 15-year GRACE record yields insight into the normal range of wet-to-dry-season 

variation, as well as into excursions from normal wet conditions 43,79 and normal dry 

conditions47,80. The length of the available time-series reveals a detailed spatial picture of 

the response of TWS variations to atmospheric energy and water fluxes at sub-seasonal to 

inter-annual time-scales40 and to natural climatic oscillations such as El Niño and La 
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Niña81,82. Even the estimation of probabilistic return frequencies of regional 

hydrometeorological extremes is possible83.

Including GRACE TWS information in a simple model of flood potential can increase early 

warning lead times by as much as an entire season or more79. GRACE-derived drought 

indices result in longer estimates of drought persistence, relative to indices based only on 

meteorological fields and surface variables, such as temperature, precipitation and stream 

flow47,80. GRACE-based TWS have contributed to the evaluation of different development 

stages of a global coupled Earth System Model designed to facilitate operational climate 

predictions at time-scales from several months to up to ten years84.

Sea-Level change and oceans dynamics

Sea-level rise is a profound and direct consequence of a warming climate: within this 

century global mean sea-level rise may accelerate to 10 mm/yr85 a rate unprecedented 

during the last 5000 years86. Different physical processes cause this increase: the ocean 

warming leads to volumetric expansion, and continental ice loss causes mass inflow to the 

ocean. Since 1993, satellite altimetry - primarily the TOPEX/Poseidon and Jason missions - 

has provided global measurements of the sea surface height, indicating a global average rate 

of sea level rise of 3.1 mm/yr in the past 25 years20,87 (1993 to 2017). With GRACE and 

autonomous Argo floats88, it is possible to directly measure the individual steric and mass 

change components, respectively, and to assess the sea-level budget with independent 

measurements on the global scale. By placing a constraint on ocean mass change, GRACE 

can indirectly constrain the estimate of Earth’s energy imbalance, which is a fundamental 

global metric of climate change89.

Global mean sea-level budget

Prior to GRACE, the mass component of the sea level budget was estimated from a residual 

between altimeter (total) sea level and thermal expansion measurements90. Despite higher 

noise level in the early data, Chambers et al.91 estimated ocean mass changes from GRACE. 

Today, GRACE is used routinely together with ocean hydrographic profiles from Argo for 

examining the global sea level budget20, enhancing our understanding of how the 

contributions are changing over time. Fig. 4 shows that from 2005 to 2017 the total sea level 

trend of 3.8 ± 0.7 mm/yr measured by altimetry results from a 2.5 ± 0.4 mm/yr mass inflow 

(GRACE) and 1.1± 0.2 mm/yr volumetric expansion (Argo) (update from Chambers et al.92; 

see Additional information). However, some discrepancies between the different GRACE 

products exist, which are discussed in more detail in a recent assessment of the World 

Climate Research Programme20.

Resolving long-term accelerations in the data is highly relevant for validating sea-level 

projections, but requires sufficient knowledge for correction of inter-annual fluctuations 

arising from natural climate modes. For example, multi-year variations are visible in the 

altimeter record that are statistically related to ENSO (Fig. 4), but could not be clearly 

attributed to either heating or ocean mass changes93. GRACE provided accurate estimates of 

the part of the variability caused by the relocation of ocean mass, along with the 
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identification of its continental source region44. Fasullo et al. 94 took this investigation 

further and used ancillary data to explain how the mass exchange is related to ENSO and 

other atmospheric drivers, linking the exchanges to the characteristic time scales of 

terrestrial watersheds.

Ocean heat content and deep ocean warming

The heat uptake by the ocean is the largest sink for the Earth’s energy increase from rising 

CO2 concentrations89. Temperature profiles by Argo floats provide a reliable estimate of the 

ocean heat continent95; however, the Argo data coverage excludes ocean depths below 2000 

m, the marginal seas and is sparse under sea ice and ice shelves. Together with other 

observations, GRACE is able to provide an estimate of the ocean heat budget in an indirect 

approach. GRACE, altimetry and Argo indicate that most of the warming occurs in the 

upper 2000 m of the ocean on a global scale, leading to a thermosteric sea-level rise of 

0.9±0.15 mm/yr between 2005 and 201396. The trends at ocean depths below 2000 m are 

inferred by subtracting the sum of the total GRACE mass trends and Argo warming trends 

above 2000 m from the altimeter measurements of total sea-level change. The result showed 

only small changes on a global scale96 that were not statistically significant. For the full 

water column, the study relates the global change of the ocean heat content to an energy 

imbalance of 0.64 ± 0.44 W m−2.

Closing the sea-level budget regionally remains challenging, and even more so inferring 

deep-ocean warming trends. The subtropical South Pacific, however, is an example, where 

the indirect method is confirmed with sparse in situ observations. There, observations 

indicate a significant heat uptake in the depths below 2000 m97, attributed to long-term 

changes in atmospheric circulation driving the deep-reaching circulation97. To place tighter 

constraints on the deep ocean warming will require spatiotemporally improved observations; 

such as more accurate gravity fields, improved altimetry estimates near the coast and in 

polar regions, Argo measurements of deep ocean and in ice regions, and improved estimates 

of glacial-isostatic adjustment.

Ocean dynamics and overturning circulation

Over the oceans, GRACE measures changes in the mass of the total water column exerted on 

the ocean floor, the ocean bottom pressure (OBP). From spatial OBP gradients, geostrophic 

bottom currents can be derived where very few in-situ bottom pressure observations exist. In 

addition, in-situ sensors cannot provide reliable long-term observations due to chronic 

sensor drift. GRACE has overcome this severe spatial sampling and temporal resolution 

problem. The data have been used to infer large-scale oceanic transports on a global, 

continuous, and month-to-month basis98. This is useful particularly in remote areas like the 

Southern Ocean, where in-situ data are extremely sparse and often limited to a few ship 

transects or repeat-measurements at single locations like the Drake Passage. As an example, 

for the Antarctic Circumpolar Current (ACC), bottom currents derived from GRACE were 

used to estimate the barotropic transport variations of the ACC, which varies significantly on 

annual to interannual time scales99,100. High resolution models of the ACC, in turn, 

demonstrate the role of the current in modulating melting of West Antarctic ice shelves 
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through Circumpolar Deep Water (CDW) intruding onto the Antarctic continental 

shelves101.

GRACE is particularly important for Arctic Ocean considerations, where perpetual sea-ice 

cover limits both the sampling of the sea-surface heights with altimeters and the use of Argo 

floats. In addition, altimetry satellites are often placed into inclined orbits, typically lacking 

coverage higher than latitude 66°. OBP from GRACE together with ocean modelling 

showed that wintertime mass increase in the Arctic Ocean is mainly a consequence of 

southerly winds through Fram Strait, and to a lesser extent through Bering Strait, causing 

northward geostrophic current anomalies102. Moreover, GRACE and ocean modelling 

showed that non-seasonal mass variations in the Arctic are an effect of the wind-driven 

redistribution of water, and not caused by modulations in fresh water flux103.

In the northwestern part of the Pacific, GRACE allowed the inference of barotropic 

variations of large-scale oceanic gyre circulations, which act with periods of days to several 

years 104,105 in response to changes in the surface wind stress over the whole North Pacific 

Region106. The results helped to improve the representation of the high-frequency general 

ocean circulation in global numerical models that are also used as background information 

in the GRACE gravity field determination 107. Recent resolution improvements of the 

GRACE-based bottom pressure estimates even allowed the characterization of the spin-up 

and slow-down of the much smaller Argentine Gyre, which is energized by interactions 

between the mean flow of the ACC and the local meso-scale eddy field108.

The Atlantic Meridional Overturning Circulation (AMOC) is a major feature of Earth’s 

climate system, and is essential for Earth’s northward ocean heat transport. It also has a 

strong bottom current associated with the deep return flow of North Atlantic Deep Water 

that provides an accurate measure of the overall AMOC transport. Landerer et al.109 have 

recently demonstrated that interannual fluctuations in this lower limb of the AMOC can be 

derived from GRACE-based OBP variations. This opens the prospect for using satellite 

gravimeter observations for monitoring this important current feature on a broader scale and 

provide crucial information on its long-term evolution.

Climate service applications

Apart from improving our understanding of the climate system components, GRACE time 

series of mass storage changes have been used to support an operational climate service. The 

limitation of the coarse spatial and temporal resolution of the GRACE data for agricultural 

and societal needs can be overcome by data assimilation into models. Recently, progress has 

been made in shortening the time lag of the availability of GRACE data to near-real time, 

breaking ground for new climate forecast services.

Operational drought monitoring

Drought monitoring tools are highly dependent on the availability and quality of 

precipitation, streamflow, and other observations and indicators of water availability. For 

example, the premier drought-monitoring tool in the U.S. is the U.S. Drought Monitor 

(USDM; http://drought.unl.edu/), which provides weekly maps of drought conditions based 
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on a synthesis of in situ data, remote sensing products, and reports from state climatologists 

and other local experts110. Initially the USDM incorporated almost no information on 

groundwater or terrestrial water storage and only modelled estimates of soil moisture. In 

2011, NASA scientists began to deliver wetness/drought indicators for shallow groundwater 

and surface and root zone soil moisture based on the assimilation of GRACE terrestrial 

water storage data into a land surface model80. Integration of GRACE TWS data and other 

observations within a land data assimilation system has been shown to produce significant 

improvement in the accuracy of the results. In addition, the assimilation takes advantage of 

the higher resolutions and increased timeliness of the meteorological fields and model to 

enable spatial, temporal, and vertical downscaling of GRACE TWS data43,111. Gridded 

maps are now routinely produced at 0.125° within 24 hours of real time for operational 

drought monitoring.

Flood forecasting developments

The use of gravity to detect water saturated storage conditions in soils has led to an 

application of GRACE in the monitoring of regional “flood potential”43,79,111. To be most 

effective, flood forecasting systems require near-real time data to estimate the probability of 

flood events and to predict their evolution for the application in risk and emergency 

management. The European Union funded European Gravity Service for Improved 

Emergency Management (EGSIEM) project112 has developed such daily near real-time 

gravity products, along with GRACE-based wetness indicators. Operational test runs were 

performed between April and June 2017 within DLŔs Center for Satellite-based Crisis 

Information, complemented by hindcast experiments of historical flood events. The 

historical flood analysis demonstrated a significant improvement in the early flood warning 

using GRACE-derived wetness indicators. Knowledge of the preconditioning of elevated 

water storage markedly increased the lead times of early flood warning by up to six weeks 

prior to peak flow, e.g., for the flooding of the Mississippi in 201179 and the Danube in 2006 

and 2010113. The GRACE-derived wetness indicators were also included in a pre-

operational way in the Forecast Viewer of the Global Flood Awareness System (GloFAS; 

http://www.globalfloods.eu/ ), jointly developed by the European Commission and the 

European Centre for Medium-Range Weather Forecasts (ECMWF). Recent studies have also 

demonstrated the effectiveness of assimilated GRACE TWS measurements for seasonal 

wildfire prediction in the United States114.

Continuation of the mass transport observations

As the GRACE mission results became accepted, the user community strongly 

recommended the continuation of the mass transport time series115,116, prioritizing 

improvements of the satellites and prolonging of the measurement over revolutionizing the 

mission concept with the risk of multi-year gaps in the temporal coverage. NASA and GFZ 

responded to this user request in 2010, and on May 22, 2018, the successor mission 

GRACE-FO (Follow-On) was successfully launched from Vandenberg Airforce Base, 

California, USA on a Space-X Falcon 9 rocket (https://youtu.be/Tvdz5yFSwCY, last 

accessed 4 September 2018).
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The GRACE-Follow On Mission

While the nominal mission lifetime is again five years, additional operation lifetime is 

expected based on satellite and instrument design and the influence of solar activity on the 

apmospheric induced decay of the spacecraft. During a significant portion of the GRACE 

mission, the solar flux was very benign – a condition that may not repeat itself in the coming 

years of GRACE-FO.

The GRACE-FO satellites are equipped with evolved versions of GRACE instrumentation 

(KBR, GPS, star camera, accelerometer). But the mission also features a novel Laser 

Ranging Interferometer (LRI)117, measuring the satellite-to-satellite distance in parallel with 

the KBR instrument. The LRI has a design precision that is approximately 26 times better 

than the KBR on GRACE117 - even though the quality of the GRACE/GRACE-FO gravity 

fields depends upon a suite of measurements, as explained in Box 1, the LRI has the 

potential for increasing the accuracy118. The successful demonstration of the LRI will 

establish its potential for use in future GRACE-like gravity missions119. However, future 

mission concepts go beyond developments in the instrumentation. Studies show the potential 

of constellations of satellite pairs for improving the temporal and spatial resolution 

limitations associated with the single pair mission120,121. The orbit constellation approach 

would open new possibilities to measure directly the short-term mass fluctuations that, to 

some extent, degrade the current gravity field solutions.

Relevance for climate sciences and climate services

Within 15 years, GRACE has evolved from pioneering concept demonstration into a system 

for reliably delivering mass transport products. These data and products enabled over two 

thousand peer-reviewed studies (archives listed in Additional information), of which many 

are cited in IPCC AR537, as they significantly contributed to our understanding of climate 

change. Currently, GRACE mass transport data directly or indirectly contribute to many 

Essential Climate Variables (ECVs) and should be adopted as primary ECV of the Global 

Climate Observing System122.

Continuing data collection with GRACE-FO will be essential to attribute anthropogenic 

impacts on ice loss, sea-level rise and ocean heat uptake, and to quantify global changes in 

the severity and frequency of droughts and flood events. More accurate gravity fields 

provided in near-real time would stimulate new climate service applications, crucial to 

regional water management, flood, drought and snow/ice melt prediction, providing a data 

basis for political decisions or emergency management.

Recognizing the important utility for satellite gravity observations for Earth science, the 

recent 2017 NASA Decadal Survey115 (https://science.nasa.gov/earth-science/

decadalsurveys) has recommended a mass change continuity mission among the top five 

priorities for continued Earth observations. In retrospect, the launch of GRACE on 17 March 

2002 provided a truly unique variable to the suite of Earth observations – the mission’s 

legacy of a 15-year record of mass transport in the climate system will serve as a essential 

baseline for future generations.
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Fig. 1: 
Global representation of trends and variability in ice and water mass recovered by GRACE 

over 15 years. a, the trend maps over Antarctica, Greenland and the part of the Arctic mainly 

represent changes in ice mass. b, the trend map mainly represents changes in the terrestrial 

water storage, as well as large trends due to glacier ice loss from continental areas, such as 

Alaska, Patagonia, Arctic Canada, etc.. The trends of the terrestrial water storage are 

partially related to climate variability causing floods and droughts, but also reflect e.g. long-

term changes in groundwater depletion by human activity. c, standard deviation of the ocean 
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bottom pressure obtained as the sum of mainly high resolution information of the ocean 

background model used in the GRACE data processing plus corrections of the background 

model from GRACE107,which are particularly relevant in the southern oceans and the Arctic 

Ocean4. From the color scale on the plots a, b, the red colors represent mass loss and the 

blue represents mass gain. In plot c, the color scales represent variability with the highest 

variability shown by the red colors. The data source is CSR RL05M4 Mascons. A glacial-

isostatic adjustment (GIA) correction124 has been subtracted in a and b. Details on the data 

shown are presented in Additional information.
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Fig. 2. 
GRACE observations of mass change of the Polar ice sheets between April 2002 and June 

2017. Annual mass balance of the a, Greenland Ice Sheet and the b, Antarctic Ice Sheet. 

Time series of mass change of the, c, Greenland Ice Sheet and the, d, Antarctic Ice Sheet 

(black), as well as the region of the Amundsen Sea Embayment only (red). Updated from 

Sasgen et al.18,125. The data source is CSR RL05. Details on the data shown are presented in 

Additional information.
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Fig. 3: 
GRACE zonal mean of terrestrial water storage anomalies (cm equivalent water height) for 

April 2002 to June 2017. a, The time series of anomalies after subtracting an annual periodic 

component, offset and linear trend. Contour levels are at ± 4 and ± 8 cm. b, The magnitude 

of the annual oscillation. Based on CSR RL05M Mascons4. Details on the data shown are 

presented in Additional information.
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Fig. 4: 
Global mean sea-level (GMSL) observed with satellite altimetry, GRACE and Argo floats 

for the time period 2005 until end of 2016. Shown are the observed sea-level change from 

altimetry (black) and the total sea-level change (blue) calculated as the sum of the mass 

(orange) and volume (red) components. The ocean mass changes are recovered with 

GRACE, temperature-driven volume (thermosteric) changes are estimated from Argo floats. 

The black line shows the sum of the mass and volume changes. The values represent three-

month (seasonal means), i.e. January, February March; April, May, June; July, August, 

September; October, November, December. Updated from Chambers 92. Details on the data 

shown are presented in Additional information.
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Fig. 5: 
Operational drought monitoring supported by GRACE. a, Comparison of the U.S. Drought 

Monitor map for 20 May 2014 with the, b, GRACE data assimilation based root zone soil 

moisture and, c, shallow groundwater wetness/drought indicators for 19 May 2014. The 

scale bar for the latter two describes current wet or dry conditions, expressed as a percentile 

showing the probability of a given location being dryer at present than at the same time of 

year during the period of record from 1948 to the present.
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Box 1: 
The GRACE and GRACE-Follow-On measurement is implemented by two identical 

satellites (GRACE A/B) orbiting one behind the other in a near-polar orbit plane. The along-

track separation is kept within a range of 220 ± 50 km. The satellites experience positive and 

negative gravitationally induced along-track accelerations due to the varying mass 

distribution underneath. Each satellite will experience the effects of the local mass, i.e. the 

associated change in a surface of constant gravitational potential U, at slightly different 

times, causing a differential acceleration. The differential acceleration in turn causes 

distance (range) variations and velocity differences Δv that are proportional to the mass 

attraction. The relative distance between the satellites is measured with micron level 

precision by a high accuracy inter-satellite K/Ka band ranging system. An accurate three-

axis accelerometer measures the effects of all non-gravitational forces acting on each 

satellite, including atmospheric drag, direct and Earth reflected solar radiation pressure and 

thrusting. A GPS receiver on each satellite provides position and time synchronization, and a 

dual star camera assembly gives information on the satellites’ orientation in space. The 

satellites overfly the entire Earth surface within approximately 30 days, allowing monthly 

estimates of a global gravity model with a surface spatial resolution of typically 300 km with 

an accuracy of 2 cm123.
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