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SUMMARY The skin is an organ harboring several types of immune cells that par-
ticipate in innate and adaptive immune responses. The immune system of the skin
comprises both skin cells and professional immune cells that together constitute
what is designated skin-associated lymphoid tissue (SALT). In this review, I exten-
sively discuss the organization of SALT and the mechanisms involved in its re-
sponses to infectious diseases of the skin and mucosa. The nature of these SALT re-
sponses, and the cellular mediators involved, often determines the clinical course of
such infections. I list and describe the components of innate immunity, such as the
roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also
examine the mechanisms involved in adaptive immune responses, with emphasis on
new cytokine profiles, and the role of cell death phenomena in host-pathogen inter-
actions and control of the immune responses to infectious agents. Finally, I highlight
the importance of studying SALT in order to better understand host-pathogen rela-
tionships involving the skin and detail future directions in the immunological investi-
gation of this organ, especially in light of recent findings regarding the skin immune
system.
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INTRODUCTION

The concept of organ-specific immunity and its implications on the evolution of
diseases, especially infectious diseases, were proposed by Engwerda and Kaye in 2000
(1). In this context, it is possible to divide the pattern of tissue immune responses into
three major groups: barrier epithelium immune responses, complex organ immune
responses, and immunologically privileged organ immune responses (2). The skin is an
archetype of organs involved in mechanical and immunological barriers to pathogens
and in body homeostasis (3–7). Tissues that form host– environment interfaces, includ-
ing mucosal surfaces, represent the primary stage of defense against pathogenic
microorganisms (8–11). The skin has a similar organization over most of the body, but
certain regions, such as the feet, scalp, and genitalia, have specific and highly special-
ized adaptations. The skin comprises the epidermis, dermis, cutaneous appendages,
and subcutaneous tissue (12). It has a complex immune system that is histologically
represented by skin-associated lymphoid tissue (SALT), which includes dendritic cells
(DCs), mast cells, B and T lymphocytes, and keratinocytes (13). In certain situations, such
cells may modulate the cascade of the local immune responses (14, 15). SALT acts by
protecting the body against foreign microorganisms and plays a role in the pathophys-
iology of inflammatory diseases such as autoimmune and hypersensitivity disorders
(8–13). Such diseases have pathogenetic mechanisms that are generally mediated by T
lymphocytes and respond to immunosuppressive or anti-inflammatory therapy (7).

The epidermis is constituted by three major cell populations: keratinocytes, mela-
nocytes, and Langerhans cells (LCs). It has four distinct layers: the stratum basale,
stratum spinosum, stratum granulosum, and stratum corneum (12, 13). The stratum
basale (or basal stratum) is composed of a layer of undifferentiated cells in constant
mitotic activity (16). From the basal stratum, cells differentiate to form the stratum
spinosum (or spinous stratum), which produces keratin. The stratum granulosum is
composed of keratinocytes that have blackened granules in their cytoplasm and
produce keratin-forming proteins, in addition to lipids (17, 18). Finally, the stratum
corneum contains keratinocytes in later stages of maturity. It eliminates most agents
that are potentially toxic to the organism and helps maintain hydroelectrolytic homeo-
stasis (18). In the basal stratum, melanocytes help protect DNA from UV radiation by
producing melanin and by promoting expression of major histocompatibility complex
class II (MHC-II) proteins (19–24). Merkel cells in the epidermis are responsible for skin
somesthesia (sensibility), along with LCs, whose functions are discussed below. In
addition to these cells, in the basal and corneum layers are T lymphocytes, most of
which are CD8� lymphocytes (4, 7, 9, 14, 17, 18).

The dermis is characterized by a complex organization and a diverse immune cell
population. This region contains specialized immune cells such as DCs, CD4� T lym-
phocytes, �� T lymphocytes, natural killer (NK) cells, mast cells, macrophages, neurons,
lymphatic vessels, and blood vessels, which are responsible for the efflux of cells from
the blood into the skin (Fig. 1) (7, 9, 13, 15, 16).

IMMUNE SYSTEM AND THE SKIN

The skin has a complex network of cells that constitute SALT. Table 1 presents the
various cellular components that make up the skin immune system (13). In addition to
the immune cells themselves, certain skin cells, such as keratinocytes and melanocytes,
may also affect local immune responses by releasing cytokines, which can modulate
inflammatory responses (13). Therefore, the skin is an immunologically complex organ
that has the ability to respond to infectious and noninfectious aggressive agents
through innate and adaptive immunity mechanisms (9, 14, 15).

Keratinocytes

Keratinocytes are epithelial cells that are interconnected by intercellular bridges
(tight junctions). They play important roles in maintaining the mechanical and barrier
functions of the epidermis, and they contribute to the pathophysiology of infectious
and inflammatory processes by producing cytokines and by expressing MHC class I and
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II glycoproteins (13, 15, 25, 26). Similar to the epithelial cells of the gastrointestinal tract,
keratinocytes can distinguish between the microbiota and potentially pathogenic
agents, and they can recognize highly conserved structures known as pathogen-
associated molecular patterns (PAMPs) (13, 27–29). PAMPs are often important for the
survival, colonization, or invasion of microorganisms and are generally composed of
lipopolysaccharides (LPSs), flagellins, nucleic acids, unmethylated CpG DNA sequences,
teichoic acids, mannose-rich oligosaccharides, and other compounds (29, 30). The
recognition of PAMP ensures that there is no activation of mechanisms to escape the
host immune response, as is observed in the pathophysiology of some infections (31,
32). Molecules that bind to PAMPs are known as pattern recognition receptors (PPRs)
and include the Toll-like receptors (TLRs) (29). The activation of TLR pathways occurs
upon binding of PAMPs and induces a cascade of innate and adaptive immunity.
Several TLRs are expressed in epidermal keratinocytes and are located on the cell
surface (TLR1, TLR2, TLR4, TLR5, and TLR6) as well as in endosomes (TLR3 and TLR9).
Moreover, TLR7 expression may be induced by the activation of TLR3 by double-
stranded RNA molecules involved in immune responses to viruses (29). These factors
indicate that the activation of TLRs by keratinocytes is crucial for triggering dermal
immune responses, leading to a predominantly T helper cell type 1 (Th1) response
accompanied by the activation of type I interferons (IFNs), including interferon alpha
(IFN-�) and beta (IFN-�) (29, 30).

Similar to TLRs, nucleotide-binding oligomerization domain (NOD)-like receptors
(NLRs) can recognize PAMPs and endogenous PAMP analogs, danger-associated mo-
lecular patterns (DAMPs) (29, 33). They play important roles in the recognition of
substances such as irritants and toxins. The induction of NLRs results in the activation
of proinflammatory signaling pathways through inflammasomes, which are protein
complexes composed of an NLR, an adapter protein termed ASC (apoptosis-associated
speck-like protein containing a caspase recruitment domain [CARD]), and pro-caspase-1
(29, 33). Activation of caspase-1 through inflammation leads to the cleavage of pro-
interleukin-1� (pro-IL-1�) and pro-IL-18, which, in turn, leads to the expression of
proinflammatory cytokines that activate immune cells and induce an elaborate immune
response to harmful agents (34–36).

Keratinocytes produce antimicrobial peptides (AMPs) called defensins and catheli-
cidins, which are part of a highly conserved eukaryotic cell defense mechanism. AMPs
are expressed on the injured epithelium to counteract the invasion of microorganisms
by killing pathogens, activating immune cells, or modulating cytokine profiles (37).
Keratinocytes produce cytokines such as IL-1, IL-6, IL-10, IL-17, IL-18, IL-22, and tumor
necrosis factor alpha (TNF-�). In the presence of an infection, IL-17 and IL-22 can
activate the production of AMPs by keratinocytes, constituting a form of innate

FIG 1 Schematic representation of the distribution of immune cells that form the skin-associated
lymphoid tissue (SALT) in the epidermis and dermis of the skin.
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immune response (38–44). Particular importance has been attached to the pleotropic
cytokine IL-1, which is capable of inducing a broad spectrum of biological effects,
including the activation of helper T cells and DCs and the maturation and clonal
expansion of B cells (43). Under physiologic conditions, keratinocytes secrete both IL-1�

and IL-1� in biologically inactive forms. IL-1� is released following the activation of
inflammasomes in response to UV radiation. IL-1� appears to be involved in the
induction of inflammatory lesions in psoriasis, with neutrophil infiltration into the
epidermis, by increasing the expression of chemokine (C-C motif) ligand 20 (CCL20) by
keratinocytes. Studies have demonstrated that a reduction in the level of caspase-8
leads to active IL-1� secretion from the pro-IL-1� pool in mouse keratinocytes (43).

The activation of chemokine C-X-C motif ligand 9 (CXCL9), CXCL10, CXCL11, and
CCL20 by keratinocytes can attract effector T cells to the skin in diseases characterized
by T cell infiltration, such as psoriasis (44). The expression of CXCL1 and CXCL8 by
keratinocytes may attract neutrophils to the epidermis in inflammatory diseases such as
psoriasis, and furthermore, CCL20 may influence the trafficking to the epithelium of LC
precursors (45, 46). Keratinocytes can express MHC-II in various skin diseases charac-
terized by leukocyte infiltration, which implies that they function as nonspecific
antigen-presenting cells (APCs). Keratinocytes can also induce CD4� and CD8� T
lymphocyte responses by expressing Th1 or Th2 cytokines (46, 47). The activation of
keratinocytes is important in inflammation and precedes the influx of lymphocytes into
the epidermis following skin reactions to inflammatory mediators. The participation of
keratinocytes in various skin immune response mechanisms implies their significant
roles in the induction of inflammatory processes and in the control of skin conditions,
such as cutaneous leishmaniasis, human papillomavirus (HPV), and staphylococcus
infections (48–52).

Melanocytes

Melanocytes produce melanin, a pigment that is responsible for skin color and
protection of keratinocytes against the harmful action of UV radiation, which can
induce DNA damage (19–21). These cells derive from the neural crest and can control
innate and adaptive local immune responses, promoting pathogen phagocytosis and
the production of cytokines such as IL-1�, IL-6, TNF-�, and chemokines. In the patho-
genesis of autoimmune diseases such as vitiligo, melanocytes express MHC-II, and
possibly also molecules recognized by cytotoxic T lymphocytes (19–22). A number of
studies have shown that skin melanocytes can be compromised by infectious viral
agents such as alphavirus, varicella-zoster virus, and parvovirus and by bacteria such as
Mycobacterium leprae and Leptospira, among others (3, 23). This dual role of melano-
cytes, functioning both as targets and as a source of immune factors, along with their
involvement in the pathophysiology of important infectious diseases, such as HIV and
hepatitis C virus (HCV), makes the alteration of skin pigmentation an important symp-
tom observed in the clinical course of these infections (24, 53). Upon contact with
infectious agents of diverse nature, melanocytes can also express a variety of TLRs,
including TLR1, -2, -3, -4, -6, -7, and -9 (22), with release of IL-6 and IL-8, and show
increased chemokine mRNA expression involved in the recruitment of leukocytes, such
as CCL2, CCL3, and CCL5 (3, 20, 22). Finally, similar to keratinocytes and other cells with
immune functions in skin, melanocytes may express IFN type I and constitute the first
line of defense against viruses in the skin (54, 55).

APCs and Skin Immunology

In general, skin APCs are localized in the epidermis and dermis (Table 1). Skin APCs
have been classified according to their embryogenic origin. In this sense, we can classify
subpopulations of APCs as classic APCs or classical DCs, which are represented by a cell
population with stellate morphology, high expression of MHC-II, and the ability to
migrate to the lymph nodes, activating naive T lymphocytes (56–60). A second popu-
lation of APCs of the skin is represented by tissue-resident macrophages, monocytes,
and other monocyte-derived cells (58, 59).
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More recent ontogeny studies have shown that LCs are resident macrophages of the
epidermis. However, despite this finding, LCs have functional characteristics similar to
those of classic DCs, especially the ability to migrate to the lymph nodes and stimulate
T lymphocytes responses (57). Studies of ontogeny, coupled with the functional
characterization of LCs, have led to a great controversy in recent years concerning the
identity of LCs, which were reinforced by transcriptomic analysis (56, 57). These
analyses indicated that LCs are a distinct population of both DCs and macrophages,
suggesting that the epidermal tissue microenvironment acts in the early stages of
development of LCs, modulating their biological characteristics, despite their ontogeny
(57). In this way, we can functionally consider LCs a subtype of DCs for the purpose of
our discussion (59, 60).

LCs are the major DCs dispersed in the epidermis, whereas dermal DCs are located
in the skin, immediately below the dermal-epidermal junction (13, 61–65).

DCs consist of several subpopulations of APCs that play important roles in the
activation of immune responses (Table 1). They are produced continuously from
hematopoietic precursors in the bone marrow and are distributed as immature cells in
both lymphoid and nonlymphoid tissues (65, 66). The term dendritic cells was first used
in 1973 by Steinman and Cohn based on their studies of the morphology of cells found
in the lymph nodes of mice (66).

Four distinct human DC subtypes have been delineated based on biological studies
of these cells in human skin: LCs, dermal dendrocytes (DDs), plasmocytoid dendritic
cells (pDCs), and inflammatory dendritic cells (iDCs) (Table 1). LCs and DDs express
myeloid markers, including CD13 and CD33 (13, 61–72). However, LCs exclusively
express CD1a, Birbeck granules, langerin, and E-cadherin adhesion molecule (73). In
contrast, DDs exclusively express the blood coagulation factor XIIIa. LCs and DDs may
activate naive CD4� and CD8� T cells, with subsequent secretion of IL-12 (74–76).
However, DDs can induce the differentiation of naive B cells into immunoglobulin-
secreting plasma cells, whereas LCs cannot (Table 1) (77, 78).

pDCs resemble immunoglobulin-secreting plasma cells when visualized by ultra-
structural microscopy. They are found in the thymus, blood tissues, and the lymph node
T cell zone. pDCs secrete large quantities of interferon alpha following viral stimulation
(13, 71, 79). In this context, precursor pDCs in blood correspond to natural IFN-�-
producing cells, suggesting that they play an important role during viral infections.
Unlike LCs and DDs, IL-3 induces pDC differentiation and promotes the expression of
the myeloid markers CD14, CD13, and CD33. pDCs are devoid of mannose receptors
and express high levels of CD123. However, like LCs and DDs, pDCs also activate CD4�

and CD8� antigen-specific T lymphocytes and secrete IL-12 during viral infections
(Table 1) (13, 71, 79, 80).

iDCs are characterized by the expression of CD206 (macrophage mannose receptor)
and are observed in inflamed epidermal tissues of patients with various inflammatory
skin diseases. These cells express an Fc-like receptor that has a high affinity for
immunoglobulin E (IgE) and is involved in allergen-specific inflammatory processes.
Although these cellular activities have been described to occur in the epidermis, they
are involved in inflammatory processes in both the epidermis and dermis (Table 1)
(67, 80).

Three main characteristics are attributed to DCs: capture, processing, and antigen
presentation to T cells (67).

Endocytic activity is high in immature DCs, whereas this characteristic is less
apparent in mature cells. DCs degrade antigens within the MHC class II endosomal
compartment and subsequently display them on their surface bound to MHC-II (81, 82).
Such antigens are captured by phagocytosis involving membrane receptors, and DCs
can capture whole cells, including those undergoing necrosis and apoptosis (67). In
contact with foreign particles of microbial or endogenous origin, the process of
maturation of DCs begins with the expression of MHC class II glycoproteins, with
increased ability of DCs to capture antigens. Following antigen incorporation, mole-
cules that facilitate migration to the lymph nodes adhere to DCs (68–72). The DCs then
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interact with lymphocytes, and there is an increase in the expression of cytokines and
costimulatory molecules. The activation of costimulatory molecules in DCs induces
signals that cooperate with T cell receptors (TCRs) to promote T cell activation. Among
these costimulatory molecules, B7-1 (CD80) and B7-2 (CD86) molecules are expressed
by DCs, macrophages, and lymphocytes. B7 stimulates molecules present on T lym-
phocytes, known as CD28, which are responsible for the secondary signs of T lympho-
cyte activation (83). Programmed cell death-1 (PD-1), encoded by the PDCD1 gene, is a
288-amino-acid receptor that belongs to the B7/CD28 superfamily and is involved in
the regulation of T cell activity. It is expressed on the surface of T, B, and NK cells and
some subclasses of DCs and monocytes, as well as in the cytoplasm of T CD4� and Treg
lymphocytes (84–87). There is also an increase in the level of MHC-II expression in DCs.
DC maturation is complete when they receive a stimulus to migrate to lymphatic
tissues. DCs provide three signals that allow antigen-specific CD4� T cells to initiate
proliferation and differentiation (68–72). They capture antigens and readily degrade
them to produce antigenic linear peptides of at least 13 amino acids in length that are
capable of binding to MHC class II molecules and are trimmed by peptidases to no
more than 17 amino acids in length (88). Subsequently, DCs express on their surface a
high density of MHC class II/peptide complexes for TCR recognition expressed by T
CD4� cells (signal 1) and costimulation receptors CD40 and B7 to induce the prolifer-
ation of CD4� T lymphocytes (signal 2) (89). IL-12 secretion by DCs (signal 3) induces
CD4� lymphocyte maturation in cell types 1 and 2. Dendritic cells are quite heteroge-
neous in the skin, but individual subsets can be identified by the careful use of markers.
However, a successful functional analysis of these subsets of dendritic cells requires
systems that allow the analysis of individual subsets, with the use of techniques
involving separation of cell populations, culture in vitro, and antigenic challenge of
these cells with specific antigens (Table 1) (57, 90).

Inflammasomes and Infectious Skin Diseases

The inflammasomes are constituted by a group of complex proteins of innate
immunity (Fig. 2). They act as mediators of inflammatory responses to PAMPs and
DAMPs. Inflammasomes induce the activation of caspase-1, the secretion of IL-1� and
IL-18, and pyroptotic cell death (91, 92). Depending on the type of caspase involved,
they can be classified into one of two types of signaling pathways: classical/canonical,
which requires the activation of caspase-1, and noncanonical, which uses other
caspases to cause inflammation (91–93).

The PRRs involved in the formation of inflammasomes include the NLRs. Their basic
structure consists of a variable N-terminal effector domain, a central NACHT (central
nucleotide binding domain/NOD) domain, and a leucine-rich repeat (LRR) C-terminal
region (92). There are 22 types and four subfamilies of NLRs in humans, classified
according to their N-terminal acid activation domain (NLRA), BIR (baculovirus-inhibitor-
repeat)-type domain (NLRB), activation and recruitment of caspase domain (NLRC), and
pyrin domain (NLRP) (91). The accessory molecule ASC is an adapter protein common

FIG 2 Schematic representation of the components of the inflammasome and its role in the production of proinflammatory cytokines.
NLRP inflammasome activation can be induced by cytosolic PAMPs and DAMPs, leading to IL-1� and IL-18 activation. Activation of
caspase-1 by the inflammasome may also induce pyropitosis.
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to several inflammasomes. Two protein domains constitute this molecule: an
N-terminal PYD (pyrin domain) and a C-terminal CARD. These molecules actively
participate during the development of the inflammasome, establishing the connection
between the NLR and pro-caspase (Fig. 2). Twelve caspases are known in humans and
are classified into inflammatory caspases (caspase-1, -4, and -5), and apoptotic caspases
(which are further divided into initiator caspase-2, -8, -9, and -10 and executioner
caspase-3, -6, and -7). Caspase-1 is the key inflammatory caspase that activates IL-1�

and IL-18 cytokines and the pyroptotic mediator gasdermin D (91, 93). Other caspases
may also be involved in the release of cytokines and pyroptosis. Caspase-4 and -5 are
activated by Gram-negative bacteria, which may cleave gasdermin D, contributing to
pyroptosis. Caspase-8 can induce inflammatory responses and apoptotic cell death; it
forms the inflammasome and leads to the activation of IL-1�, IL-18, and gasdermin D.
Caspase-8 participates in the induction of a noncanonical pathway that activates IL-1�

independently of caspase-1, through the dectin-1 receptor (also known as a lectin C
receptor family member) (91, 93).

The inflammasome canonical pathway activation begins when NLRs recognize an
intracellular PAMP or DAMP, which leads to the recruitment of the adapter ASC in a
PYD-PYD binding step. Subsequently, via a CARD-CARD linkage, pro-caspase-1 binds to
the ASC (Fig. 2). This complex leads to the canonical activation of the inflammasome,
resulting in the production of IL-1� and IL-18 and induction of pyroptosis (93).

The inflammasome noncanonical pathway can follow two routes. In the first,
caspases-4 and -5 are activated by LPS from Gram-negative bacteria, activating gas-
dermin D, causing pyroptosis, which triggers the activation of the NACHT, LRR, and PYD
domain-containing protein 3 (NLRP3) inflammasome. This attracts caspase-1, resulting
in production of IL-1�. The second noncanonical pathway involves the activation of
caspase-8 following the recognition of PAMPs by C-type lectin receptors, which leads
to the production of IL-1� independently of caspase-1 (Fig. 2) (91, 93).

Inflammasomes have an important role in the host immune response to certain skin
infectious diseases, such as cutaneous leishmaniasis and leprosy (93–95). In cutaneous
leishmaniasis, the response of macrophages begins when the parasite invades and
multiplies within the macrophage, which can kill the parasite through the production
of free radicals (94). Macrophages may also act as APCs for T lymphocytes. The role of
the inflammasome in macrophages infected with species of the genus Leishmania was
evaluated by Lima-Junior and colleagues (95). These authors demonstrated that, in
macrophages infected by Leishmania amazonensis, caspase-1 and IL-1� are activated
(95). IL-1� production is caspase-1 dependent, because casp1�/� animals do not
produce caspase-1 or IL-1� upon infection with L. amazonensis. IL-1� expression and
caspase-1 activation were lower in cells treated with L. amazonensis than in cells treated
with LPS and nigericin (NLRP3 activators), indicating that the parasite inhibits inflam-
masome activation in some cases (95, 96). The functions of NLRP3 in parasite elimina-
tion were demonstrated in an assay in which macrophages of Nos2�/�, Asc�/�,
casp1�/�, or NLRP3�/� mice, when infected with Leishmania, had a higher number of
infected cells and more amastigotes (the tissue stage of the parasite) than macro-
phages from normal animals. Furthermore, potassium, cathepsins, and K� channels are
required for L. amazonensis to activate NLRP3 (97, 98). Inflammasome-deficient cells did
not show increased leishmanicidal activity or nitric oxide (NO) production when treated
with exogenous IL-1�. That is, inflammasomes seem to be involved in the process of
macrophage resistance (99–101). L. amazonensis-infected macrophages show de-
creased expression of nitric oxide synthase 2 (NOS2) and IFN-�, but not of TNF-�,
indicating that inflammasomes may contribute to the efficient production of IFN-� and
IL-1�. NO production by inflammasomes may also restrict the multiplication of the
parasite via a mechanism involving IL-1� and IFN-� (96–98).

In leprosy infections, dectin-1 acts as a C-type lectin PRR. It is present primarily in
DCs and is targeted with the induction of the Th1 and Th17 protective response.
According to a study by Gringhuis and coworkers (102), dectin-1 acts as an extracellular
sensor for mycobacterial PAMPs and directly activates caspase-8 for pro-IL-1� process-

Skin Immune System and Infectious Diseases Clinical Microbiology Reviews

October 2019 Volume 32 Issue 4 e00034-18 cmr.asm.org 9

https://cmr.asm.org


ing. IL-1� expression in response to the stimulation of DCs with Mycobacterium leprae
is induced primarily via dectin-1 and is completely dependent on caspase-8. Thus,
recognition of M. leprae by dectin-1 results in the noncanonical activation of caspase-
8-dependent inflammasomes and pro-IL-1� processing (103, 104). The pathogen–
dectin-1 bond acts as a trigger for the formation and activation of a noncanonical
inflammasome complex— consisting of CARD9, Bcl-10, MALT1, caspase-8, and ASC—
which converts pro-IL-1� to its biologically active form. While PRRs such as NLRs
recognize pathogens intracellularly, dectin-1 detects M. leprae PAMPs extracellularly,
enabling a rapid response to the pathogen without the need for internalization. The
existence of a caspase-8-dependent noncanonical inflammasome emphasizes the di-
versity and versatility of immune responses to infection (103–106).

Neutrophils and Macrophages

Blood neutrophils are recruited to the sites of tissue infection or injury by multiple-
step processes that are dependent on selectins, integrins, and chemokines (107, 108).
When these cells are recruited to a site of infection they express receptors that
recognize and bind to microorganisms, ingesting and destroying them by phagocytosis
and microbicidal molecules present in phagolysosomes (109, 110). These microbicidal
molecules can be grouped into three main classes: reactive oxygen species (ROS), NO,
and proteolytic enzymes (111).

The mononuclear phagocytic system includes monocytes (circulating in blood) and
macrophages (resident in tissues) (112, 113). Macrophages play important roles in
innate and adaptive immunity and are located in organs and connective tissue. Skin
macrophages can migrate to the lymph nodes under immunologic conditions (112,
113). Macrophages are part of a group of cells that undergo phenotypic modification
and express receptors, costimulatory molecules such as CD163, CD68, CD80, CD86, and
CD206, and cytokines that induce the development of suppressive or proinflammatory
responses (Fig. 3) (112–114).

More recent studies have shown that like for DCs, different phenotypes of macro-
phages can be identified by the expression of HLA-DR, CD163, arginase, and MRP8
(115–118). These studies identified three different macrophage populations: (i) M1
macrophages, which characteristically express HLA-DR, (ii) M2 macrophages, identified
by the presence of CD163 and arginase, and (iii) M4 macrophages, characterized by the
expression of MRP8 (Fig. 3) (115–118). Macrophages ingest microorganisms by phago-
cytosis, which is the energy-dependent envelopment of large particles. Microbial
destruction in macrophages occurs in phagolysosomes, vesicles formed from the fusion
of phagosomes with lysosomes during phagocytosis, necessarily involving enzymes

FIG 3 Phenotypic subpopulations of macrophages and their differentiation based on the specific profile
of cytokines and chemokines. Each subpopulation is involved in specific physiological and pathological
processes and the expression of a particular profile of cytokines, enzymes, and metalloproteinases, which
may contribute to microbicidal, regenerative, and atherosclerotic plaques.
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and ROS (112, 119–123). Macrophages have high-affinity receptors that bind to anti-
body molecules, complement proteins, and lectin, which are essential receptors for the
phagocytosis of many different microbes. Increasing evidence suggests a new subpop-
ulation of macrophages known as M4. M0 macrophage differentiation gives rise to M4
macrophages in the presence of CXCL4; M4 macrophages produce IL-6, TNF-�, MRP8,
MMP7, MMP12, and CD68 (118, 124, 125). The first reports of M4 macrophages showed
that these cells are abundant in atherosclerotic lesions, where the expression of
low-density lipoprotein receptor (LDL-R) by macrophages is increased. This provokes
the accumulation of fat in phagocytes, causing the development of atheroma plaques
and consequent oxidative lesions. However, recent data have pointed to the expression
of LDL-R in infectious skin lesions such as leishmaniasis and leprosy, which demon-
strates a possible association and role of M4 macrophages in immune responses to
these diseases in the skin (Fig. 3) (118, 124–130).

M17 and Mreg (regulatory) macrophages have also been proposed, in addition to
the subpopulations described above. However, their characterization and involvement
in the physiological and pathological processes of the skin and other organs require
further investigation (115, 117).

Finally, it is important to emphasize that both macrophages and DCs of the skin are
characterized by a marked phenotypic heterogeneity that reflects their diversity and
involvement in the various types and stages of cutaneous immune responses.

Basophils and Mast Cells

The morphology and physiology of basophils and mast cells are similar; however,
basophils are found predominantly in blood, while mast cells are mainly found in tissue
(131, 132). According to their tissue distribution and enzymatic composition of their
granules, it is possible to distinguish at least two subpopulations of mast cells: mucosal
mast cells, which contain trypsin, and connective tissue mast cells, which contain
chymotrypsin. A high-affinity receptor for IgE is expressed by basophils and mast cells,
which is strongly bound to their surfaces, leading to degranulation and the release of
various substances, including serotonin, histamine, platelet-activating factor, and leu-
kotrienes (Table 1) (133, 134).

Mast cells constitute one of the most abundant cell populations of the skin and
express complement C5a (CD88) receptors (132). Their location in the dermis, their
ability to release vasoactive and proinflammatory substances, and the expression of IgE
receptors on their surfaces imply that they have important roles in the immunity of the
skin to infectious or harmful agents (132–134). Mast cells are probably involved in the
mechanisms of fibroblast proliferation, blood flow control, and angiogenesis (135–139).
These functions are implicated in extracellular matrix remodeli and in the cicatricial
(scarring) and fibrotic processes associated with skin lesions (Table 1) (139).

Eosinophils

Eosinophils are abundant cells in the inflammatory infiltrates of late-phase reactions.
These cells are granulocytes derived from bone marrow and are involved in the pathogen-
esis of allergic diseases and infections (140, 141). Th2 profile cytokines promote eosinophil
activation and recruitment at sites of inflammation, stimulating the release of granular
proteins that are toxic to parasitic helminths, particularly nematodes, and actively partici-
pate in the inflammatory cascade underlying allergic processes (141–146). The presence of
such parasites is linked to the production of IgEs, which bind to parasites and trigger the
release of various eosinophil-derived microbicidal substances, such as cationic proteins,
peroxidase, and neurotoxins (147, 148). Eosinophils can also release prostaglandins that
may induce vasodilation and chemotaxis by neutrophils, leukotrienes involved in allergic
skin diseases, and cytokines (Table 1) (148).

NK and Natural Killer T (NKT) Cells

NK cells are lymphocytes that do not express T or B cell receptors (149). They can
participate in both innate immunity and adaptive immunity via antibody-dependent
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cytotoxicity, the downregulation of MHC class I expression, or IL-12 stimulation with
IFN-� release (Table 1) (150–152). They can also produce granzyme, perforin, and
granulysin and thereby participate in the direct destruction of microorganisms and
neoplastic cells. Furthermore, they play key roles in the pathogenesis of inflammatory
and infectious skin diseases (153). They are detected primarily by the expression of
CD16 (phagocytosis and antibody-dependent cellular cytotoxicity), CD56 (an NCAM-
neural cell adhesion molecule), and CD57 (HNK-1 sulfated carbohydrate chain). NK cells
also release TNF-�, GM-CSF (a growth-stimulating factor for granulocyte and monocyte
colonies), and IL-3. These cells also promote macrophage activation, leading to phago-
cytosis and the destruction of microorganisms (150, 151).

Another type of NK cell is the NKT cell. NKT cells have both NK and T cell
characteristics and are also capable of releasing cytokines such as IFN-�, IL-22, and
IL-17; these cytokines are involved in the activation of macrophages and in the
maintenance of epithelial barrier integrity, which stimulates the generation of antimi-
crobial peptides and production of chemokines in the skin (Table 1) (154). Moreover,
they can express chemokine receptors such as CXCR3, CCR5, and CCR6, which facilitate
the recruitment of lymphocytes. Despite their role in inducing skin inflammation in
experimental mouse models of psoriasis, further studies are needed to elucidate the
role of NKT cells in this process (155–157).

ILCs

During hematopoiesis, lymphoid precursors give rise to T and B cells, which have
specific antigen receptors that are characteristic of each of these subpopulations (158).
Until recently, it was thought that there were only two subpopulations that had no
characteristic antigen receptors. The first subpopulation has already been described as
NK cells. The second subtype comprises lymphoid tissue-inducing (LTI) cells, which are
important for lymphoid tissue development, including Peyer’s patches, lymph nodes,
and other lymphoid cells (159). However, more recently, cells resembling LTI cells have
been identified and termed NK22 cells. These cells concomitantly present markers of NK
cells and express the cytokine IL-22 (160, 161). Both LTI and NK22 cells are now
considered a subtype of innate lymphoid cells (ILCs), referred to as ILC3 cells (Table 1).

Studies have indicated the importance of ILCs in responses to infections, especially
with helminths. These cells are observed in tissues such as the gut and appear to play
key roles in the immunopathogenesis of psoriasis and skin infections. Recently, they
were named innate lymphoid cells (108) and were divided into three categories
according to the adaptive response phenotype mediated by T CD4� helper lympho-
cytes—namely, ILC1 (Th1), ILC3 (Th17), and ILC2 (Th2)—which are, respectively, di-
rected against intracellular agents, extracellular microbes, and large parasites. Further-
more, they appear to play a central role in the control of adaptive immune responses
(108, 161).

B Lymphocytes

B lymphocytes typically play a central role in the humoral immune response because
they synthesize antibodies (162). In addition to their central role in antibody produc-
tion, B lymphocytes can function as APCs and produce cytokines that affect tissue and
systemic immunity (163) (Table 1). Moreover, recent evidence suggests a role for B
lymphocytes in both homeostasis and pathological processes involving the skin asso-
ciated with local immune responses in neoplastic and infectious processes. B lympho-
cytes are rarely observed in normal skin, and although several techniques have been
used to characterize this population, the specific roles of B cells in dermal homeostasis
and immunological surveillance have not been fully clarified (164).

Nevertheless, B lymphocytes are known to migrate to the skin through the endo-
thelium and interact with receptors of selectins, chemokines, and integrins (165). B
lymphocytes migrate toward the antigenic focus, where APCs activate naive lympho-
cytes present in the tissue microenvironment (166).
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In the pathophysiology of infectious and inflammatory skin processes, B cells can
exhibit both proinflammatory and suppressive effects. Infiltration by B lymphocytes has
been observed in cutaneous lesions in leishmaniasis, as well as in inflammatory diseases
such as atopic dermatitis (166–168). The mechanisms by which B cells contribute to
inflammatory skin pathogenesis occur through their interaction with components of
innate immunity and with T lymphocytes (166). In Staphylococcus aureus skin infections,
B lymphocytes play an important role in the synthesis of specific antibodies, as well as
in bacterial opsonization and in the induction of phagocytosis by macrophages and
neutrophils (169, 170). More recently, regulatory B lymphocytes (Breg) have been
identified and appear to play an important role in attenuating inflammation and
inducing the maintenance of immune tolerance mechanisms through the release of
IL-10 (171, 172) (Table 1).

T Lymphocytes

There are approximately twice as many local lymphocytes in normal skin as there are
in the blood. Although the presence of T cells in the skin was first described some
70 years ago, this population of lymphocytes has attracted scientific attention only
within the last 25 years (173, 174). The skin has a phenotypically heterogeneous
population of lymphocytes, mainly comprised of memory T cells (Fig. 4 and Table 1)
(175, 176). In the epidermis, T cells are located in the suprabasal and basal strata, close
to LCs (Fig. 1) (176). In the dermis, T cells are distributed in clusters around the
capillaries; they are also frequently found at the dermo-epidermal junction and around
cutaneous appendages. CD4� and CD8� T lymphocytes are present in the skin in
similar proportions, and most of these are memory T cells (177). The skin has a
heterogeneous population of T lymphocytes that participate in classical immune
responses, including Th1, Th2, Th3, Th17, and regulatory T (Treg) cells, which have been
found in the skin in various infectious and inflammatory diseases (13). More recently,
differentiated subpopulations involved in specific physiological and pathological pro-
cesses have been identified, including Th9, Th22, and Th25 lymphocytes (Fig. 4 and

FIG 4 Diversity in helper T lymphocyte profiles, their differentiation factors, and characteristic cytokine
profiles.
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Table 1) (178–180). In the case of infections by intracellular microorganisms, Th1 cells
predominantly release IFN-� and lymphotoxins, leading to the activation of macro-
phages with microbicidal activity (181). Classically, Th1 lymphocytes in the skin are
associated with the resolution of infections and the pathogenesis of autoimmune or
immunomediated diseases such as psoriasis (181, 182). In immunocompromised pa-
tients, Th2 cells participate in the inflammatory response to infectious agents and are
referred to in the context of allergic diseases such as atopic dermatitis and psoriasis
(181, 183). Th3 lymphocytes were primarily identified in oral tolerance models (184–
186). They are characterized predominantly by the production of transforming growth
factor � (TGF-�) and secondarily by the production of IL-4 and IL-10, which are involved
in the class switching of B cells to produce IgA, with inhibitory effects on Th1 and Th2
lymphocytes (185–195). In view of the ability of Th3 profile lymphocytes to stimulate
the production of antigen-specific lymphocytes, and to inhibit the production of
non-antigen-specific lymphocytes, these cells can be considered a subtype of Treg
lymphocytes (Fig. 4 and Table 1) (181–195).

The Treg cell population consists of Th3 T CD4� cells and regulatory T cells (Tr1). Th3
CD4� cells are characterized by their ability to express primarily TGF-�, whereas Tr1
lymphocytes are characterized by high expression of IL-10 (188–193).

Tr1 lymphocytes are a subset of CD4� T lymphocytes, whose function is to suppress
immune responses and maintain self-tolerance (7, 189). Although other types of T cells
with suppressor activities have been described, Tr1 lymphocytes are characterized by
CD4�, FoxP3�, and CD25� markers (189). These cells are produced primarily through
the recognition of autoantigens in the thymus or of external antigens in peripheral
lymphoid organs, in which these cells do not express FoxP3 constitutively but acquire
the function of Tr1 cells by increasing FoxP3 expression in response to the presence of
IL-2 and TGF-�, or stimulated by the presence of small molecules such as retinoic acid
(188, 189). The production of some Tr1 cells requires the cytokine TGF-�, and the
maintenance and effectiveness of this profile is dependent on IL-2 (190). Tr1 cells
suppress immune responses at multiple stages of their life cycle, and appear to be
capable of inhibiting B cell activation, as well as differentiation and proliferation of NK
cells (191). Several mechanisms of action have been proposed for Tr1 cells, including
the production of immunosuppressive cytokines such as TGF-� and IL-10 (191). Another
mechanism involves the inhibition of T cell stimulation by APCs via the binding of
CTLA-4 (CD152)—a Tr1 cell surface molecule—to B7 (CD80/CD86), which is expressed
on the surface of APCs. This ultimately increases IL-2 cytokine consumption through an
increase in IL-2 receptor expression on Tr1 cells (7).

In normal, noninflamed skin, Treg lymphocytes are preferentially distributed close to
and in close association with hair follicles, with fewer cells located in the dermis
between these structures (196, 197). In general, because of the role of Treg cells in the
control of skin immune responses, the biological and functional characterization of
these cells in the cutaneous tissue environment is of vital importance for the under-
standing of inflammatory diseases of the skin (198–200). Because of their close rela-
tionship with hair follicles, these structures play a key role in the control of skin
homeostasis and in the activation of Treg cells (197, 201–203). Dysregulation of follicle
stem cell function has been shown to be linked to Treg cell function, and studies of
polymorphisms have linked this to high-affinity IL-2� receptor genes (IL-2RA and CD25),
FOXP3, and cytotoxic-T-lymphocyte–associated antigen (CTLA), among others (197, 202,
203). These aspects are confirmed by the observation of the presence of Treg lympho-
cytes in lesions of alopecia areata undergoing regeneration after institution of specific
therapeutic treatments. In addition to the cellular components of the hair follicles, other
cell types, including fibroblasts, DCs and LCs, also play important roles in controlling the
Treg lymphocyte population of the skin (196, 197).

Th17 cells are implicated in the pathogenesis of both psoriasis and atopic dermatitis
and are a key cell type in the body’s first line of defense against infection by certain
fungi and bacteria (40, 183, 204, 205). Studies have pointed to important roles of IL-17
and IL-22, including increasing the expression of keratinocyte antimicrobial peptides
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(38). Therefore, Th17 lymphocytes may form a bridge between immune cells and
epithelial cells, thus improving the efficiency of the skin’s immune responses to
pathogens (Fig. 4 and Table 1) (199, 200).

Th22 cells constitute another recently identified subgroup of T cells that express
IL-22 but not IL-17 or IFN-� (180). pDCs are able to induce the Th22 profile by releasing
TNF-� and IL-6. These cells were identified in cultures from patients with atopic
dermatitis, and the authors of several other studies have investigated the role of this
profile in the skin under normal and pathological conditions, including psoriasis, lupus
erythematosus, lymphoma, allergic and infectious diseases, epidermal skin immunity,
and tissue remodeling (Fig. 4 and Table 1) (180, 206–212).

Th9 and Th25 lymphocytes have also been described recently. Th9 lymphocytes are
distinguished by the expression of IL-4, IL-9, IL-10, IL-21, and TGF-� and differentiate
from Th0 lymphocytes in the presence of IL-4 and TGF-� (213–215). In the skin, Th9 cells
appear to be involved in autocrine and paracrine control of local inflammatory re-
sponses and in Candida albicans infections. In addition to stimulating IL-9 expression,
these cells also induce the release of TNF-� and granzyme B (216, 217). Th25 lympho-
cytes are characterized by the expression of Act1, IL-4, IL-13, and IL-25 (IL-17E) and are
involved in IgE release and mast cell degranulation. Recent data have implicated Th25
in the immunopathogenesis of skin diseases, namely, coccidioidomycosis, chronic
mucocutaneous candidiasis, and lepromatous leprosy (Fig. 4 and Table 1) (178, 218–
222).

�� T lymphocytes are so-called nonconventional immune cells (223, 224). These cells
have receptors composed of � and � heterodimers that are homologous to the � and
� chains of TCRs found in CD4� and CD8� T lymphocytes, and they are identified
through the CD3 and TC�� markers (Table 1). �� T lymphocytes do not recognize
peptide antigens associated with MHC-II and are not restricted to the MHC. �� T
lymphocytes recognize alkyl amines, small phosphorylated molecules, lipids not com-
monly found in mycobacteria and other microorganisms (presented by nonclassical
molecules such as MHC class I glycoproteins), and protein and nonprotein antigens that
do not require any kind of processing by APCs (223–227). In human skin, �� T
lymphocytes constitute a small percentage of T cells in the dermis and epidermis (2 to
9% and 1 to 10%, respectively) (170, 171, 228). Little is known about their roles in
human skin, but an increase in the population of �� T lymphocytes has been observed
in patients with melanoma, LC histiocytosis, leishmaniasis, and leprosy, among other
disorders, suggesting their involvement in the pathogenesis of these skin diseases
(Table 1) (229–234).

Endothelial Cells

Endothelial cells play key roles in controlling the flow of immune cells from blood
to tissue through the expression of various adhesion molecules, cytokines, and chemo-
kines, which serve as chemoattractants for leukocyte migration (Table 1) (235, 236). The
endothelium is one of the first lines of defense against harmful and infectious agents
in blood, and it directly affects innate and adaptive immune responses (236). During the
initial phase of inflammation, when the innate response is more apparent, endothelial
cells activate TLR proteins (mainly TLR2 and TLR4), which mediate immune responses
(236). TLR2 is a crucial agent in the inflammatory response against bacteria and other
pathogens, whereas TLR4 is a strong regulator of the innate and adaptive immune
responses (Table 1) (236–239). However, these molecules are present at low levels
before the activation of endothelial cells, and activation of the endothelial system leads
to elevated expression of TLRs. In addition to providing standard receptors for TLR2 and
TLR4, the endothelium is responsible for interacting with mediators from the immu-
noglobulin family such as ICAM-1 and VCAM-1 (240–242). Other adhesins, such as E-
and P-selectins, are also present in greater quantities during the inflammatory response
and are mainly mediated by cytokine stimuli (243). Such adhesin molecules are
constitutively expressed in the membranes of endothelial cells, but when the levels of
proinflammatory agents increase, they induce elevated expression of adhesins (240–
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242). This leads to greater interaction between blood leukocytes and their endothelial
ligands, which involves these cells in the cascade that leads to rolling, firm adhesion,
and diapedesis (Table 1) (236, 243).

In inflammation, endothelial cells are directly influenced by several factors that
facilitate the formation of inflammatory infiltrate (243, 244). The mechanisms respon-
sible for this alteration include oxidative stress, which results from immune responses
and increases the expression of adhesion molecules such as VCAM-1, ICAM-2, and
selectins CD62E and CD62P. However, the cytokines of the immune system act as direct
agents in mediating oxidative stress and influence leukocyte adhesion (243).

The endothelial immune response is associated with increased expression of cyto-
kines such as IFN-�, TNF-�, IL-1�, and IL-1�, which increase the expression of adhesion
molecules (243, 244). IFN-� appears to be one of the most important factors inducing
MHC class II expression and is an important agent in the formation of costimulatory
molecules, including adhesion molecules such as ICAM-1 and E-selectin (245). TNF-�
leads to the increased expression of molecules such as VCAM-1 and ICAM-1. Depending
on the phenotype and the intensity of the inflammatory stimuli, it is possible to detect
various adhesion molecules in the membranes of endothelial cells (Table 1) (246). Such
molecules modify the processes of cell rolling and tissue transmigration in leukocytes.
Cell transmigration through the endothelium is possible only following rupture of the
endothelial wall, which is mainly mediated by cell changes induced by proinflammatory
cytokines (246–248). A cascade of intracellular events leads to changes in the cytoskel-
eton which allow the extravasation of fluid, chemical mediators, and cells toward the
cytokine source. This process results in the formation of perivascular edema and
directly combats microbial agents at the site of infection (Fig. 5) (215).

Other Cellular Components of the Skin

Other cells are also part of this complex organization of the skin, and although they
may not act as the first line of host defense, they cooperate with the immune system
during immune responses (249–253). The key function of fibroblasts is the production
of structural proteins that constitute cutaneous tissue. They also coordinate with
immune responses, allowing the migration of blood cells to sites of injury, and interact
with other local cells, thereby potentiating the signaling cascade of host responses to
infectious agents (254–257). Fibroblasts are relatively abundant cells in skin, and more
recent work has shown that these cells release a chemoattractant that is sensed by
dermal lymphocytes. In addition, fibroblasts possibly play an important role in attract-
ing and maintaining Treg cells in this environment (258–260). The authors of several
studies have discussed the importance of the extracellular matrix of the skin in the
pathogenesis of infectious diseases and have characterized the importance of these
tissue components in the evolution of infections (261). Moreover, similar to keratino-
cytes, fibroblasts can produce cytokines such as TGF-� and FGF-�, among others, and
thus may influence the local immune response pattern (261–264).

Cutaneous appendages are of fundamental importance in maintaining the physio-
logical homeostasis of the skin. Hairs are keratinized structures formed by invagination
of the epidermis in the dermis (265). A terminal dilatation is observed in the process of
hair follicle growth—the hair bulb—and, in its central portion, a dermal papilla that
induces hair growth (249–253). The cells that cover the papilla and form the root of the
hair include keratinocytes and melanocytes. During the differentiation process of
keratinocytes, which occurs in the hair root, they undergo keratinization and incorpo-
rate melanin. Hair follicles of human skin are specialized structures that may also be
involved in the control of local immune responses in the skin. Activation of stem cells
from hair follicles may be involved in the hair growth process and in the control of
immune responses, through interaction with Treg lymphocytes, as described previously
(197, 201–203).

Sebaceous glands, as with hair follicles, originate from the same epithelial sheath
and secrete cholesterol and triglycerides (252, 253, 266, 267). These glands can express
TLR2 and TLR4 and secrete immune factors such as defensins, cytokines, chemokines,
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adipokines, serpin E1, leptin, and resistin, which can act as a bridge between the control
of the local inflammatory response and lipid metabolism in the skin (266). This ability
to control the tissue immune response pattern of sebaceous glands in close association
with lipid metabolism makes these glands fundamental to control of the local micro-
biome. Consequently, the deregulation of their physiology is linked to the pathophys-
iology of infectious, metabolic, and inflammatory skin diseases, such as acne, psoriasis,
seborrheic dermatitis, and rosacea (266–271). The eccrine sweat glands are entangled
tubular structures and comprise cells that eliminate the secreted product, without
compromising the cells. They produce sweat, which is directly secreted onto the skin
surface through an excretory duct and is composed of an aqueous solution of ions
(Na2�, K�, and Cl�), urea, ammonia, uric acid, and very small amounts of protein (253).
The apocrine sweat glands are found in the axillary, pubic, and perianal regions. Part of
the cytoplasm of the cells that constitute these glands is lost during secretion. The
apocrine sweat glands produce a viscous secretion that is discharged into the hair
follicle canal, rather than directly onto the surface of the skin (252, 253).

Finally, neurons, which primarily act on the somesthetic processes of the skin,
interact with lymphocytes and regulate local immune responses (254, 272, 273).
Riol-Blanco et al. have shown a close relationship between DDs and skin nociceptors,
as these nerve endings probably induce the production of IL-23 and IL-17, which, in
turn, function to control immune responses of the skin in experimental models of
psoriasiform inflammation (272).

FIG 5 Integrated view of the association between the host cells and infectious agents in the context of the skin’s in situ immune response. Note that the
triggered mechanisms culminate in the activation of professional and nonprofessional immune cells, such as keratinocytes, which can, however, interfere with
the immune response cascade against various harmful agents. These cells act as a mechanical barrier and can interfere with the immune response in the skin.
Endothelial activation is required for the migration of immune cells from the blood to the tissue.
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THE ROLE OF CELL DEATH IN HOMEOSTASIS AND THE CONTROL OF THE SKIN’S
IMMUNE RESPONSE

The phenomenon of cell death is intrinsically linked to the cellular life cycle and
aging, and it occurs as a homeostatic mechanism under both physiological and
pathological conditions (274–279). Cells in general may die by two distinct mecha-
nisms, namely, accidental cell death and regulated cell death (RCD) (274). RCD may
occur in contexts that include exogenous or endogenous cellular alteration or distur-
bance, leading to physiological changes that cannot be reverted, and consequently
lead to cell death. It may also occur in the absence of exogenous disorders and, as in
this specific case, in the context of programmed cell death (PCD) during the process of
cell development and renewal (274, 275). Classical studies have divided the mechanism
of cell death into three types: type I cell death or apoptosis, type II cell death or
autophagy, and type III cell death or necrosis, based primarily on the morphological
characteristics of each of these groups (274).

Since 2005, a committee on cell death has formulated the guidelines of a classifi-
cation system for the different types of cell death, based not only on morphological
aspects but also on genetic, biochemical, pharmacological, and functional characteris-
tics. This has resulted in a wider classification for the mechanisms of cell death and has
furthered our understanding of the importance of these mechanisms for processes
involving homeostasis and disease. This classification scheme proposes the occurrence
of at least 12 distinct mechanisms of cell death, which are shown in Table 2 (274, 275).

In the skin, although cell death is related to important physiological and patholog-
ical processes, evidence suggests that it also has a prominent role in the control of
immunological responses and in the pathophysiology of various skin diseases. Necrosis
and apoptosis appear to be at opposite ends of a spectrum, and several mechanisms
lead to cell death (257, 262, 280–282). Mechanisms such as necroptosis, pyroptosis,
ferroptosis, and autophagy have received increased attention in the study of the
pathophysiology of various infectious and noninfectious diseases, including in the
cutaneous environment (Table 2) (257, 262, 280–287).

There are many and diverse processes by which infectious agents interact with host
cells to induce injury (284). Often, these agents trigger a process that culminates in
immunosuppression. Among these mechanisms, apoptosis is commonly used by di-
verse infectious agents to negatively control immune responses by inducing cell death
in inflammatory cells (280–287). The high-affinity recognition of autoantigens by T
lymphocytes (when these are constantly stimulated by antigens) can lead to apoptosis
(280, 288–297). There are two major apoptotic pathways, and both involve the deletion
of peripheral and mature immune cells. Cell death by apoptosis may present mito-
chondrial changes, which are regulated by the Bcl-2 family of proteins; this family has
pro- and antiapoptotic members (284). Changes in the permeability of the outer
membranes of mitochondria may be induced by Bcl-2 proteins, or these proteins may
interact with a caspase activation inhibitor (280). The extrinsic pathway occurs by
activation of death receptors and is the second most important apoptosis activation
route in the deletion of immune cells. Death receptors, which are homologous to TNF
receptors, may be activated by TNF-like ligands, leading to the oligomerization of an
adapter protein (280, 284). This protein activates a caspase cascade or induces the
translocation of a proapoptotic member of the Bcl-2 family to the mitochondria,

TABLE 2 Types of cell death and causes, morphology, mechanisms, or factors that lead to
its induction

Type of skin cell death Cause

Necrosis Tuberculosis
Apoptosis Leprosy
Autophagy Zika virus infections
Pyroptosis Leishmaniasis
Ferroptosis ROS, RNS, glutathione
Necroptosis Staphylococcus aureus infection
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leading to a change in their permeability and to the activation of a caspase (280,
284–287).

Some studies have suggested the occurrence of apoptosis in the control of the
immune response in lepromatous leprosy and cutaneous leishmaniasis, as well as in
several viral diseases (298–301). Lytic, caseous, or liquefactive necrosis can occur in
inflammatory or infectious skin diseases as a consequence of the action of viruses,
bacteria, or helminths (302). Moreover, the innate immune response pattern may
underlie the occurrence of cell death by pyroptosis, implying that this type of cell death
is important in innate immune responses to infectious or noninfectious skin agents
(255, 303).

Necroptosis is a type of necrotic cell death that involves fine control of plasma
membrane permeability, and it is activated by the formation of RIPK1/RIPK3/MLKL
complexes (necrosomes), which activate a pronecroptotic protein termed MLKL (285,
304). After this phase, the propagation of cell death by the release of DAMPs, with
activation of cellular immune responses, takes place, leading primarily to the activation
of macrophages, DCs, and NK cells (305), inducing the pinocytosis of compromised or
infected cells. This leads to the activation of a cascade of cell death where the presence
of TNF-� may also contribute to the induction of chronic inflammation and to the
presence of more lesions (305, 306). Some infections have been associated with cell
death by necroptosis, as reported for infectious processes induced by a suspension of
Staphylococcus aureus diluted in phosphate-buffered saline (PBS) and inoculated into
mice in experimental models of infections (169, 284, 307, 308).

Cellular autophagy occurs through the accumulation of autophagosomes in the
cellular cytoplasm, with the degradation and recycling of cellular components that may
have been damaged by aging, chemical agents, infections, or inflammation (257, 262,
309, 310). Experiments on the interaction between Zika virus and skin cells have shown
that infected fibroblasts form autophagosomes in the cytoplasm, suggesting that
during viral replication, autophagy is stimulated in cutaneous cells (311–313).

Characterized by the occurrence of lipid peroxidation products and ROS release
from iron metabolism, ferroptosis is a type of RCD with morphological characteristics
such as diminished mitochondria and condensation of mitochondrial membranes that
induces reduction in numbers of cristae and the rupture of the outer mitochondrial
membrane (314–327). Ferroptosis can be induced in keratinocytes, mainly in processes
related to DNA or mitochondrial damage mediated by ROS or nitrogen radicals, as well
as by potentially toxic chemical compounds, which can be produced in abundance in
the presence of infectious diseases (265, 326, 327). These compounds can cause injury
and induce cell death by diverse mechanisms, including apoptosis, necroptosis, and
ferroptosis, depending on the activity of xenobiotic biochemical pathways involving
glutathione and vitamins C and E (314–327). The types of cell death and their relation
to infectious and noninfectious causes, as well as their stimuli, mechanisms, and
morphology, are shown in Tables 2 and 3.

OVERVIEW OF THE RELATIONSHIP BETWEEN SKIN IMMUNE SYSTEM AND THE
EVOLUTION OF INFECTIOUS CUTANEOUS DISEASES

I have already discussed the general organization of the cutaneous immune system,
so in the present section I specifically address the mechanisms inherent in compart-
mentalized responses to infectious agents of diverse nature, with emphasis on local
skin immune responses, tissue immune responses, or in situ immune responses.

The in situ pattern of the skin’s response to infections is complex and involves
several cellular and humoral factors (Table 1 and Fig. 5). The immune response to
various infectious agents in the tissue environment requires the activation of innate
and acquired types of immunity, which are closely linked and interregulated (Fig. 5)
(328–332). Infectious agents of diverse nature can reach the skin tissue either
through direct inoculation at a break in the physical barrier of the epidermis or
through blood vessels and activation of the endothelium (5, 333, 334). In the latter
context, endothelial cells play an important role in the migration of microorganisms
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from blood to the cutaneous environment, as well as in the migration of leukocytes
to the focus of infection (335). It should be emphasized that endotheliocytes allow
the transmigration of cells from the blood into the infected tissue in order to elicit
a specific immune response during the course of an infection (Fig. 5) (336–338). It
has already been shown that the endothelial phenotype can influence the evolution
of chronic and spectral infectious diseases such as leprosy and leishmaniasis,
depending on the pattern of cells that migrate to the focus of infection (336–338).
Furthermore, the capillaries of the dermis maintain a close anatomical relationship
with the DDs and probably participate, together with endotheliocytes, in the first
stages of the immune response to infectious agents of the skin (Fig. 5) (339–342).
Although LCs are the main type of immune cells in the epidermis, as already
mentioned, keratinocytes can participate in the control of the immune response in
the tissue microenvironment (343). They do so by releasing antimicrobial peptides,
presenting antigens, or participating in innate or adaptive immunity by releasing
cytokines that control the cascade of proteins in the immune response to micro-
organisms (Fig. 5) (343). The first cytokine identified as being released by kerati-
nocytes was IL-1. Subsequently, other cytokines were identified: IL-6, IL-8, IL-10,
TNF-�, and TGF-� (38–41, 344). Keratinocytes are also able to express MHC-I and
MHC-II and participate in the immunopathogenesis of various infectious viral,
bacterial, and protozoal diseases, including leishmaniasis, leprosy, and herpes (Fig.
5) (38–41). In infections with flaviviruses such as Zika virus, West Nile virus (WNV),
and dengue virus, keratinocytes possibly play key roles in the early stages of
immune responses, which are mediated by IFN-�, IFN-�, and antimicrobial peptides
(345).

DCs contribute to the development of an effective and specific adaptive immune
response against infectious agents through the processing and presentation of
antigens (13, 61–64). Several studies have demonstrated the importance of this
group of cells in specific immune responses to bacteria, fungi, protozoa, and viruses
in the skin tissue environment (89). These studies have indicated the importance of
antigen presentation by DCs in the evolution of infectious diseases such as leprosy,
leishmaniasis, paracoccidioidomycosis, lacaziosis, and infections with flaviviruses
such as dengue and Zika viruses (89, 313). In several arthropod-borne infections, the
interaction of infectious agents with the dermal immune system, in particular with LCs and
adjacent keratinocytes, represents the first stage of interaction with the host and one of the
determining factors in the clinical evolution of disease, as well as in maintaining transmis-
sibility cycles (345). Several mosquitoes responsible for transmitting infectious agents
produce saliva with substances that generally exhibit anticoagulant, angiogenic, and
anti-inflammatory properties, inhibiting local T cell proliferation and suppressing the ex-
pression of cytokines such as TNF-�, IL-2, and IFN-�, as well as stimulating the secretion of
IL-4 and IL-10, both in the tissue environment and in experimental models (345).

In the process of local immune responses of skin to agents transmitted by arthropods,
LCs have the ability to capture the inoculated antigens and migrate to the satellite lymph
nodes, where they initiate the process of activation of T cells (345). In dengue virus
infection, immunohistochemical and molecular analyses have demonstrated the presence
of virus antigens in LCs, whose activation is mainly dependent on TNF-� and to a lesser
extent on IL-1-�, contrary to what is observed in WNV, where the activation and migration
of LCs are more dependent on IL-1-� than on TNF-� (345–348). In Zika virus diseases, some
studies have demonstrated an induction of IFN-� expression by LCs (345). In another study
developed by Vielle et al. (349), Zika virus infection was shown to be capable of inducing
the expression of type I and II interferons in DC culture, and it was shown that the activation
of these cells is mediated by the expression of MHC class II, CD40, CD80/86, or CCR7. Some
data have pointed to the importance of DCs in the sexual transmission of infectious agents
via mucosal surfaces through the interaction of these agents with the various subpopula-
tions of DCs, including LCs, through the immunomodulation of the activity of these cells,
a fact that is well described for the transmission of HIV and is important in the mechanisms
of sexual transmission of Zika virus (350, 351). In leishmaniasis and malaria, this ability to
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modulate the skin can either contribute to the elimination of these microorganisms or
create an environment that stimulates the evolution of the disease into milder or more
severe clinical forms (344, 352–354). This particular aspect can be observed in the clinical
evolution of dengue fever and in its relationship with the phenomenon of antibody-
dependent enhancement (ADE) (355). Dengue virus infection can be caused by four
serotypes (dengue virus serotypes 1, 2, 3, and 4) and may result in a spectrum of clinical
symptoms ranging from mild to hemorrhagic symptoms. Moreover, the pattern of this
symptomatology is linked immune responses by the host (355–357). ADE is a process linked
to the clinical evolution of severe forms of dengue and occurs in individuals with a history
of secondary infection by a virus with a heterologous serotype. ADE triggers the activation
of nonneutralizing or subneutralizing antibodies and specific previously sensitized cytotoxic
T lymphocytes, which can stimulate a marked cross-immune reaction, contributing to the
development of severe forms of infection. Studies have demonstrated the role of DCs in this
mechanism (355–357). During ADE, mature DCs require the expression of Fc gamma
receptor IIa (Fc RIIa), and the process is inversely related to the high expression levels of
DC-SIGN (DC-specific intercellular adhesion molecule-3-grabbing nonintegrin) receptor
present in immature DCs (355, 356). DCs stimulate the increased expression of viral proteins
as well as the production of cytokines TNF-� and IL-6, which are involved in the patho-
genesis of this phenomenon (355).

In cutaneous leishmaniasis and leprosy, populations of dendritic cells in the hyper-
ergic and tuberculoid forms are more frequent than in the anergic and lepromatous
forms, indicating a fundamental role for the number of DCs in cutaneous lesions in
inducing effective cellular immune responses against intracellular infectious pathogens
during the evolution of spectral cutaneous diseases (340, 352). These findings have
been further corroborated by results obtained with other cell types such as macro-
phages, which are important in the presentation of antigens and in microbicidal action
against M. leprae and leishmaniasis (358, 359).

The roles of inflammasomes in immunity to infectious agents have been character-
ized for some skin diseases, such as leprosy, paracoccidioidomycosis, and leishmaniasis
(91, 95, 98, 359, 360). The pattern of immune responses is associated with the creation
of a marked proinflammatory environment and is also involved in the induction of cell
death by pyroptosis, which is related to cell deletion and induction of tissue injury in
the inflammatory processes of infectious diseases (255, 303).

Macrophages play important roles in the recognition and elimination of foreign
antigens of infectious or noninfectious origin, as well as in cicatrization and in the
remodeling of the extracellular matrix (Fig. 3 and 5) (264, 358, 359). In infectious
diseases, macrophages are the main cells involved in immunity to infection by M.
leprae, Leishmania, Paracoccidioides, and Lacazia loboi and are probably involved in
antigen presentation and in the release of ROS and reactive nitrogen species (RNS) with
microbicidal effects (361, 362). The microbicidal mechanism employed by macrophages
is closely related to gene expression patterns such as natural resistance-associated
macrophage proteins (NRAMPs) with regard to the efficiency of the immune response
to mycobacteria, such as M. tuberculosis and M. leprae (361).

Mast cells are abundant in the intestinal mucosa and skin. Owing to their prefer-
ential location, they play a role as sentinels against microbial agents (bacteria, viruses,
helminths, and fungi), triggering local inflammatory responses (132–134). Moreover,
along with basophils, mast cells can affect vessels by releasing vasoactive substances
that influence the flow of leukocytes between blood and tissue. They may also be
associated with the action of IgE during the in situ immune response against infections
of the skin (133, 134).

The development of an effective adaptive immune response to infectious skin
agents is closely related to the clinical evolution of several diseases, such as
leishmaniasis, paracoccidioidomycosis, and leprosy (363–366). The Th1 � Th2
paradigm has been associated with the clinical evolution of several infectious
diseases, and studies on leishmaniasis and leprosy have also characterized this
process (Fig. 5) (179, 364). In these two diseases, predominance of the expression
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of Th1 cytokines, such as TNF-� and IFN-�, is clinically related to more localized
forms of lesions, whereas predominance of the expression of Th2 cytokines, such as
IL-4 and IL-10, contributes to the clinical evolution of susceptible or anergic forms
(Fig. 5) (363–366), with the presence of lesions in greater quantity and more
diffusely distributed in the patient’s body. However, the role of recently identified
immunological agents in the immune response of the skin has provided a better
understanding of the evolution of these and other infectious diseases, as well as of
the processes of healing and tissue remodeling (179, 362, 367). Among these new
agents and cytokine profiles, Treg cells and Th9, Th17, Th22, and Th25 profile
cytokines have provided us with additional data regarding the immunopathogen-
esis of skin infections and, above all, on complex and spectrally evolving infectious
diseases (179, 363–366). For example, cytokines belonging to the Th17 profile, such
as IL-6 and IL-17, probably contribute to a response mediated by a more exacer-
bated and efficient inflammatory profile against intracellular pathogens such as M.
leprae and Leishmania (179, 368). In contrast, cytokines such as IL-10 and TGF-�
effectively maintain a state of susceptibility to infection. They accomplish this either
by inhibiting Th1 profile cytokines, such as IFN-� and TNF-�, or by contributing to
the differentiation of lymphocytes into Treg cells, which also negatively control
immune responses (179, 369).

The Th22 profile, characterized by cytokines IL-22, IL-13, and TNF-�, in addition to
fibroblast growth factor � (FGF-�), has contributed to the understanding of the
complex immunopathogenesis of infections with agents such as M. leprae (180, 336).
IL-22 has been implicated as an antimicrobial response cytokine because it interferes
with the phagolysosomal maturation process, thereby inhibiting the lytic capacity of
macrophages against M. tuberculosis. The increased participation of this cytokine in
lepromatous leprosy seems to play a potentiating role in the lytic activity of macro-
phages, in a possible attempt to revert the susceptibility of this clinical form of the
infection (180, 336). Similarly, IL-13 plays a key role in the induction of the humoral
response, which is consequently ineffective in the recognition and elimination of
intracellular infectious agents (336). Finally, FGF-� is probably involved in tissue regen-
eration associated with more aggressive infectious diseases and with increased tissue
involvement. In addition to participating in the functions of Th22 lymphocytes, FGF-�
(along with TGF-�) may help create a regenerative environment in lepromatous leprosy
(336). Finally, the importance of Th17 profile cytokines, such as IL-17 and IL-22, should
be noted, because they are capable of potentiating the release of AMPs by keratino-
cytes and mucosal cells. This confers on these cytokines an important role in both
innate and adaptive immunity (38–41).

The role of profiles such as Th9 and Th25 in infectious and noninfectious skin
inflammatory diseases has not yet been extensively studied and characterized. The few
available articles in the literature have indicated the proinflammatory role of Th9
lymphocytes in tuberculoid leprosy. In particular, they have focused on cytokine IL-9, or
on anti-inflammatory profiles such as that observed for Th25 lymphocytes, whose
cytokine IL-25 (IL-17E) is related to humoral immune responses and is therefore
ineffective against intracellular infectious agents. IL-25 belongs to the IL-17 family, and
unlike other members of this family such as IL-17A and IL-17F, it inhibits Th1 and Th17
cytokine production (178, 213, 218, 220, 369–372). NF-�B activation is induced by IL-25
and triggers the expression of IL-4, IL-5, IL-9, and immunoglobulin E, as well as the
degranulation of mast cells against extracellular pathogens (218).

Several studies have demonstrated the interactions between pathogen and host
with regard to various types of infectious agents that have immune escape mech-
anisms (373, 374). In this scenario, pathogen and host factors may interact to
maintain the environment. Studies have shown that factors such as TGF-� and the
apoptosis phenomenon may contribute to this process (375, 376). Data collected
during the evolution of certain infectious skin diseases suggest that this control is
affected by apoptosis. TGF-�, which is a strong inducer of apoptosis, also seems to
have a fundamental role in the process. It contributes to the differentiation of the
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Treg response, inhibits macrophagic responses, and acts as an immunosuppressive
cytokine (301, 375–377). Moreover, TGF-� seems to play a major role in the
evolution of several infectious diseases of the skin, including leprosy, lacaziosis,
cutaneous leishmaniasis, and chromoblastomycosis (96, 359, 375, 376, 378–380).
Depending on its relationship with other cytokines and humoral factors of the
host’s response, TGF-� has numerous roles in the tissue microenvironment. It has
multiple functions and can control the immune response by direct action on the
cells of the immune system, inhibiting the effector activity of lymphocytes and
macrophages, and by inducing the apoptosis of macrophages (375). Apoptosis has
been implicated in the negative control of the immune response because certain
infectious pathogens use it as an escape mechanism (301, 375–377, 381–384). In
both leprosy and cutaneous leishmaniasis, apoptosis has been identified as the
most frequent mechanism of cell death in the lepromatous forms of leprosy and
anergic leishmaniasis, which has implicated this phenomenon in a possible mech-
anism of control of the immune response in these clinical conditions (300, 301,
381–384). In addition, it is worth mentioning that other types of cell death, such as
pyroptosis and autophagy, have been implicated in skin tissue responses in viral
infections and in the activation of inflammasomes that induce pyroptosis in bac-
terial infections. This further indicates a possible role of these mechanisms of cell
death in the pathogenesis and immunopathogenesis of such infections (Tables 2
and 3) (385–389).

PERSPECTIVES

Finally, it is worth remembering that the skin immune system is complex and acts
in very characteristic ways against microbial agents. Moreover, many other factors
might be involved in effective immune responses. The identification of new subpopu-
lations of lymphocytes and macrophages and the characterization of other cells that
may influence immune responses or act as immunogenic targets are important topics
of research. Such research will certainly contribute to the elucidation of the complex
mechanisms of skin immune responses and of the evolution of cutaneous diseases.
Research concerning the initial stages of systemic infectious diseases with clinical
courses that depend on the initial interaction between pathogen and host in the skin,
such as in Zika and dengue virus infections, will also be beneficial.

The immune response to various infectious agents in the skin triggers a wide range
of defense mechanisms. Nevertheless, this response is sufficiently specific to fulfill its
primary role: to act as an interface between host and the environment. In recent years,
an increasingly important role has been attributed to the cutaneous immune system
because it is in this environment that the mechanisms of immune responses to various
infectious agents begin. It is very likely that a series of immune cascades determines the
host response pattern according to this first interaction. From this perspective, special
emphasis has been placed on DCs, which are components of innate immunity and the
first subpopulation to interact with infectious agents that enter the body through
epithelia such as skin and mucous membranes. This subpopulation is also the link to
the mechanisms of adaptive immunity and determines the pattern of responses to be
developed against these specific agents. Recently identified mechanisms and immu-
nological factors involved in the control of immune responses have also attracted
attention in recent years, opening up promising research into both cutaneous and
general immunity.

Important research topics include the role of inflammasomes in the control of local
immune responses, the characterization of endoplasmic reticulum stress mechanisms
in the effectiveness of the responses by DCs and macrophages, the emergence of the
roles of keratinocytes, fibroblasts, and melanocytes in the control of the immune
response, and the role of endotheliocytes in the flux of immune cells into the skin. The
characterization of this tissue environment will lead to a better understanding of the
relationship between the host and the environment.
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