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ABSTRACT

Drug distribution is a necessary component of models to predict
human pharmacokinetics. A new membrane-based tissue-plasma
partition coefficient (Kp) method (Kp,mem) to predict unbound tissue
to plasma partition coefficients (Kpu) was developed using in vitro
membrane partitioning [fraction unbound in microsomes (fum)],
plasma protein binding, and log P. The resulting Kp values were
used in a physiologically based pharmacokinetic (PBPK) model to
predict the steady-state volume of distribution (Vss) and concentration-
time (C-t) profiles for 19 drugs. These results were compared with Kp

predictions using a standard method [the differential phospholipid Kp

prediction method (Kp,dPL)], which differentiates between acidic and
neutral phospholipids. The Kp,mem method was parameterized using
published ratKpu dataand tissue lipid composition. TheKpu valueswere
well predicted with R2 5 0.8. When used in a PBPK model, the Vss

predictions were within 2-fold error for 12 of 19 drugs forKp,mem versus

11 of 19 for Kp,dPL. With one outlier removed for Kp,mem and two for
Kp,dPL, the Vss predictions for R2 were 0.80 and 0.79 for the Kp,mem and
Kp,dPL methods, respectively. The C-t profiles were also predicted and
compared.Overall, theKp,memmethodpredicted theVss andC-t profiles
equally or better than the Kp,dPL method. An advantage of using fum to
parameterize membrane partitioning is that fum data are used for
clearance prediction and are, therefore, generated early in the discov-
ery/development process. Also, the method provides amechanistically
sound basis for membrane partitioning and permeability for further
improving PBPK models.

SIGNIFICANCE STATEMENT

A new method to predict tissue-plasma partition coefficients was
developed. Themethod provides amoremechanistic basis tomodel
membrane partitioning.

Introduction

The volume of distribution and clearance equally determine the
half-life of a drug. The steady-state volume of distribution (Vss) can be
predicted using empirical methods (Obach et al., 1997), computational
approaches (Ghafourian et al., 2004; Lombardo et al., 2006; Zhivkova
and Doytchinova, 2012), physiologic equations (Oie and Tozer, 1979;
Lombardo et al., 2004; Korzekwa and Nagar, 2017a), and tissue:plasma
partition coefficients (Kp). The Kp prediction methods are widely used
since they describe the distribution in physiologically based pharmaco-
kinetic (PBPK)models.While somemethods require an in vivo component
(Arundel, 1997; Björkman, 2002; Jansson et al., 2008; Poulin and Theil,
2009), others use more readily available in vitro inputs.
Several factors influence drug distribution, including partitioning

into membranes and other lipids, binding to proteins (primarily plasma
proteins), pH partitioning (e.g., lysosomes), transporters, and membrane

permeability. Most models represent tissue interactions with in vitro
surrogates. The Poulin and Krishnan (1995) model originally described
phospholipid partitioning with the octanol:water partition coefficient (P)
and assumed phospholipid composition to be represented by 30% octa-
nol and 70% water. They developed Kp prediction equations that
included an additional surrogate for neutral lipid partitioning in adipose
tissue (Poulin and Theil, 2000; Poulin et al., 2001), which was modified
by Berezhkovskiy (2004). Rodgers and Rowland (2006) developed two
equations for prediction of unboundKp (Kpu): one for acids, neutrals, and
weak bases, and another for moderate-to-strong bases (Rodgers et al.,
2005). Drug partitioning into erythrocytes was used to parameterize the
interaction of bases with acidic phospholipids (APs). It was assumed that
ionized bases interact only with APs, while uncharged molecules
interact only with neutral phospholipids (Rodgers et al., 2005; Rodgers
and Rowland, 2006).
In most currently used composition-based models, log P is used to

model the phospholipid partitioning (0.3P). A shortcoming of using log
P to represent phospholipid partitioning is the lack of orientation-
specific interactions with phospholipid membranes (Balaz, 2009; Nagar
and Korzekwa, 2012, 2017). Additionally, both neutral and ionized
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pharmacokinetic; pKa,a, ionization constant for acids; pKa,b, ionization constant for bases; Vss, steady-state volume of distribution.
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bases are known to interact with all phospholipids, and not just net-
neutral and net-acidic phospholipids, respectively. Therefore, current
methods to calculate Kp appear to be based on mechanistically unsound
assumptions. Previously, we used microsomal partitioning [fraction
unbound in microsomes (fum)] instead of log P to parameterize
phospholipid partitioning in a Vss model (Korzekwa and Nagar,
2017a). Partitioning into microsomes (unsorted phospholipid vesicles)
is used extensively in clearance predictions and can be determined
experimentally or predicted (Austin et al., 2002; Hallifax and Houston,
2006; Poulin and Haddad, 2011; Nagar and Korzekwa, 2017). A benefit
of using fum to represent phospholipid partitioning is that it measures
interactions with all phospholipids for both charged and uncharged
species.
Previous studies have compared different Kp prediction methods and

their ability to predict both tissue Kp and/or Vss (De Buck et al., 2007;
Poulin and Theil, 2009; Jones et al., 2011; Graham et al., 2012; Zou
et al., 2012; Chan et al., 2018). These studies came to different
conclusions on the most accurate Kp model, which was primarily
dependent on the drug data set used (De Buck et al., 2007; Graham et al.,
2012). Graham et al. (2012) showed that the Rodgers et al. (2005)
method was able to better predictKp andVss for different classes of drugs
than other composition-based models. The Poulin and Theil (2009)
method led to good Vss predictions, but required in vivo data (Kpu

muscle) (Graham et al., 2012). More recently, Chan et al. (2018)
compared the ability of composition-based Kp models and preclinical
extrapolation to predict Vss. Composition-based models predicted Vss

with accuracy similar to preclinical extrapolation. They noted that the
Rodgers method was able to predict Vss well for drugs with log
P values less than 3, and that many drugs with large errors in Vss for
composition-based models also had errors in preclinical extrapolation
(Chan et al., 2018).
This report evaluates a model to predict Kp using fum to represent

membrane partitioning. Plasma protein binding and microsomal parti-
tioning values were determined experimentally for 19 drugs. Tissue Kp

values were calculated for each compound using a differential phos-
pholipid Kp prediction method (Kp,dPL) (Rodgers et al., 2005; Rodgers
and Rowland, 2006), as well as a method that uses fum to parameterize
membrane partitioning [the membrane-based Kp prediction method

(Kp,mem)]. Simulations were run and their ability to predict Vss and
concentration-time (C-t) profiles was determined. More mechanistically
sound assumptions for Kpu will be required when expanding current
perfusion-limited PBPK models to include explicit membrane parti-
tioning and permeability. Models to predictKpu bases on experimental
partitioning into membranes may allow a facile transition to models
that limit permeability with explicit membrane compartments (Nagar
et al., 2014).

Materials and Methods

Materials. AHarvardApparatus (Holliston,MA) 96-well equilibrium dialyzer
and single-plate Harvard Apparatus plate rotator were used for equilibrium
dialysis experiments. Human plasma was obtained from US Biologic (Salem,
MA) and Innovative Research Inc. (Novi, MI). Rat liver microsomes were
obtained from BD Biosciences (San Jose, CA) and Corning Life Sciences
(Tewksbury,MA).Warfarin, fluconazole, glyburide (glybenclamide), ketoprofen,
fenofibrate, 1/cis-diltiazem hydrochloride, 1/2 verapamil hydrochloride, caf-
feine, betaxolol hydrochloride, DMSO, nicardipine hydrochloride, metoprolol
tartrate, felodipine, and nafcillin sodium were obtained from Sigma Aldrich
(St. Louis, MO). Quinidine gluconate, formic acid, acetonitrile, and diphenhy-
dramine hydrochloride were obtained from Fisher Scientific (Norristown, PA).
Mibefradil hydrochloride was obtained from Cayman Chemical Company (Ann
Arbor,MI). Diclofenac sodiumwas obtained fromCalbiochem (Burlington,MA).
Fenofibric acid was obtained from Kano Laboratories (Nashville, TN). One
milligram per milliliter solutions of phenytoin, diazepam, and midazolam in
methanol were obtained fromCerilliant (a SigmaAldrich company). The 100mM
PBS and 0.3 mMMgCl2 dialysis buffer was composed of magnesium hydrochloride
hexahydrate (Fisher Scientific), potassium phosphate monobasic (Sigma Aldrich),
and potassium phosphate dibasic (Fisher Scientific). AnAgilent 1100HPLC andAPI
4000 mass spectrometer and Agilent 1100 HPLC and API 4000 Q-Trip mass
spectrometer were used to determine the concentrations for equilibrium dialysis.
Mathematica version 11.0 (Wolfram, Champaign, IL)was used for all compartmental
modeling and simulations. Literature data from plots were digitized using Engauge
Plot Digitizer version 10.4 (GitHub, San Francisco, CA).

Probe Drug Selection and Data Collection. A diverse set of drugs made up
of acids, bases, and neutrals was selected to compare the prediction methods
(Table 1). Drugs were considered neutral when primarily uncharged at physiologic
pH (7.4). Unless noted otherwise, the pKa values of acids (pKa,a) and bases (pKa,b)
for neutrals were set at 14 and 1, respectively. Any significant ionized and neutral
fraction was considered by both methods. The probe drugs were selected based on

TABLE 1

Pharmacokinetic parameters of test drugs

Test Drug Class Type Number of Subjects Weight Dose Duration Number of Points Vss CL Reference
kg mg min l l/h

Betaxolol B Infusion n 5 10 73.6 8.94 30 17 360 11 Ludden et al., 1988
Diltiazem B Infusion n 5 12 63 15 30 13 306 97 Hermann et al., 1983
Diphenhydramine B Bolus n 5 8 98.0 56 N/A 12 788 43 Scavone et al., 1990
Metoprolol B Infusion n 5 5 66 3.9 10 20 274 59 Regårdh et al., 1974
Mibefradil B Infusion n 5 6 70a 20 30 16 187 17 Clozel et al., 1991
Nicardipine B Bolus n 5 6b 67.0 10 N/A 12 62 76 Campbell et al., 1985
Quinidine B Infusion n 5 12b 65.3 244 22 12 227 18.5 Ueda et al., 1976
Verapamil B Infusion n 5 20 70a 10 5 15 266 49 McAllister and Kirsten, 1982
Caffeine N Infusion n 5 10 79.5 350 30 17 42.8 5.2 Blanchard and Sawers, 1983
Diazepam N Infusion n 5 24 78.1 5 1 21 89.5 1.33 Agarwal et al., 2013
Felodipine N Infusion n 5 10 74 2.5 30 22 320 41.7 Edgar et al., 1985
Fluconazole N Infusion n 5 6 70a 50 N/A 13 59.3 1.25 Ripa et al., 1993
Midazolam N Bolus n 5 6 67.6 10 N/A 15 51.2 18 Heizmann et al., 1983
Phenytoin N Infusion n 5 6 78.1 275 6 15 38.8 1.76 Gugler et al., 1976
Diclofenac A Infusion n 5 6 65 46.5 2 15 9.23 17.6 Willis et al., 1980
Glyburide A Infusion n 5 10 77.8 2 60 19 11.78 4.88 Debruyne et al., 1987
Ketoprofen A Bolus n 5 7 70a 100 N/A 12 9.9 5.02 Debruyne et al., 1987
Nafcillin A Infusion n 5 6 70a 475 7 9 20.4 33.9 Waller et al., 1982
Warfarin A Bolus n 5 6 66.8 100 N/A 8 7.66 0.179 O’Reilly et al., 1971

A, acids; B, bases; N, neutral; CL, clearance.
aIndividual weights not provided and 70 kg assumed.
bIndividual C-t not provided. C-t profile simulated from average parameters.
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the availability of literature intravenous pharmacokinetics data, as well as drug-
specific parameters. Average experimental intravenous bolus and/or infusion C-t
profiles for 19 drug studies were collected from the literature. If the data were
represented as graphical C-t profiles, the plots were digitized. When average
subject weight was available, simulations were conducted to reproduce the
observed Vss for that average weight. The observed clearance and the steady-state
volume of distribution were determined by compartmental analysis using standard
equations with Mathematica. Specifically, one- to three-compartment models were
evaluated to generate the C-t profiles from the experimental data. Experimental
clearance and Vss values were determined from these compartmental models. The
best model for the experimental data was determined by the corrected Akaike
information criterion values (Akaike, 1974) and residual plots. For all drugs,
microrate constants were well defined and use of noncompartmental analysis was
not required. Experimental clearance values were assumed for all further modeling
efforts and experimental Vss values were compared with predicted values.

Literature physiologic data were used for Kp predictions and PBPK modeling
(Brown et al., 1997; Poulin and Theil, 2002; Fenneteau et al., 2010; Ye et al.,
2016). For drug-specific parameters [log P, pKa, and blood to plasma (BP)]
(Table 2), experimental values from the literature were preferred over calculated/
predicted values, and if more than one experimental value was found, then the
experimental values were averaged. Human BP values could not be found for
betaxolol and nafcillin. For betaxolol, the values of the fraction unbound in
plasma (fup) were similar for rat and human; therefore, the rat BP value of 2.0 was
used. For nafcillin, a value of 0.55 (1-hematocrit) was used, which is the BP ratio
of similar compounds in humans (Greene et al., 1978). Also, this will not affectVss

predictions since BP is not included in the Kp equations for acids. Protein binding
was experimentally determined for all compounds (Table 2), with the exception
of caffeine due to caffeine contamination in all plasma samples. A caffeine fup
value of 0.72 was determined by averaging values found in the literature.

The log Pvo (log of the vegetable oil:buffer partition coefficient) was calculated
from log P using eq. 1 (Leo et al., 1971). This term is used to represent neutral
lipid partitioning in adipose tissue in the Kp,dPL method; however, it is not used in
the Kp,mem prediction method:

log  Pvo 5 1:115 × log  P2 1:35 ð1Þ

Microsomal Partitioning and Plasma Protein Binding. Equilibrium di-
alysis was used to determine the fup and fum for the probe drugs using a protocol
modified from prior studies (Kochansky et al., 2008; Curran et al., 2011; Di et al.,
2017). Human plasma was adjusted to pH 7.4 by adding 1 M HCl. For fum
determination, a 0.5 mg/ml rat liver microsomal solution was prepared from
a 20 mg/ml pooled rat liver microsome stock solution. For highly bound
compounds, a dilution method was used. Plasma was diluted using a 100 mM
phosphate buffer and 3 mM MgCl2 solution to either 50% or 10% plasma. A
50% dilution of plasma was used for warfarin, while a 10% dilution was used
for ketoprofen, nicardipine, glyburide, diclofenac, felodipine, and mibefra-
dil. Drug solutions (2 mM) in either plasma or microsomes were added to
wells on one side of the dialyzer, and blank 100 mM phosphate buffer with
3 mM of MgCl2 was added to the other side. The dialyzer plate was placed in
the plate rotator, set to a speed of approximately 22 rotations per minute, and
incubated for 22 hours at 37�C and 5% CO2. Liquid chromatography–
tandem mass spectrometry was used to determine the concentration of drug
in the buffer and the matrix.

The fraction unbound in a given matrix was determined by dividing the
concentration of drug on the buffer side by the concentration of drug on the matrix
side. For protein binding experiments using the dilution method, the fup value is
calculated by eq. 2:

fup5 5
1=D

½ð1=fu;dÞ2 1�1 1=D
ð2Þ

where D is the dilution factor; fu,d is the fraction unbound in plasma measured in
the diluted matrix; and fup is the fraction unbound in plasma.

Experimental fum values were measured at microsomal concentrations
between 0.5 and 2 mg/ml and converted to values for 1 mg/ml (eq. 3) (Austin
et al., 2002):

fu2 5
1

ðC2=C1Þ × ½ð12 fu1Þ=fu1�1 1
ð3Þ

where fu2 is the corrected unbound fraction;C2 is the 1 mg/ml microsomal protein
concentration;C1 is the microsomal protein concentration used in assay; and fu1 is

TABLE 2

Drug-specific parameters

Compound Class fup (n 5 4)a fum (n 5 4)a Log P pKa,a pKa,b BP Log Dvo CL Reference
l/h

Betaxolol B 0.50 (12%) 0.77 (3%) 2.81 14 9.4 2b 1.78 10.2 Riddell et al., 1987; Recanatini, 1992; Rodgers and
Rowland, 2007

Diltiazem B 0.26 (8%) 0.48 (2%) 2.7 14 7.7 1 1.88 97.5 Rekker and Mannhold, 1992; Obach, 1999; Ishihama et al.,
2002

Diphenhydramine B 0.44 (4%) 0.84 (4%) 3.27 14 8.98 0.74 2.30 43 Albert et al., 1975; Sangster, 1994; Hansch et al., 1995;
Obach, 1999

Metoprolol B 0.87 (17%) 0.80 (3%) 1.88 14 9.7 1.14 0.746 58.8 Hansch et al., 1995; Rodgers and Rowland, 2007
Mibefradil B 0.031 (11%) 0.034 (15%) 3.07 14 10.2 0.64 2.07 15.5 Welker et al., 1998; Nagar and Korzekwa, 2017
Nicardipine B 0.0024 (7%) 0.039 (12%) 3.82 14 8.6 0.71 2.90 31.2 Sangster, 1993; Rodgers and Rowland, 2007
Quinidine B 0.15 (8%) 0.815 (10%) 3.52 14 8.94 0.92 2.07 14 Sangster, 1994; Obach, 1999; Nagar and Korzekwa, 2017
Verapamil B 0.088 (20%) 0.37 (19%) 3.79 14 8.92 0.74 2.88 49 Sangster, 1994; Hansch et al., 1995; Robinson and Mehvar,

1996; Obach, 1999
Caffeine N 0.72c 0.98 (6%) 20.07 14 1.04 1.01 21.43 5.2 Hansch et al., 1995; Rodgers and Rowland, 2007
Diazepam N 0.012 (9%) 0.74 (4%) 2.82 14 3.4 0.64 1.79 1.33 Maguire et al., 1980; Sangster, 1993; O’Neil, 2006
Felodipine N 0.0017 (12%) 0.023 (27%) 3.86 14 5.07 0.7 2.95 41.7 Diez et al., 1991; Uchimura et al., 2010; Pandey et al., 2013
Fluconazole N 0.93 (14%) 0.94 (14%) 0.8 14 1.77 1 20.79 1.25 Debruyne et al., 1987; Debruyne, 1997; Rodgers and

Rowland, 2007
Midazolam N 0.033 (4%) 0.71 (4%) 3.15 14 6.01 0.53 2.16 18 Heizmann et al., 1983; Rodgers and Rowland, 2007
Phenytoin N 0.18 (7%) 0.83 (3%) 2.21 8.32 1 0.61 1.11 1.61 Stella et al., 1998; Brittain, 2007; Uchimura et al., 2010
Diclofenac A 0.0014 (18%) 0.78 (4%) 4.51 4.15 1 0.55 3.68 17.6 Sangster, 1994; Obach, 1999; Avdeef, 2003
Glyburide A 0.0012 (16%) 0.72 (9%) 4.29 5.38 1 0.57 2.59 4.81 Austin et al., 2002; Li et al., 2017
Ketoprofen A 0.0041 (9%) 0.95 (4%) 3.12 4.45 1 0.56 2.06 5.02 Sangster, 1993, 1994; Rodgers and Rowland, 2007; Ye

et al., 2016
Nafcillin A 0.123 (6%) 0.94 (14%) 2.7 2.6 1 0.55d 1.66 33.9 Wishart et al., 2018
Warfarin A 0.0076 (13%) 0.98 (16%) 2.7 5.05 1 0.55 1.66 0.179 Hiskey et al., 1962; Hansch et al., 1995; Obach, 1999

A, acids; B, bases; N, neutral; CL, clearance; vo, vegetable oil.
aAll 98 experimental values unless otherwise noted.
bRat BP was used.
cAn average of literature values was used.
d0.55 was used (1-hematocrit).
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the fraction unbound in matrix measured during the assay. The average fraction
unbound, S.D., and CV values were determined for each assay.

Simulations. A generic PBPK model was used, with different tissues
represented by 10 compartments (adipose, bone, brain, gut, kidney, liver, lungs,
muscle, skin, and spleen), representing the major tissues in the body (Fig. 1).
These compartments are linked via arterial and venous blood flows. TheKp values
were predicted for each of the tissues using both methods (Kp,dPL and Kp,mem).
The original Kp,dPL method uses two separate equations, one for acids, weak
bases, and neutrals, and another for moderate-to-strong bases (eqs. 4–7) (Rodgers
et al., 2005; Rodgers and Rowland, 2006).

The Kp,dPL equation used for prediction of Kpu for strong-to-moderate bases is

Kpu;tissue 5 few 1
11 10pKa;b 2 pHiw

11 10pKa;b 2 pHp
× fiw 1

KAP × ½AP� × 10pKa;b 2 pHiw

11 10pKa;b 2 pHiw

1P × fnl 1
ð0:3P1 0:7Þ × fnpl
11 10pKa;b 2 pHp

ð4Þ

where few is the fractional volume of extracellular water; fiw is the fractional
volume of intracellular water; [AP] is the concentration of acidic phospholipids in
the tissue;KAP is the association constant for acidic phospholipids in the tissue; fnl
is the fractional volume of neutral lipids; fnpl is the fractional volume of neutral
phospholipids; pKa,b is the basic ionization constant; and pKa,a is the acidic
ionization constant.

The Rodgers equation used for prediction of Kpu for acids, neutrals, and weak
bases is

Kpu;tissue 5 few 1
11 10pHiw 2 pKa;a

11 10pHp 2 pKa;a
× fiw 1

P × fnl 1 ð0:3P1 0:7Þ × fNP
11 10pHp 2 pKa;a

1

"
1
fup

2 12

�
P × fnl 1 ð0:3P1 0:7Þ × fNP

11 10pHp 2 pKa;a

�#
×
½PR�T
½PR�P

ð5Þ

where [PR]T/[PR]P is the plasma protein tissue (extracellular fluid) to plasma ratio,
and NP denotes neutral phospholipid.

For eq. 4, the association constant for blood cells (BCs) is defined in eq. 6, and
the tissue:plasma water partitioning coefficient for the BCs is defined in eq. 7:

Ka;BC 5

�
Kpu;BC 2

11 10pKa 2 pHBC

11 10pKa 2 pHp
fiw;BC 2

Pow × fnl;BC 1 ð0:3Pow 1 0:7Þfnp;BC
11 10pKa 2 pHp

�

×
�

11 10pKa 2 pHp

½AP2 �BC10pKa 2 pHBC

�
ð6Þ

Kpu;BC 5
BP1H2 1

H × fup
ð7Þ

The tissue:plasma partition coefficient (Kp) can be determined from Kpu by eq. 8:

Kp 5Kpu × fup ð8Þ

For the Kp,mem method we use the previously reported equation (Korzekwa and
Nagar, 2017a) that considers both phospholipid membrane partitioning with fum
and neutral lipid partitioning with P (eq. 9):

Kp;tissue 5 rð12 fupÞ1 fiw × fup ×
10pKa;b 2 7:0 1 107:02 pKa;a 1 1
10pKa;b 2 7:4 1 107:42 pKa;a 1 1

1 few × fup

1 fpl ×
10pKa;b 2 7:0 1 107:02 pKa;a 1 1
10pKa;b 2 7:4 1 107:42 pKa;a 1 1

× fup × a × LKL

1
fnl × fup × b × P

10pKa;b 2 7:0 1 107:02 pKa;a 1 1
ð9Þ

where r is the protein ratio between the tissue and plasma; fpl is the fractional
volume of phospholipid; LKL is the lipid binding constant; and a and b are
parameterized coefficients. Plasma and tissue pH values were assumed to be 7.4
and 7.0, respectively. As described previously for Vss predictions (Korzekwa and
Nagar, 2017a), the tissue-specific r values for bases were decreased by 2.23-fold
due to the lower amount ofa-acid glycoprotein in the extracellular fluid relative to
albumin (Rowland and Tozer, 2011).

Neutral lipid partitioning in adipose tissue is described by the vegetable
oil:water partition coefficient in the Kp,dPL method, which is generally
calculated from log P. In the Kp,mem prediction method log P is used directly.
The a and b terms in eq. 9 were parameterized using the tissue Kp values and
tissue composition data from Rodgers et al. (2005) and Rodgers and
Rowland (2006). We excluded zwitterions and combined neutral and acidic
phospholipids to obtain a fraction of the total phospholipids. Most fum values
were calculated with our previously reported model (Nagar and Korzekwa,
2017) since experimental values are not available for this data set. The log
Kpu values and the log of eq. 9 were used to fit a and b, with no additional
weighting (log transformation results in 1/Y weighting). Outliers were
identified using the BoxWhisker function (Frigge et al., 1989) in Mathema-
tica with outliers defined as .1.5 times the interquartile range. Another
model, which included an additional parameter for partitioning into adipose,
was evaluated but did not improve predictions. The lipid concentrations
multiplied by the lipid binding constant, L times KL, (LKL), was calculated
from fum with eq. 10, using fum values normalized to 1 mg/ml microsomal
protein:

LKL5L� KL 5
12 fum
fum

ð10Þ

Exposure overlap coefficients (EOCs) were used to quantify the ability to predict
the shape of the C-t profile (eq. 11) (Nagar et al., 2017). They are calculated by
determining the overlapping portion of the experimental and predicted C-t profile
curves and dividing that area by the experimental area under the curve (AUC).
Since the experimental clearance values were used for all predictions, both
experimental and predicted C-t profiles will have the same AUC. This allows the
EOC to be used as a direct comparison of curve shapes. Differences in the average
EOCs were determined using the t test:

EOC5
Overlapping area

AUC
ð11Þ

Vss Predictions. The Vss value was determined from the predicted Kp values
and physiologic volumes (eq. 12):Fig. 1. Scheme for the generic PBPK model used in this study.
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Vss 5Vp 1+Vt × Kp ð12Þ

where Vp is the plasma volume, and Vt represents the tissue volume.
Predicted Vss values were compared with observed values determined by

compartmental modeling. To evaluate the predictive precision of the two
methods, the absolute fold-error and absolute average fold error (AAFE) values
were determined for all compounds and different subsets. Significance of
differences in absolute fold errors were determined with a one-tailed t test. The
AAFE determines the geometric mean of the absolute fold error (eq. 13) and is
a measure of how precisely the two methods predict Vss:

AAFE5 10ð1=nÞ+logFE ð13Þ

where n is the number of drugs, and FE is the fold error.

Results

The parameters a and b in eq. 9 were fit to the experimental tissue
reported Kpu values for the rat (Rodgers et al., 2005; Rodgers and
Rowland, 2006). After sequential removal of 20 outliers (out of 401), the
optimized parameters were a5 13836 85 and b5 0.0966 0.029. The
predicted versus observed Kpu values for 381 drugs are shown in Fig. 2.
The R2 value for the fit was 0.80. There was no consistent characteristic
for the removed outliers with the exception of the overprediction of
phencyclidine in four tissues and the underprediction of basic com-
pounds in the lung (five drugs).
Figure 3 and Table 3 show the observed versus predicted Vss values

using either the Kp,dPL or Kp,mem prediction method. The accuracy of the
Vss predictions was analyzed by determining the percentage of
predictions within a range of absolute fold errors (Table 4) and AAFEs
(Table 5). For the total data set of 19 drugs, the Kp,mem and Kp,dPL

methods had comparable AAFE values (2.12 and 2.27, respectively).
The Kp,mem and Kp,dPL methods had one (mibefradil) and two
(diphenhydramine, felodipine) outliers, respectively. When these
were excluded, the AAFEs were again comparable.
Ten different categories are compared in Tables 4 and 5. For

predictions that were less than 1.5-fold error, Kp,mem scored higher in
five categories, lower in two categories, and the same in three categories
comparedwithKp,dPL (Table 4); for predictions that were less than 3-fold
error, Kp,mem scored lower in five categories and the same in five
categories compared with Kp,dPL. When comparing all 19 drugs, the
AAFEs with Kp,mem versus Kp,dPL were 2.12 versus 2.27, respectively
(Table 5). Across the 10 categories, the AAFEwas lower forKp,mem than
for Kp,dPL in eight categories. When outliers were excluded in each

method, the AAFE was lower for Kp,mem than for Kp,dPL in five
categories. For all categories listed in Table 5, there were no statistically
significant differences in average fold error between Kp,mem and Kp,dPL.
Simulations. An example of EOC calculation is shown in Fig. 4 for

verapamil. Concentration profiles were simulated for 19 drugs with both
Kp prediction methods (Figs. 5–7). EOCs were determined for all
19 drugs (Table 3). Overall, there was no significant difference in the
average EOC values for the Kp,mem or Kp,dPL method. However, there
were some interesting deviations between the methods. The C-t profiles
were poorly predicted by both methods for five drugs: mibefradil,
diazepam, felodipine, diclofenac, and nafcillin. In addition, the Kp,dPL

method poorly predicted the profiles for betaxolol and diphenhydra-
mine. Some possible explanations for these discrepancies are discussed
subsequently.
As discussed previously (Korzekwa and Nagar, 2017b), eqs. 5–7

indicate that the Kpu,tissue value, and ultimately the unbound Vss value,
should be proportional to Kpu,BC (eq. 7), which was first experimentally
observed by Hinderling (1997). Also, fup in the denominator of eq. 7 is
ultimately multiplied by fup in the PBPK framework (eq. 8). Therefore,
the predicted Vss values for bases should be relatively insensitive to fup
when using eqs. 4–7. The impact on the predicted Vss after a 2-fold
decrease in fup is shown in Table 6. As expected, changing fup for acids
has little effect since plasma protein binding is high and Vss is low.
For neutrals, a 2-fold decrease in fup results in an average 1.7-fold
increase in Vss for both methods. For bases, a 2-fold decrease in fup
results in an average 2-fold decrease in Vss for Kp,mem, but an average
1.05-fold increase with Kp,dPL.

Discussion

Tissue partition coefficients, and ultimately Vss, are determined
primarily by competition between plasma protein binding and lipid
partitioning. The Kp,dPL method considers binding to neutral lipids such
as triglycerides and neutral phospholipids in membranes, with acidic
phospholipids considered separately (Rodgers et al., 2005; Rodgers
and Rowland, 2006). The method assumes that neutral molecules only
interact with neutral phospholipids, and only ionized bases interact with
APs, an assumption questioned previously (Korzekwa and Nagar,
2017b). The major acidic phospholipid is phosphatidylserine and the
major neutral phospholipid is phosphatidylcholine. Although phospha-
tidylcholine is net neutral and phosphatidylserine is net acidic, both
molecules are zwitterions. Interactions between charged species in the
polar head group region are dynamic processes with conformational
changes occurring in a picosecond time frame (Tieleman et al., 1997).

Fig. 2. Observed vs. predicted rat Kpu values from eq. 10: blue, adipose; red, bone;
green, brain; purple, gut; light blue, heart; orange, kidney; magenta, liver; yellow,
lung; light green, muscle; brown, skin; black, spleen.

Fig. 3. Observed Vss value vs. predicted Vss value for 19 drugs: blue, Kp,dPL; red,
Kp,mem.
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Balaz (2009) compiled experimental data evaluating the orientation of
exogenous molecules in membranes. Hydrophilic molecules accumulate
in the polar head group region, amphiphilic molecules accumulate at the
interface, and hydrophobic molecules accumulate in the hydrophobic
core. We have used this concept to develop quantitative models for
membrane partitioning (Nagar and Korzekwa, 2017).
The Kp,mem model is based on previously reported Vss models

(Korzekwa and Nagar, 2017a). The Kp model described herein uses
the phospholipid component of tissues and fum to model membrane
partitioning and log P for neutral lipid interactions. Equation 9 was
parameterized using reported tissue composition data and tissue Kp

values (Rodgers et al., 2005; Rodgers and Rowland, 2006). Only two
constants were parameterized: the scaling factor for 1) membranes and
2) neutral lipids. Although the two methods use different mechanistic
assumptions, the resulting fit forKp,mem (Fig. 2) is similar to that reported
by Rodgers et al. (2005) for Kpu parameterization.
The volume of distribution is generally low for acids due to high

plasma protein binding and low partitioning into membranes and
neutral lipids. At physiologic pH, most acids are negatively charged,
andmembranes have few hydrogen bond donors. Therefore, microsomal
partitioning is low for acids, with fum values ranging from 0.72 to 0.98
(Table 2). Both the Kp,mem and Kp,dPL methods assume that only the

neutral acids partitions into tissues, and both methods predict Vss with
similar accuracy (AAFE 5 2.12 and 2.27 for Kp,mem and Kp,dPL,
respectively) (Table 5). This is expected since any model that restricts
a compound with low fup to the plasma and extracellular space
will predict a Vss value approximately equal to that of plasma proteins
(;7.5 l) (Rowland and Tozer, 2011). Underprediction of acids with Vss

values .9, e.g., nafcillin, is frequently observed (Chan et al., 2018).
Transporter activity (e.g., organic anion transporting polypeptides)
could be one reason for the underprediction.
When two outliers for the Kp,dPL analysis (diphenhydramine and

felodipine) are excluded, Vss predictions for neutrals using Kp,dPL

improved from an AAFE value of 2.82 to 1.91 (Table 5). For di-
phenhydramine, the Kp,dPL method resulted in a 6.9-fold underprediction
and Kp,mem gave a 3-fold underprediction (not an outlier). For felodipine,
Kp,dPL resulted in a 7.4-fold underprediction and Kp,mem gave a 4.3-fold
underprediction (not an outlier). The reason for these poor predictions is
unknown but it may be difficult to predictVss of a highly protein bound and
partitioned neutral compound (felodipine).
The Kp,mem method uses a single equation for bases, neutrals, and

acids and predicts Vss for bases with similar accuracy to Kp,dPL, which
uses different equations for bases (eqs. 5–7). TheKp,dPL method assumes
that ionized bases only interact with acidic phospholipids. This interaction

TABLE 3

Observed and predicted Vss and EOC values for both methods

Test Drug Observed Vss

Predicted Vss EOC

Kp,mem Method Kp,dPL Method Kp,mem Method Kp,dPL Method

l l l

Betaxolol 360 307 856 0.97 0.61
Diltiazem 306 320 309 0.76 0.80
Diphenhydramine 788 260 115 0.97 0.87
Metoprolol 274 429 217 0.76 0.87
Mibefradil 187 1470 53.2 0.81 0.82
Nicardipine 62 96.4 98.5 0.79 0.78
Quinidine 227 78.3 215 0.96 0.73
Verapamil 266 258 136 0.73 0.76
Caffeine 42.8 47.0 36.7 0.87 0.93
Diazepam 89.5 22.9 30.5 0.55 0.61
Felodipine 320 74.3 43.4 0.68 0.56
Fluconazole 59.3 83.4 49.1 0.85 0.99
Midazolam 51.2 64.1 113 0.82 0.71
Phenytoin 38.8 77.0 79.1 0.78 0.77
Diclofenac 9.23 7.98 7.89 0.84 0.84
Glyburide 11.78 10.2 10.0 0.86 0.87
Ketoprofen 9.9 8.54 8.47 0.89 0.89
Nafcillin 20.4 12.2 10.1 0.86 0.81
Warfarin 7.66 8.20 8.15 0.96 0.97

Average 0.82 6 0.11 0.80 6 0.12

TABLE 4

Fraction of drugs in which the predictions had less than 1.5-, 2-, and 3-fold error

Category
,1.5-Fold Error ,2-Fold Error ,3-Fold Error

Kp,mem Kp,dPL Kp,mem Kp,dPL Kp,mem Kp,dPL

All Compounds 10/19 9/19 14/19 11/19 15/19 16/19
Acids 4/5 4/5 5/5 4/5 5/5 5/5
Bases 3/8 3/8 5/8 5/8 6/8 6/8
Neutrals 3/6 2/6 4/6 2/6 4/6 5/6
Log P ,3 5/9 5/9 8/9 5/9 8/9 9/9
Log P .3 5/10 4/10 6/10 6/10 7/10 7/10
fum , 0.8 6/11 4/11 8/11 6/11 8/11 9/11
fum . 0.8 4/8 5/8 6/8 5/8 7/8 7/8
fup , 0.1 6/10 4/10 7/10 6/10 7/10 8/10
fup . 0.1 4/9 5/9 7/9 8/9 8/9 8/9
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is parameterized with BP, using the erythrocyte partition coefficient
to parameterize binding of the ionized base to acidic phospholipids.
Mechanistically, the assumption that bases bind only to acidic
phospholipids is questionable. Hydrophobic bases bind to neutral
phospholipids as well, with key interactions between the cation and
negatively charged phosphate, and the hydrophobic region with the
hydrophobic membrane core. From eqs. 5–7, it is clear that for
moderate-to-strong bases with Vss values greater than the total body
water, the Kp values are dominated by the acidic phospholipid binding
terms. Therefore, although binding to only acidic phospholipids was
assumed, a similar relationship is possible, assuming that ion-
ized bases bind to all phospholipids. The ratio of neutral to acidic
phospholipids is relatively constant across tissues (CV 5 15%)
(Rodgers et al., 2005), and total phospholipids can be substituted for
neutral phospholipids. The KBC term in eq. 6 would be smaller, but the
relevant phospholipid term in eq. 5 would be larger.
Another implication of using BP to predict Kpu for bases is the

insensitivity of Vss to measured fup. For acids, Vss is insensitive to fup
since tissue partitioning is minimal. TheVss values for bases are expected
to be proportional to fup since they partition heavily into tissues from the
unbound concentration in cytosol (assumed to be equal to the unbound
concentration in plasma). This is observed for Kp,mem but not for Kp,dPL

(Table 6). This is a consequence of using BP (which includes fup) to
calculate Kpu. The Vss predictions can be relatively accurate when BP is
used to predict Kp for bases, since errors in fup are not manifest and
unbound Vss for bases is proportional to erythrocyte partitioning
(Hinderling, 1997). However, errors in fup can still result in many other
inaccuracies, including in predictions of clearance and target activity.
Overall, the Kp,mem and Kp,dPL models give similarly accurate

predictions, explaining 68% and 63% of the variance in Vss (80% and

79% without outliers), respectively. Several factors may explain the
remaining variance. First, there can be significant variability in the Vss

values measured across clinical studies. Not all pharmacokinetic data
sets provide body weights. Also, experimental data from multiple
sources are used, e.g., BP values; for example, Graham et al. (2012)
observed a 7% decrease in accuracy when predicted instead of
experimental log P values were used. For fup, differences between
laboratories can be very large. Several recent publications discuss
assay conditions for protein binding, including dilution and use of
CO2 (Kochansky et al., 2008; Curran et al., 2011; Di et al., 2017). In
this study, we measured a value of fup of 0.03 for mibefradil, whereas
a value of ,0.005 was reported previously (Clozel et al., 1991). Use
of a smaller fup value would result in a better prediction with Kp,mem,
but exclusion of our data is not justified.
Lysosomal partitioning affects tissue distribution for bases. For

strong bases, partitioning into lysosomes due to pH differences results
in lysosomal concentrations .200 times cytosolic concentrations.
Assuming 5% lysosomes and 60% intracellular water in cells, partition-
ing of a strong base into lysosomes can increase the Kpu value by 6-fold.
As discussed previously, while lysosomal partitioning certainly occurs it
is likely to be highly correlated with phospholipid partitioning of bases
(Korzekwa and Nagar, 2017a). Finally, although the vegetable oil:water
partition constant would be a good surrogate for adiposomes if measured,
this value is typically modeled using log P, which is not necessarily
accurate (Korzekwa and Nagar, 2017b).
Transporter-mediated distribution can result in inaccurate predictions

of Kp and Vss, particularly for some acids. Organic anion transporting
polypeptide transporters can alter hepatic intracellular concentrations by
two orders of magnitude (Kulkarni et al., 2016). Therefore, uptake into
this organ alone can result in a 2-fold increase in Vss. Efflux transporters

TABLE 5

Absolute average fold error for Vss predictions using both the Kp,mem and Kp,dPL prediction methods

Category
AAFE AAFE (Excluding Outliers)

Kp,mem Kp,dPL Kp,mem Kp,dPL

All Compounds 2.12 2.27 1.80 1.70
Acids 1.24 1.32 1.24 1.32
Bases 2.52 2.45 1.76 1.82
Neutrals 2.32 2.82 2.32 1.91
Log P ,3 1.66 1.68 1.66 1.68
Log P .3 2.54 2.81 1.95 1.73
fum , 80% 2.36 2.41 1.81 1.92
fum . 80% 1.79 2.07 1.79 1.39
fup , 10% 2.45 2.42 1.84 1.86
fup . 10% 1.76 2.11 1.76 1.56

Fig. 4. Determination of the exposure overlap coefficients for verapamil: red line, simulated C-t profile using the Kp,mem method; blue line, simulated C-t profile using the
Kp,dPl method; green area, area of overlap.
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(e.g., P-glycoprotein and breast cancer resistance protein) will have
a smaller impact. The decrease in Vss due to P-glycoprotein and breast
cancer resistance protein at the blood-brain barrier would result in
a 2% decrease in Vss. The impact from the liver would be even smaller
since efflux transporters in the apical membrane would only decrease
liver concentrations by 50% (Korzekwa and Nagar, 2014).

Since the AUC is determined by experimental clearance and dose in
both methods, the AUC values for the simulations are normalized, and
the EOC captures differences in the shapes of the C-t profile (Fig. 4).
Several C-t profiles in Figs. 5–7 are not well predicted by either method.
Although there are differences in the EOC for some drugs, the
average EOCs for the Kp,mem and Kp,dPL prediction methods were not

Fig. 5. Observed and predicted C-t profiles for bases: red lines, simulated C-t profile using the Kp,mem method; blue lines, simulated C-t profile using the Kp,dPl method; solid
circles, experimental data.

Fig. 6. Observed and predicted C-t profiles for neutral molecules: red lines, simulated C-t profile using the Kp,mem method; blue lines, simulated C-t profile using the Kp,dPl

method; solid circles, experimental data.
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significantly different. Since clearance is constant, when the Vss value is
overpredicted (e.g., betaxolol using Kp,dPL and mibefradil using Kp,mem)
(Fig. 5), the terminal half-life is overpredicted. When the Vss value is
underpredicted (e.g., diphenhydramine using Kp,dPL) (Fig. 5), the
terminal half-life is underpredicted. Perhaps the most significant
deficiency of the reported modeling approaches is the assumption
of perfusion-limited distribution. As seen with diazepam, felodipine,
diclofenac, and nafcillin, accurate C-t profiles are not predicted even
when the Vss value is well predicted. For verapamil (Figs. 4 and 5), the
distribution phase is notwell predicted, presumably due to a combination
of using a perfusion-limited model and experimental clearance. Clearly,
multicompartmental distribution is not accurately modeled with
perfusion-limited distribution.
In conclusion,Kp,mem can be used to predictKpu with accuracy similar

to Kp,dPL. An advantage of using fum to parameterize membrane
partitioning is that fum is used for clearance prediction and is generated

early in the discovery/development process. Also, differentiating
between acidic and neutral phospholipids for bases and using 0.3P for
neutral compounds is not mechanistically justified. Finally, since both
the extent and rate of membrane partitioning and permeability are
important, a mechanistically sound basis for membrane interactions is
necessary for improved PBPK models.
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