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Summary

Emerging evidence indicates a central role for the microbiome in immunity. However, causal 

evidence in humans is sparse. Here we administered broad spectrum antibiotics to healthy adults 

prior and subsequent to seasonal influenza vaccination. Despite a 10,000-fold reduction in gut 

bacterial load and long-lasting diminution in bacterial diversity, antibody responses were not 

significantly affected. However, in a second trial of subjects with low pre-existing antibody titers, 

there was significant impairment in H1N1-specific neutralization and binding IgG1 and IgA 

responses. In addition, in both studies antibiotics treatment resulted in: (i) Enhanced inflammatory 

signatures (including AP-1/NR4A expression), observed previously in the elderly, and increased 

dendritic cell activation; (ii) Divergent metabolic trajectories, with a 1000-fold reduction in serum 

secondary bile acids which was highly correlated with AP-1/NR4A signaling and inflammasome 

activation. Multi-omics integration revealed significant associations between bacterial species and 

metabolic phenotypes, highlighting a key role for the microbiome in modulating human immunity.

Graphical Abstract
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Introduction

Trillions of bacteria reside in our guts, outnumbering the eukaryotic cells in our bodies by a 

factor of 10 to 1 (Savage, 1977). Emerging evidence suggests a potent role for this microbial 

community, our so called ‘second genome’, in shaping physiology through its diverse effects 

on host metabolism (Nicholson et al., 2012; Sonnenburg and Backhed, 2016), enteric 

immunity (Belkaid and Hand, 2014; Steinhoff, 2005), autoimmune and allergic 

inflammation (Kostic et al., 2014; Mitre et al., 2018; Scher et al., 2013), and even 

communication with the central nervous system (Carabotti et al., 2015). In addition to 

promotion of autoimmunity and allergy, variations in microbiome composition have been 

linked to reduced efficacy in various immune interventions, including prevention of HIV 

infection (Klatt et al., 2017) and anti-PD1 cancer immunotherapy (Gopalakrishnan et al., 

2018; Routy et al., 2018; Zitvogel et al., 2018).

However, much of the evidence in support of the microbiome’s impact on the immune 

system comes from work in mouse models or correlative studies in humans (Belkaid and 

Hand, 2014; Keeney et al., 2014), and there remains little causal evidence for the impact of 

deliberate perturbations in the microbiome on the physiological states of humans during 

disease and health. Developing a more comprehensive understanding of the mechanisms by 

which the microbiome can shape human physiology is critical in order to harness the 

microbiome-host axis in the therapeutic modulation of immune disorders. This is 

particularly relevant in the context of vaccination, since the efficacy of many vaccines is 
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known to vary significantly by geographical region (Collins and Belkaid, 2018; Levine, 

2010; Littman, 2018), and microbiome composition is also strongly geographically 

dependent (Yatsunenko et al., 2012). Understanding how the gut microbiota can impact 

responsiveness to vaccination therefore has significant implications for increasing vaccine 

efficacy and improving global public health.

In order to improve our understanding of the biological mechanisms responsible for 

protective immune responses, immunologists have begun to use high-throughput cellular and 

molecular technologies to comprehensively profile responses to vaccination in the nascent 

field of systems vaccinology (Hagan and Pulendran, 2018; Pulendran, 2014; Pulendran et 

al., 2010; Rappuoli et al., 2018). One biologically significant observation to arise from such 

studies was the identification in our analysis of immune responses to seasonal influenza 

vaccine of an association between expression of TLR5, a toll-like receptor capable of 

recognizing bacterial flagellin, on day 3 post-vaccination and the subsequent magnitude of 

the day 28 antibody response (Nakaya et al., 2011). This finding prompted follow-up 

experimentation in antibiotics-treated and TLR5 knockout mice which demonstrated that 

abrogation of TLR5-mediated sensing of flagellin from the intestinal microbiota resulted in 

impaired plasma cell and antibody responses to inactivated influenza vaccination (Oh et al., 

2014). This established a potential role of the gut flora in influencing humoral responses to 

vaccines.

Thus, in order to understand if antibiotics-driven depletion of the gut flora can influence 

responses to vaccination in humans, here we performed extensive profiling of innate and 

adaptive immune responses in antibiotics-treated and control subjects vaccinated with the 

trivalent inactivated influenza vaccine (TIV) over two separate seasons. We show that the 

profound antibiotics-driven perturbation of gut microbiome resulted in a significant impact 

on the H1N1-specific IgG1 response in subjects with low pre-existing immunity to 

influenza. Furthermore, antibiotics treatment had a striking effect on the plasma 

metabolome, with microbiome-associated disturbances in bile acid metabolism highly 

correlated with elevated cellular and transcriptional signatures of inflammation. Taken 

together these findings reveal unappreciated roles for the microbiome in modulating human 

immunity.

Results

Antibiotics use results in a profound reduction in gut bacterial load and persistent 
changes in bacterial diversity

To investigate the role of the human gut microbiota in shaping immune responses to seasonal 

influenza vaccine, during the 2014-2015 season we enrolled a total of 22 healthy individuals 

aged 18-45. We randomized 11 subjects to a five-day broad-spectrum antibiotic regimen 

consisting of an oral cocktail of neomycin, vancomycin, and metronidazole, with the aim of 

depleting gram-negative (neomycin), gram-positive (neomycin and vancomycin), and 

anaerobic (metronidazole) bacteria in the gastrointestinal tract. Antibiotic treatment 

extended from three days prior to vaccination until one day after. We collected biological 

samples at regular intervals up to one year after immunization and measured key aspects of 

the immune system as indicated (Figure 1A).
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We began our analysis by quantifying the effect of antibiotic use on the gut microbiota. On 

the day of vaccination, antibiotics-treated subjects showed a three to four-log reduction in 

the total number of 16S rRNA copies per gram of stool, a surrogate measure of the relative 

abundance of bacteria in the gut (Figure 1B). On day 1 (the last day of antibiotics) the total 

bacterial content in the antibiotic administered cohort reached its nadir, before gradually 

recovering to baseline levels between days 7 and 30. In accord, we found that fecal 

concentrations of both flagellin and LPS were also significantly reduced at early time points 

after antibiotic administration with similar kinetics (Figure 1C, D). As expected, the control 

group did not show significant changes in 16s copy numbers, flagellin, or LPS 

concentrations over time (Figure 1B-D).

Given the profound contraction in total bacterial load, we asked which bacterial species were 

most affected. Family-level analysis revealed striking changes in microbial community 

composition, with relative abundances significantly altered up to one month post antibiotics 

use. Enterobacteriaceae dominated the gut microbiota of treated subjects at days 0, 1, and 3, 

although two individuals in this cohort appeared to resist disturbance and did not show 

evident signs of alteration in numbers or composition of their microbiota overall (Figure 

1E), likely related to questionable compliance with antibiotics. By day 7, Enterobacteriaceae 

remained elevated in several subjects, albeit in lower proportions. Streptococcaceae were 

also more abundant at early time points, while Lachnospiraceae, Ruminococcaceae, 

Bacteroidaceae, and Veillonellaceae diminished between days 0 and 3. By day 30, relative 

levels of Lachnospiraceae, Enterobacteriaceae and Ruminococcaceae remained perturbed 

but eventually returned to baseline by day 90 (Figure 1E and Table S1).

We also quantified differences in overall microbial community structure through principal 

cooordinates analysis (PCoA) of the beta (between-sample) diversity (Figure 1F). On day 0, 

samples from the antibiotic cohort had diverged from controls, with the largest distance 

between the two groups measured on day 3. Interestingly, at day 180 the microbial 

composition of the two groups still showed substantial dissimilarity, suggesting only partial 

recovery of the original microbial composition in the antibiotic group. We also examined 

alpha (within-sample) diversity to compare microbial richness and evenness in the antibiotic 

group samples pre- and postantibiotics. Both measures were heavily compromised after the 

use of antibiotics, with the smallest number of different OTUs recorded on day 3 (Figure 

1G). Notably, species richness and biodiversity were not fully recovered at six months, 

indicating long-lasting loss of unique bacterial species, consistent with previous studies 

(Becattini et al., 2016; Dethlefsen and Relman, 2011; Modi et al., 2014).

Effect of antibiotics on antibody responses to influenza vaccination

We next examined how the profound and durable effect on the gut microbiota impacted 

adaptive immune responses to TIV immunization. First, we evaluated the serum antibody 

responses of vaccinated individuals by measuring microneutralization (MN) titers. We found 

that both cohorts had similar MN titers for each of the three influenza strains included in the 

vaccine at all time points, suggesting that antibiotics-induced perturbation of the gut 

ecosystem did not significantly alter the ability of TIV-specific antibodies to neutralize 

homologous vaccine strains in vitro (Figure 2A). Analysis of seroconversion rates on day 30, 
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which describe the proportion of subjects who developed a ≥ 4-fold increase in titer between 

pre- and post-vaccination sera, also showed comparable results between the two groups 

(Figure S2A). However, we noticed a generally low percentage of seroconversion overall, 

possibly due to high baseline titers observed for some subjects.

To determine if the lack of impact on antibody responses was due to pre-existing immunity 

to influenza, one year later we enrolled 11 additional subjects whose MN titers before 

vaccination were ≤ 320 for each of the three vaccine strains contained in the 2015-2016 TIV 

formulation, and who did not receive TIV in the prior three influenza seasons. Five of these 

individuals were randomized to receive the same antibiotics regimen as in phase 1. A 

comparison of MN titers at baseline for the participants in the two phases of our study is 

presented in Table S2. Importantly, the gut microbiome of the five subjects in the phase 2 

antibiotic group suffered decreased microbial richness and diversity in a similar fashion to 

phase 1 individuals (Figure S1A-C). However, in this second experiment we also found an 

impairment in the H1N1 A/California-specific neutralization on day 90 and day 180 post 

vaccination for the subjects in the antibiotic group, while no differences were observed for 

the other two influenza strains (Figure 2B). Predictably, given the lower baseline titers, 

seroconversion rates were much higher in the second cohort and reached 100% in both 

control and antibiotics groups for two out of three vaccine strains (Figure S2B).

Remarkably, we also noticed that the antibiotics-treated subjects in phase 2 exhibited 

significantly reduced concentrations of vaccine-induced IgG1 antibodies specific to the 

H1N1 A/California strain (Figure 2C, right panel) on day 7, as measured by ELISA. This 

was in contrast with phase 1, where the magnitude of IgG1 response was not strongly 

affected by antibiotic treatment (Figure 2C, left panel). In an effort to confirm these results, 

we asked an independent laboratory to validate our initial findings using a high-throughput 

Luminex-based assay (Brown et al., 2012). There was a striking correlation between the two 

independent measurements, with antibiotic-treated subjects in phase 2 showing a significant 

impairment in the production of H1N1-specific IgG1 titers on days 7 and 30 post 

vaccination by Luminex assay (Figure 2D-E), thus confirming our previous results. In 

agreement with the ELISA data, no significant effect of antibiotic treatment on IgG1 

production was detected for phase 1 participants by Luminex (data not shown). While 

vaccine-induced IgG1 production accounts for the vast majority of total IgG responses 

specific to influenza (Frasca et al., 2013), we asked whether the concentration of other IgG 

subclasses would be affected by antibiotic treatment, but found no significant effect on IgG2 

(Figure S2C) or IgG3 antibodies (data not shown). Importantly, antibody affinity to the 

H1N1 A/California strain was also altered as a consequence of antibiotic use (Figure 2F).

The marked effects of antibiotic treatment on the magnitude of vaccine-induced antibody 

responses were not confined to IgG1 only. Using surface plasmon resonance (SPR), we 

detected lower H1N1-specific IgA antibody responses in the phase 2 antibiotic group before 

and after vaccination (Figure 2G). These differences were again confirmed by Luminex 

(Figure 2H-I) and not observed in the phase 1 antibiotic group (Figure S2D).

We next asked whether other important aspects of adaptive immunity were also affected. 

Seasonal influenza vaccination results in the differentiation of antigen-specific B cells into 
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plasmablasts (PBs) (Wrammert et al., 2008) and “activated B cells” (ABCs) which are 

committed to the memory B cell pathway (Ellebedy et al., 2016). We assessed the 

frequencies of vaccine-specific PBs and ABCs in the blood and observed no difference 

between control and antibiotics-treated groups (Figure S3A-C). In addition, we assessed the 

frequencies of blood follicular T cell (Tfh)-like cells, which are crucial for providing B cell 

help (Crotty, 2014), and observed no differences (Figure S3D). Furthermore, we examined 

the possible effects of antibiotic use on B cell somatic hypermutation (SHM) by sorting 

single vaccine-induced PBs 7 days after vaccination and generating TIV-reactive human 

monoclonal antibodies (hmAbs) from antibiotics-treated subjects in both phases of our 

study. We then compared the number of mutations in light and heavy chains to those in flu-

positive hmAbs isolated from control subjects, or from healthy controls who received a 

quadrivalent influenza vaccine (QIV) for the 2014-2015 flu season, but found no significant 

differences (Figure S3E). Taken together these results demonstrate that disturbance of the 

gut microbial community can impair antibody responses to influenza vaccination in absence 

of significant pre-existing humoral immunity.

Impact of antibiotics use on vaccine induced blood transcriptional signatures

In order to evaluate the potential impact of antibiotic use on the magnitude and kinetics of 

vaccine-induced transcriptional responses, we identified differentially expressed genes in 

each cohort on days 1-7 post-vaccination, relative to day 0 (day of vaccine administration) 

(Figure 3A). The response kinetics were the same in both groups: vaccine-induced changes 

in gene expression peaked at day 1, then decreased by day 3, and had a second increase at 

day 7. The control group had a modest increase in differentially expressed genes at all time 

points relative to the antibiotics group, potentially due to a slightly higher number of 

subjects (17 versus 15).

We then ran Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) to identify 

the transcriptional pathways regulated in response to TIV in both groups (Figure 3B). For 

this, we utilized a set of blood transcriptional modules (BTMs) identified previously by our 

group through large-scale network integration of publicly available human blood 

transcriptome datasets (Li et al., 2014). Both control and antibiotics-treated subjects 

exhibited very similar enrichment patterns. These patterns were also maintained between 

phases 1 and 2, suggesting that antibiotics treatment does not strongly alter the 

transcriptional pathways induced by vaccination even in subjects with low pre-existing titers 

(Figure S4A). On day 1, we observed enrichment of modules associated with the innate 

immune response, including dendritic cell activation, antigen presentation, and interferon 

signaling. By day 7 a signature of the adaptive response emerged, with enrichment of cell 

cycle and plasma cell-related modules reflecting the expansion of plasmablasts. These 

observations were consistent with the activated pathways identified in our analysis of 

healthy adult vaccinees in previous influenza seasons (Nakaya et al., 2015). We further 

examined the temporal profiles of the individual genes involved in these canonical influenza 

vaccine response pathways, and saw no effect of antibiotics use on the kinetics or magnitude 

of gene expression related to interferon signaling (Figure 3C) or plasma cell and 

immunoglobulin expression (Figure 3D). Collectively these findings suggest that antibiotics-

treatment has little effect on transcriptional responses to influenza vaccination.
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Antibiotics use induces pro-inflammatory transcriptional and cellular responses in blood

We next explored whether administration of antibiotics alone could induce changes in the 

blood transcriptome. We performed GSEA based on changes in gene expression in 

antibiotics-treated subjects between the screening and day 0 time point (Figure 4A). We 

identified expression changes in a substantial number of modules following antibiotics use, 

including increases in inflammatory signaling and activation of dendritic cells, and decreases 

in B cell and cell cycle-related expression, which were largely consistent in both phases of 

the study (data not shown). We also measured frequencies of several innate immune cell 

populations by flow cytometry, and observed significant increases in two dendritic cell 

subsets, CD80+ CD16+ mDCs and CD123++ pDCs, post-antibiotics (Figure 4B). These 

changes were consistent with the enrichment in dendritic cell activation detected by gene 

expression (Figure 4A). Both populations were elevated in antibiotics-treated subjects 

throughout the course of antibiotics (days 0 and 1) and began to return to control levels 

following the cessation of antibiotics, further suggesting that these changes were driven by 

the antibiotics-induced perturbations in the gut microbiome.

Of particular interest among the pathways activated in response to antibiotics were several 

modules associated with AP-1 (FOS/JUN) and Nur (NR4A) transcription factors (Figure 

4C-D). These modules remained elevated in antibiotics-treated subjects on day 1 post-

vaccination, whereas they were downregulated in control subjects following vaccination 

(Figure 4C). Surprisingly, when we compared the kinetics of these modules to those from 

young and elderly adults vaccinated during the 2010-2011 influenza season (light blue and 

maroon bars, respectively) (Nakaya et al., 2015), we observed that while young subjects 

showed decreased expression of these modules on day 1 as in the control subjects, 

antibiotics-treated subjects behaved similarly to elderly vaccinees, who exhibited 

upregulation of these pathways postvaccination. These modules also included several pro-

inflammatory cytokines, including IL6, IL8, and CXCL2, which were induced following 

antibiotics (Figure 4D). To further explore the potential role of AP-1 and NR4A in 

regulating these transcriptional responses, we identified putative target genes of these 

transcription factors either in the TRANSFAC database (Matys et al., 2003) or through 

literature search. We observed strong correlations between these transcription factors and 

several of their respective target genes on day 1 (Figure 4E). These results indicate that 

antibiotics-driven depletion of the gut microbiome may drive inflammatory signaling in 

innate immune cells in a manner consistent with age-associated changes in immune 

responses.

Antibiotics use perturbs the blood metabolome

The gut microbiota is well known to play an important role in the metabolism of various 

nutrients in the diet, including aiding in the digestion of complex carbohydrates and 

synthesis of vitamins (Levy et al., 2017; Nicholson et al., 2012; Tremaroli and Backhed, 

2012). Therefore, we sought to examine whether we could detect changes in the blood 

metabolome of subjects following antibiotics use through untargeted high-resolution 

metabolomics. Antibiotics-treated subjects did display a large perturbation in their 

metabolome relative to control subjects as measured by Euclidean distance between the 

screening and day 0 time points over the most variable metabolite features (Figure 5A). 
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Enrichment analysis of differential features using mummichog software (Li et al., 2013) 

revealed antibiotics-induced changes in multiple pathways, including bile acid metabolism 

and metabolism of tryptophan (Figure 5B). This is consistent with established functions of 

the gut microbiota in regulating the bile acid pool (Ridlon et al., 2014) as well as in the 

control of tryptophan metabolism towards indole, kynurenine, and serotonin pathways (Agus 

et al., 2018). Because our untargeted approach is unable to reliably identify specific 

metabolites, we performed an independent liquid chromatography-mass spectrometry (LC-

MS) analysis using validated chemical standards to further characterize changes in 

individual bile acids following antibiotics-treatment. Because the microbiota is responsible 

for converting primary bile acids synthesized in the liver to secondary bile acids in the gut 

(Ridlon et al., 2006), we expected to see an increase in the ratio of primary to secondary bile 

acids following antibiotics treatment. Indeed, there was an elevation of primary and dramatic 

reduction in secondary bile acid levels in the serum of antibiotics-treated subjects (Figure 

5C).

Next, we investigated the impact of gut microbiome depletion on the metabolic response to 

influenza vaccination. In control subjects, metabolic changes in response to vaccination 

peaked at day 1 (Figure 5D). Antibiotics-treated subjects had similar magnitude of response 

at day 1, however they maintained a large shift in their metabolome beyond control subjects, 

and still exhibited considerable differences compared to day 0 at day 7 post-vaccination. 

When we examined the enriched metabolic pathways following vaccination, we observed 

very little overlap in enriched pathways between the two groups (Figure 5E). Thus, 

antibiotics significantly altered the metabolic response to influenza vaccination in the blood.

To further explore the differences in metabolic responses, we performed a principal 

component analysis (PCA) on fold change values of differentially abundant metabolite peaks 

(p<0.01) in either group across all time points. Indeed, antibiotics-treated subjects showed 

profoundly altered metabolic trajectories relative to control subjects, both before and after 

vaccination (Figure 5F). These differences were observed in both phases of the study (Figure 

S4C). Importantly, we note that the two antibiotics-treated subjects whose trajectories 

grouped with control subjects were the same subjects who displayed little change in their 

microbiome (Figure 1), suggesting poor compliance with the antibiotic regimen.

Perturbation of secondary bile acids is associated with elevated NLRP3 inflammasome 
signaling in antibiotics-treated subjects

Given that the loss of intestinal microbiota strongly altered the plasma metabolome, we 

wanted to explore potential connections between this metabolic disturbance and the cellular 

and transcriptional changes we observed following antibiotics treatment (Figure 4). In 

particular, dysbiosis of bile acid metabolism, which was significantly altered in antibiotics-

treated subjects, has been associated with inflammatory bowel diseases (IBD) (Pavlidis et 

al., 2015) and could potentially play an immunomodulatory role in this setting. Indeed, 

integrative analysis of the transcriptomic and metabolomic data showed significant inverse 

correlations between the levels of individual secondary bile acids and many of the 

inflammatory BTMs identified in Figure 4 which were induced following antibiotics-

treatment (Figure 6A). Lithocholic acid (LCA), which showed a 1,000-fold reduction in the 
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plasma following antibiotics treatment (Figure 6E), had the strongest association with 

inflammatory responses, including modules involved in AP-1 signaling such as M35.0, 

which was upregulated post-vaccination in antibiotics-treated subjects (Figure 6C) but 

downregulated in control subjects (Figure 6D). LCA is the most potent agonist of the bile 

acid receptor TGR5 (Kawamata et al., 2003), and TGR5 signaling has been shown to inhibit 

activation of the NLRP3 inflammasome in mice (Guo et al., 2016). Furthermore, AP-1 is 

known to play a critical role in the IL-1B-mediated induction of pro-inflammatory cytokines 

such as IL-6 (Cahill and Rogers, 2008). As such, we also investigated expression changes in 

genes related to inflammasome and IL-1B signaling and found robust associations with LCA 

and other secondary bile acids (Figure 6A-B). These findings highlight a potential 

mechanism by which the microbiome may regulate inflammatory responses in humans.

MMRN analysis suggests the gut microbiome regulates inflammatory signaling and 
antibody responses to vaccination through distinct pathways

The gut microbiome can impact immune responses directly through translocation of 

microbial stimuli to systemic compartments (Brenchley et al., 2006), or indirectly via 

secondary messengers such as metabolites. We thus measured the concentrations of flagellin 

and anti-LPS antibodies in the serum (Figure S1D-F), but could find no differences between 

control and antibiotics-treated subjects, arguing against translocation of microbial products 

to the periphery. To explore the putative indirect effects, we constructed a multiscale, 

multifactorial response network (MMRN) as described previously (Li et al., 2017) (see also 

STAR Methods and Figure S5) which integrated transcriptional, metabolic, microbiomic, 

and cellular measurements to identify associations between these data types during 

antibiotics use and influenza vaccination. Bacteria-metabolite associations dominated the 

most significant associations in the network (Figure 7A), demonstrating the substantial 

capability of the gut microbiome to shape host metabolism.

Next, to identify the network nodes most associated with the observed differences in bile 

acid metabolism and H1N1-specific IgG1 responses, we queried the network through an 

enrichment-based approach using features ranked by correlation of their day 0 versus 

screening fold change with either the antibiotics-induced change in LCA or the day 30 

abundance of H1N1-specific IgG1 (Figure 7B). In agreement with our previous analysis, 

there was a strong negative association between decreases in LCA and increases in 

transcriptional cluster G3, containing many BTMs involved in inflammatory responses, 

dendritic cell activation, and AP-1 signaling. Furthermore, LCA was also closely associated 

with metabolite cluster M79 which was enriched in bile acid biosynthesis, suggesting that 

our untargeted metabolomics analysis was accurately capturing the metabolic pathways 

altered by perturbation of the microbiome.

Despite disturbances in both bile acid metabolism and IgG1 responses in antibiotics-treated 

subjects, there was little overlap in metabolic and transcriptional clusters associated with 

both LCA and H1N1-specific IgG1 abundance. There was a sole metabolite cluster, M84, 

enriched in androgen and estrogen metabolism, which was negatively associated with both 

parameters. Consistent with this low overlap, IgG1 titers were weakly correlated with 

changes in abundance of bile acids (data not shown). Instead, commonly associated features 
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were dominated by bacteria, with three bacterial clusters positively associated with both 

parameters. Composition analysis of these clusters showed a high degree of membership in 

families Lachnospiraceae and Ruminococcaceae (Figure 7C), both of which were drastically 

reduced following antibiotics treatment (Figure 1E). Interestingly, among the clusters 

associated uniquely with IgG1 response were two clusters highly enriched in fatty acid 

metabolism (M26 and M58), which is emerging as a key regulator of immune function 

(Ganeshan and Chawla, 2014; Sinclair et al., 2017).

The central role of bacterial clusters in the network prompted us to further examine the 

importance that gut bacterial content has on these two pathways. Indeed, changes in LCA 

were strongly associated with bacterial load, flagellin, and LPS content in the stool (Figure 

7D) and the abundance of H1N1-specific IgG1 also significantly correlated with decreases 

in flagellin post-antibiotics treatment (Figure 7E). Interestingly, this positive correlation 

between flagellin and IgG1 titers was only significant in phase 2 subjects with low baseline 

titers, highlighting the resilience of immune memory to severe dysbiosis. Together, these 

results suggest that secondary bile acid-associated inflammatory signaling and impaired 

IgG1 responses to influenza vaccination arise as independent effects mediated by antibiotics-

driven loss of key bacterial communities in the gut.

Discussion

By performing this trial in two separate cohorts with differing baseline levels of neutralizing 

antibodies, we were able to gain insight into the impact of pre-existing humoral immunity on 

microbiome-mediated changes in adaptive response to vaccination. In subjects with high 

baseline titers there was minimal impact on the antibody response, but in the second cohort 

of subjects with low baseline titers we observed a striking impact of antibiotics treatment on 

the amount of H1N1-specific IgG1 following vaccination. Noticeably this effect was only 

observed with the response to H1N1 and not against the other strains. The reason for this is 

unclear at present, but it is possible that H3N2 and B antibodies responses following 

vaccination in adults are primarily recall memory responses. Recent work has shown adults 

have high H3N2 and B subtype memory due to prior exposure by vaccination or infection 

(Khurana et al., 2019).

These results provide important context to our previous findings in mice (Oh et al., 2014), 

where loss of TLR5-mediated sensing of flagellin through TLR5 knockout or antibiotics 

administration resulted in significant reduction in antibody titers following influenza 

vaccination. The mice used in these studies were naïve to influenza, whereas virtually all 

humans have been previously exposed, and it is possible that the mechanisms involved in 

recall responses are more resilient to changes in the gut microbiota as compared to a primary 

response. These results highlight the true adaptive nature of the human immune system, 

which appears able to largely maintain appropriate response to stimulus or challenge despite 

significant physiological disturbances consequent to perturbations in the microbiome. This 

also highlights the importance of immune memory and the environment in shaping the 

immune system. Previous work has shown that immune variation within the human 

population is driven primarily by environmental factors such as prior immune exposure, 

rather than genetic factors (Brodin et al., 2015). The results of this study are consistent with 
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the concept of immune responses in adults being largely determined by immune history and 

resilient to transient changes in the microbiome. However, it will be extremely important in 

the future to extend such types of analyses to infant populations, where the immature state of 

the immune system may be more susceptible to such perturbation, and not subject to 

imprinting. This is already evinced by reports of correlation between autoimmune disorders 

such as asthma and type 1 diabetes and delivery method-associated gut microbial differences 

in infants (Dominguez-Bello et al., 2010; Giongo et al., 2011; Thavagnanam et al., 2008)

With regards to innate immune responses, we observed that antibiotics-administration alone 

induced significant cellular and transcriptional changes within the immune system, 

promoting a pro-inflammatory state. Integrative analysis revealed a strong association of 

these inflammatory responses with decreases in bacterial-mediated production of secondary 

bile acids. In addition to TGR5-mediated inhibition of the NLRP3 inflammasome (Guo et 

al., 2016), secondary bile acids such as LCA have also been shown to suppress pro-

inflammatory cytokine production and NFkB target expression through binding to both the 

vitamin D receptor (Bakke and Sun, 2018; Makishima et al., 2002) and pregnane X receptor 

(Shah et al., 2007; Staudinger et al., 2001). Together, these results suggest that the 

inflammatory responses detected in peripheral blood following antibiotics treatment are 

driven by increased inflammasome signaling as a consequence of impairments in bile acid 

metabolism by the gut flora.

Interestingly, the pro-inflammatory state induced by antibiotics-administration showed 

similarity to early transcriptional responses to influenza vaccination in elderly adults. The 

composition of the microbiome is known to change with age, with decreases in the phylum 

Firmicutes and overall diversity (Salazar et al., 2017). The impact of age-related changes in 

the microbiome on bile acid metabolism is not well established (Frommherz et al., 2016), 

but there is evidence that the gut microbiota of elderly subjects are less capable of producing 

other immunomodulatory metabolites, such as short-chain fatty acids (Rampelli et al., 2013). 

These upregulated pathways (AP-1 and NR4A signaling) are also known to be triggered by 

bacterial LPS, and gut permeability has been shown to increase with age in mice 

(Thevaranjan et al., 2017). Further investigations into the direct and indirect mechanisms by 

which gut microbiota can influence the immune system in the elderly would be of value in 

understanding how age-associated changes in the microbiome can contribute to chronic 

inflammation and immunosenescence.

Finally, we constructed a MMRN which integrated responses to antibiotics treatment and 

influenza vaccination across multiple data types. The findings suggest that the microbiome 

modulates bile acid metabolism and its consequent effects on inflammation through a 

different mechanism from its impact on antibody responses. Interestingly, the IgG1 response 

was significantly associated with two metabolic clusters highly enriched in fatty acid 

metabolism, which is emerging as an important orchestrator of immune responses 

(Ganeshan and Chawla, 2014). These results highlight the capability of the microbiome to 

exert diverse effects on immune function, not only through direct interaction with immune 

cells in the gut, but also through indirect mechanisms such as regulating the systemic 

availability of critical metabolites.
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Here we have demonstrated the potential for antibiotic-driven perturbation of the 

microbiome to influence immune responses to vaccination in healthy adults. As antibiotics 

and vaccines represent two of the most widely used medical interventions, this has important 

implications for clinical practice and public health. These findings should inform further 

research seeking to better understand mechanisms that control the interplay between the gut 

microbiota and our immune system.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Bali Pulendran (bpulend@stanford.edu). This study did not 

generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

During the 2014-2015 and 2015-2016 seasons, we enrolled a total of 33 healthy adults who 

were randomized into antibiotics-treated (n=16) and control (n=17) groups. Subjects were 

males and non-pregnant females between the ages of 18-40 who met the eligibility criteria as 

listed on clinicaltrials.gov (). Subject demographics are listed in Table S4. The antibiotics 

treatment consisted of a cocktail of neomycin, vancomycin, and metronidazole, all given 

orally, for five days. Antibiotic treatment started 3 days before the day of vaccination and 

continued until one day after for the antibiotics-treated group. All the study participants 

were vaccinated with Fluzone for the 2014-2015 or 2015-2016 season. Written informed 

consent was obtained from each subject and protocols were approved by Institutional 

Review Boards of Emory University.

METHOD DETAILS

Treatment protocol and specimen collection—This study was conducted in Atlanta, 

GA and consisted of two separate phases. In phase 1, a total of 22 subjects were enrolled in 

spring of 2015 and randomized into antibiotics-treated (n=11) and control (n=11) groups. In 

phase 2 conducted in the spring of 2016, subjects who did not receive IIV in the past 3 

influenza seasons, were pre-screened for MN titers < 320 for at least two out of the three 

influenza strains contained in the vaccine. A total of 11 subjects in phase 2 were enrolled 

and split into antibiotics-treated (n=5) and control (n=6) groups. All subjects but one (in 

whom we were unable to obtain pre-vaccination blood sample) were vaccinated with a 

trivalent influenza vaccine (TIV). The influenza strains contained in the vaccines are listed 

in Table S5. The antibiotic regimen consisted of a cocktail of three different antibiotics, 

neomycin sulfate (500 mg three times a day), vancomycin (125 mg four times a day), and 

metronidazole (500 mg three times a day) administered orally for 5 days. Pill count was 

performed at days 0, 1 and 3. Safety labs were performed prior to vaccination and 7 days 

later. Written informed consent was obtained from each subject prior to any study procedure 

and the study was approved by the Emory University Institutional Review Board. Blood and 

stool samples were collected at regular intervals as indicated in Figure 1.
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Cells, plasma and RNA isolation—Peripheral blood mononuclear cells (PBMCs) and 

plasma were isolated from fresh blood (CPTs; Vacutainer® with Sodium Citrate; BD), 

following the manufacturer’s protocol. PBMCs were frozen in DMSO with 10% FBS and 

stored at −80°C and then transferred on the next day to liquid nitrogen freezers (−196°C). 

Plasma samples from CPTs were stored at −80°C. Trizol (Invitrogen) was used to lyse fresh 

PBMCs (1 ml of Trizol to ~1.5 × 106 cells) and to protect RNA from degradation. Trizol 

samples were stored at −80°C.

Microbiome analysis

Sample isolation: Second Genome (http://www.secondgenome.com) performed nucleic 

acid isolation from fecal samples with the MoBio PowerMag® Microbiome kit (Carlsbad, 

CA) according to manufacturer’s guidelines and optimized for high-throughput processing. 

All samples were quantified via the Qubit® Quant-iT dsDNA High Sensitivity Kit 

(Invitrogen, Life Technologies, Grand Island, NY) to ensure that they met minimum 

concentration and mass of DNA.

Library preparation: To enrich the sample for bacterial 16S V4 rDNA region, DNA was 

amplified utilizing fusion primers designed against the surrounding conserved regions which 

are tailed with sequences to incorporate Illumina (San Diego, CA) adapters and indexing 

barcodes. Each sample was PCR amplified with two differently barcoded V4 fusion primers. 

Samples that met the post-PCR quantification minimum and were advanced for pooling and 

sequencing. For each sample, amplified products were concentrated using a solid-phase 

reversible immobilization method for the purification of PCR products and quantified by 

qPCR.

Profiling methods: A pool containing 16S V4 enriched, amplified, barcoded samples were 

loaded into a MiSeq® reagent cartridge, and then onto the instrument along with the flow 

cell. After cluster formation on the MiSeq instrument, the amplicons were sequenced for 250 

cycles with custom primers designed for paired-end sequencing.

qPCR assay: Strain quantification was performed by qPCR with SYBRGreen on the ABI 

5900ht. Universal 16S primers were used:

• 16SU-F 5’-ACTCCTACGGGAGGCAGCAGT-3’

• 16SU-R1 5’-TATTACCGCGGCTGCTGGC-3’

Reactions were composed of 10 μL SYBRGreen MasterMix (2x, VeriQuest), 1 μL each 

primer (10uM), 6 μL PCR-grade water, and 2 μL of DNA template (<100 ng). Reaction 

conditions began with 2 min at 50°C, 10 min at 95°C, and 40 cycles of 15 sec at 95°C, 30 

sec at 54°C and 30 sec at 72°C. Each sample was run in triplicate and the mean value was 

used. Standard curves were generated with each qPCR assay and used to determine sample 

quantification. The average quantities of 16s copies per sample were normalized to target 

gene copies per gram of stool.

Flagellin and LPS quantification—The quantifications of bioactive flagellin and 

lipopolysaccharide (LPS) in feces were conducted as previously described using human 
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embryonic kidney (HEK)-Blue-mTLR5 and HEK-Blue-mTLR4 cells respectively 

(Invivogen, San Diego, CA, USA) (Chassaing et al., 2015). Fecal samples were prepared at a 

concentration of 100 mg/mL and homogenized before centrifuging at 8000g for 10 min, the 

resulting supernatant was serially diluted and measured by the cell lines. Purified native 

flagellin (Salmonella Typhimurium) and LPS (Sigma-Aldrich) were used for standard curve 

determination using HEK-Blue-mTLR5 and HEK-Blue-mTLR4 cells, respectively. For 

measuring flagellin in plasma, 20 μl of diluted plasma (1:5) was added to 180 μl culture 

medium. After 24 h of stimulation, the cell culture supernatant was applied to QUANTI-

Blue medium (Invivogen) and the alkaline phosphatase activity was measured at 640 nm.

Measurement of LPS-specific IgA and IgG antibodies—LPS-specific IgA and IgG 

levels were measured by ELISA. Microtiter plates were coated with purified LPS (2 μg/

well). Plasma samples from this study subjects were diluted 1:200 before applying to the 

coated plate. After incubation and washing, the wells were incubated with antihuman IgA 

(KPL) or IgG (GE Healthcare) coupled to horseradish peroxidase. The colorimetric 

peroxidase substrate tetramethylbenzidine was used to quantify the total IgA and IgG in 

plasma, and optical density (OD) of each well was read at 450 nm with an ELISA plate 

reader.

Influenza microneutralization assay—Viral-neutralizing activity was analyzed in a 

microneutralization (MN) assay in MDCK cells based on the methods of the pandemic 

influenza reference laboratories of the Centers for Disease Control and Prevention (CDC) 

with minor modifications provided in the updated SOP issued by the CDC. Antibody-

neutralization titers by MN were measured against seasonal influenza vaccine strains of 

H1N1-A/California/7/2009, H3N2-A/Texas/50/2012, H3N2- A/Switzerland/9715293/2013, 

B/Massachusetts/2/2012 and B/Phuket/3073/2013. Sera were tested at an initial dilution of 

1:20, and those that were negative (<1:20) were assigned a titer of 10. All sera were tested in 

triplicate, and the geometric mean value was used for analysis.

Measurement of antigen-specific IgG1 and IgG2 antibodies by ELISA—A 

Hemagglutinin-specific ELISA was used to measure IgG subclasses in human sera. Thermo 

2 HB Immulon Microtiter Plates Flat-Bottom (supplier no. 3355) were coated with A/

California/07/09 HA0 protein (BEI Resources) overnight. Plates were washed and blocked 

using Thermo diluent from the Novex Human IgG Subclass Profile Novex (Life 

Technologies) kit. Sera dilutions (1:500, 1:1000, 1:2000 and 1:4000) were added to coated 

plates for 1 hr at RT. After washing, either anti- human IgG1 or IgG2 [Southern Biotech 

mouse anti-human IgG1 (9054-01) and IgG2 (9070-01)] was added and kept for 1 hr at RT. 

After washing, Goat antimouse IgG Fc-specific Affinipure (Jackson 115-035-071) was 

added and reactivity revealed by Thermo TMB solution. Plates were read by Molecular 

Devices plate reader.

Measurement of antigen-specific IgG1 and IgA1 antibodies by Luminex—
Antigen-specific antibody subclass/isotypes were determined using a high-throughput 

Luminex-based assay (Brown et al., 2012). The H1 A/California/07/2009 antigen was 

provided from Immune Technology Corp. (New York, NY). The antigen was coupled to 
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carboxylate-modified microspheres (Luminex Corp., Austin, TX) by covalent NHS-ester 

linkages via EDC (ThermoFisher) and Sulfo-NHS (ThermoFisher) per manufacturer’s 

instructions. These antigen-coated microspheres were added to non-binding 384-well plates 

(Grenier Bio-One, Kremsmunster, Austria) at 1000 beads per well (45μl). Serum samples 

were diluted 1:100 in PBS for IgG1; samples were diluted 1:10 for other subclasses prior to 

incubation with beads. 5μl of diluted serum samples were added to plates with microspheres 

and incubated on a shaker overnight at 4°C. Microspheres were washed in PBS buffer 

containing 0.1% BSA and 0.05% Tween-20, and incubated for 1 hour at room temperature 

with secondary detectors, namely PE-conjugated anti-IgG1 or -IgA1 detection antibodies 

(Southern Biotech, Birmingham, AL). The microspheres were washed as before and read on 

an iQue Screener Plus (Intellicyt Corp., Albuquerque, NM).

Binding kinetics and antibody affinity of polyclonal serum antibodies to rHA 
protein by surface plasmon resonance—Steady-state equilibrium binding of post-

vaccination individual sera was monitored at 25°C using a ProteOn surface plasmon 

resonance biosensor (BioRad) as previously described (Khurana et al., 2011). The rHA 

protein from the H1N1-A/California/7/2009 prepared in house (Khurana et al., 2010) was 

coupled to a GLC sensor chip with amine coupling with 500 resonance units (RU) in the test 

flow cells. Samples of 60 μL freshly prepared sera at 10- and 100-fold dilutions were 

injected at a flow rate of 50 μL/min (120-sec contact time) for association, and dissociation 

was performed over a 1200 second interval (at a flow rate of 50 μL/min). Responses from 

the protein surface were corrected for the response from a mock surface and for responses 

from a separate, buffer only injection. MAb 2D7 (anti-CCR5) was used as a negative control 

in these experiments. Total antibody binding was determined directly from the serum sample 

interaction with rHA protein of the influenza virus by SPR using the BioRad ProteOn 

manager software as described before. Antibody off-rate constants, which describe the 

fraction of antigen-antibody complexes that decay per second, were determined directly 

from the serum/plasma sample interaction with rHA using SPR in the dissociation phase and 

calculated using the BioRad ProteOn manager software for the heterogeneous sample model 

as described before. Off-rate constants were determined from two independent SPR runs.

Flow cytometry analysis of immune populations—Flow cytometry analysis was 

done on either heparinized whole blood (plasmablasts and blood follicular T helper like 

cells) or cryopreserved PBMCs (activated B cells and innate immune populations).

Whole blood: For whole blood assays, cells were first surface-stained with an appropriate 

antibody cocktail for 20 min at room temperature followed by erythrocyte lysis using BD 

FACS lysing solution (BD Biosciences). Cells were then fixed and permeabilized with BD 

Cytofix/Cytoperm for 30 min on ice and anti-Ki67 PE-CY7 (BD Biosciences) added for 30 

min on ice in BD permeabilization buffer. All samples were run on an LSR II (BD 

Biosciences) and analyzed via the FlowJo software (FlowJo, LLC).

For the identification of plasmablasts, cells were stained with a cocktail of anti-CD19 FITC, 

anti-CD27 PE, anti-CD3 PerCP, anti-CD38 APC, anti-CD20 Pacific Blue, anti-HLA-DR 

V500, anti-CD195 BV605, and anti-CD138 PE-CF594 antibodies. Plasmablasts were 
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identified as CD3−, CD19+, CD27++, CD38++ cells and quantified as percentage of total 

CD19+ B cells.

For the identification of blood Tfh-like cells, a cocktail of anti-CD3 Alexa Fluor 700, anti-

CD4 PerCP-Cy5.5, anti-CD45RA BV605, anti-CD183 Alexa Fluor 488, anti-CD196 PE-

CF594, anti-CD279 BV421, anti-CD14 APC-H7, anti-CD20 APC-H7, anti-CD185 PE, and 

anti-CD278 Alexa Fluor 647 antibodies was used. Activated blood Tfh type 1 cells were 

described previously by Schmitt and Ueno (Schmitt and Ueno, 2013). This subset of 

circulating Tfh-like cells is defined in our study as CD3+, CD4+, CXCR5+, CXCR3+, 

CCR6-, ICOS+, PD-1+ and their frequency levels on day 7 after vaccination were presented 

as log2 fold change over day 0 frequencies.

Cryopreserved PBMCs: 2-3 × 106 cells PBMCs were thawed and stained for 20 min at 

room temperature with an appropriate antibody cocktail. Cells were washed in PBS with 5% 

fetal bovine serum, fixed with the Cytofix buffer (BD), and then analyzed on the LSR II flow 

cytometer (BD Biosciences). All flow cytometry analysis was done using the FlowJo 

software (FlowJo, LLC).

For the identification of activated/non-activated myeloid (mDCs) and plasmacytoid (pDCs) 

dendritic cells, a cocktail of anti-CD3 FITC, anti-CD19 FITC, anti-CD20 FITC, anti-CD56 

FITC, anti-CD80 PE, anti-BDCA-1 PerCP-Cy5.5, anti-CD123 PE-Cy7, anti-CD33 BV421, 

anti-CD14-BV605, anti-CD11b BV650, anti-CCR7 BV711, anti-CD16 APC, anti-CD11c 

Alexa700, and HLA-DR APC-Cy7 antibodies was used. Activated (CD80+) CD16+ mDCs 

were defined within the singlets gate as CD3−CD19−CD20−CD56− cells and then uniquely 

identified as CD14−HLA−DR+ CD123− CD11c+ CD16+ CD1c− CD80+. pDCs were 

defined within the singlets gate as CD3−CD19−CD20−CD56− cells and then uniquely 

identified as CD14−HLA−DR+ CD123+ CD11c−. Activated pDCs are also CD80+.

For the identification of activated B cells (ABCs), a cocktail of anti-CD21 FITC, anti-CD38 

PE, anti CD19 PE-CF594, anti-HLA-DR PerCP-Cy5.5, anti-CD27 PE-Cy7, anti-IgD 

BV421, anti-CD69 BV605, anti-CD20 BV650, anti-CD56 BV711, anti-CD71 APC, anti-

CD16 Alexa700, and anti-CD3 APC-Cy7 antibodies was used. ABCs were described 

previously by (Ellebedy et al., 2016). ABCs were uniquely identified as CD3-

CD19+CD20+IgD-CD71+.

ELISPOT measurement of vaccine-specific antibody-secreting cells (ASCs)—
ELISPOT plates (Millipore, cat. #MAIPS4510) were coated overnight at 4°C with the 

administered trivalent influenza vaccine (Fluzone) at 9μg/ml in PBS, subsequently washed, 

and complete medium added for 2 hours at 37°C to avoid aspecific binding. The following 

day, in order to enumerate the number of IgG-secreting vaccine-specific plasmablasts, 

dilutions of washed PBMCs (ranging from 6×105 to 2×104 cells) were added to the 

ELISPOT plates and incubated overnight at 37°C with 5% CO2. After incubation, plates 

were washed and alkaline phosphatase-conjugated goat anti-human IgG antibody (Millipore) 

added for 4 hours at room temperature (RT). Alkaline phosphatase (AP) substrates (Bio-

Rad, cat. #170-6432) were then added to each well for spot reveal. Plates were scanned and 

spots counted using the CTL Immunospot reader software.
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Somatic hypermutation (SHM) analysis of influenza-reactive hmAbs—
Plasmablasts (CD3-CD19+CD27hiCD38hi) were single cell-sorted into 96-well PCR plates 

(Bio-Rad) 7 days after vaccination. Monoclonal antibodies sequences were amplified by 

singlecell PCR amplification of the variable heavy and light chain genes and inserted into a 

human IgG expression vector, as previously described (Chen et al., 2018; Henry Dunand et 

al., 2016; Wrammert et al., 2008). mAbs were generated by transfecting a mAb’s respective 

individual heavy and light chain expression vectors into HEK293T cells and mAbs purified 

using Protein A agarose beads 6 days after transfection. Purified mAbs were tested for 

binding to the seasonal vaccine and for binding individual viral components of the seasonal 

vaccine. SHM data was obtained by comparing mAb sequences to germline sequences 

deposited in IgBlast.

Microarray experiments—Total RNA from fresh PBMCs (~1.5 × 106 cells) was purified 

using Trizol® (Invitrogen, Life Technologies Corporation) according to the manufacturer's 

instructions. All RNA samples were checked for purity using a ND-1000 spectrophotometer 

(NanoDrop Technologies) and for integrity by electrophoresis on a 2100 BioAnalyzer 

(Agilent Technologies). Two-round in vitro transcription amplification and labeling was 

performed starting with 50 ng intact, total RNA per sample, following the Affymetrix 

protocol. After hybridization on Human U133 Plus 2.0 Arrays (using GeneTitan platform, 

Affymetrix, or individual cartridges) for 16 h at 45 °C and 60 r.p.m. in a Hybridization Oven 

640 (Affymetrix), slides were washed and stained with a Fluidics Station 450 (Affymetrix). 

Scanning was performed on a seventh-generation GeneChip Scanner 3000 (Affymetrix), and 

Affymetrix GCOS software was used to perform image analysis and generate raw intensity 

data.

Plasma metabolomics analysis—Metabolomics analysis was performed similarly as 

previously described (Li et al., 2013). Briefly, metabolites were extracted by the addition of 

130 mL of acetonitrile to 65 mL of plasma, followed by mixing, and 30 min of incubation 

on ice and centrifugation (13,400 x rpm at 4C) for 10 min. The supernatant was transferred 

into autosampler vials for LC-MS analysis. Mass spectral data were collected with a 10 min 

reversed phase gradient on a Thermo Q Exactive mass spectrometer (Thermo Fisher, San 

Diego, CA) set to record from mass-to-charge ratio (m/z) 85 to 2000. Three technical 

replicates were run for each sample using reversed phase chromatography (Higgins 

Analytical, Targa C18 5 mM, 100 3 2.1 mm) using both positive and negative electrospray 

ionization.

Measurement of bile acids by liquid chromatography-mass spectrometry (LC-
MS)—The measurement of bile acids was performed similarly as previously described 

(Voelker et al., 2013) with some modifications. Briefly, concentrations of primary and 

secondary bile acids in human plasma were quantified using a Shimadzu CBM-20A HPLC 

system coupled with a Thermo Q Exactive Focus mass spectrometer. For chromatography, a 

Phenomenex C18 column (4.6×100mm 2.6 μm) was used. The mobile phase A was 10mM 

ammonium acetate in water, while mobile phase B was 50:50 methanol:acetonitrile (v/v). 

The column temperature was held at 60°C, and the gradient was kept at 35% mobile phase B 

for two minutes before being raised to 55% mobile phase B in 4.5 minutes. Then the 
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gradient was kept at 55% mobile phase B for two minutes. Finally, the column was eluted 

with 95% mobile phase B for 1 minute. The flow rate was 1.2 mL/min. For mass 

spectrometry, a Thermo Scientific Q Exactive Focus mass spectrometer with a HESI and 

operating in the negative ion mode was used. The ion source temperature was set to 400 °C. 

Quantitation was performed using target SIM with a resolution of 70,000. Standards used 

included CDCA (chenodeoxycholic acid), DCA (deoxycholic acid), gCDCA 

(glycochenodeoxycholic acid), gDCA (glycodeoxycholic acid), tCDCA 

(taurochendeoxycholic acid), tDCA (taurodeoxycholic acid), gLCA (glycolithocholic acid), 

CA (cholic acid), tCA (taurocholic acid), tLCA (taurolithocholic acid), LCA (lithocholic 

acid), and gCA (glycocholic acid). For gCDCA, standard was dissolved in acetonitrile to 

generate ten concentration gradients including 2.5 ng/mL, 5 ng/mL, 10 ng/mL, 50 ng/mL, 

200 ng/mL, 500 ng/mL, 1500 ng/mL, 2250 ng/mL, 2500 ng/mL and 5000 ng/mL. For the 

other 11 bile acids, standards were dissolved in acetonitrile to generate ten concentration 

gradients including 0.5 ng/mL, 1 ng/mL, 2 ng/mL, 10 ng/mL, 40 ng/mL, 100 ng/mL, 300 

ng/mL, 450 ng/mL, 500 ng/mL and 1000 ng/mL.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microbiome data analysis

OTU selection: Sequenced paired-end reads were merged using USEARCH (Edgar, 2010) 

and the resulting sequences were compared to an in-house strains database using USEARCH 

(usearch_global). All sequences hitting a unique strain with an identity >=99% were 

assigned a strain Operation Taxonomic Unit (OTU). To ensure specificity of the strain hits, a 

difference of >=0.25% between the identity of the best hit and the second best hit was 

required (e.g. 99.75 versus 99.5). For each strain OTU one of the matching reads was 

selected as representative and all sequences were mapped by USEARCH (usearch_global) 

against the strain OTU representatives to calculate strain abundances. The remaining non-

strain sequences were quality filtered and dereplicated with USEARCH. Resulting unique 

sequences were then clustered at 97% by UPARSE (de novo OTU clustering) and a 

representative consensus sequence per de novo OTU was determined. The UPARSE 

clustering algorithm comprises a chimera filtering and discards likely chimeric OTUs. All 

non-strain sequences that passed the quality filtering were mapped to the representative 

consensus sequences to generate an abundance table for de novo OTUs. Representative OTU 

sequences were assigned taxonomic classification via bayesian classifier in mothur (Schloss 

et al., 2009), trained against the Greengenes reference database of 16S rRNA gene 

sequences clustered at 99%.

Alpha-diversity (within sample diversity) metrics: ‘Observed’ diversity is simply the sum 

of unique OTUs found in each sample, also known as sample richness. Shannon diversity 

(H) utilizes the richness of a sample along with the relative abundance of the present OTUs 

to calculate a diversity index according to the following formula:

H = − ∑
i = 1

S
pi ln pi
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where pi is the relative abundance of the ith OTU and S is the total number of OTUs.

Beta-diversity (sample-to-sample dissimilarity) metrics: All profiles are inter-compared 

in a pair-wise fashion to determine a dissimilarity score and store it in a distance 

dissimilarity matrix. Distance functions produce low dissimilarity scores when comparing 

similar samples. Abundance-weighted sample pair-wise differences were calculated using 

the Bray-Curtis dissimilarity. Bray-Curtis dissimilarity is calculated by the ratio of the 

summed absolute differences in counts to the sum of abundances in the two samples (Bray 

and Curtis, 1957). The binary dissimilarity values were calculated with the Jaccard index. 

This metric compares the number of mismatches (OTUs present in one but absent in the 

other) in two samples relative to the number of OTUs present in at least one of the samples 

(Jaccard, 1912).

Ordination: Two-dimensional ordinations were created using principal coordinate analysis 

(PCoA) (Gower, 1966) to graphically summarize the inter-sample relationships. PCoA is a 

method of twodimensional ordination plotting that is used to help visualize complex 

relationships between samples. PCoA uses the sample-to-sample dissimilarity values to 

position the points relative to each other by maximizing the linear correlation between the 

dissimilarity values and the plot distances.

Transcriptomics data processing and pathway/module analysis—Initial data 

quality was assessed by background level, 3’ labeling bias, and pairwise correlation among 

samples. CEL files from outlier samples were excluded and the remaining CEL files of all 

the samples belonging to the same trial were grouped and normalized in Bioconductor by 

RMA (Irizarry et al., 2003), which includes global background adjustment and quantile 

normalization. Probes mapping to multiple genes were discarded, and the remaining probes 

were collapsed to gene level by selecting the probe for each gene with the highest mean 

expression across all subjects in both trials. Statistical tests and correlation analyses were 

performed using MATLAB. Test details and significance cutoffs are reported in figure 

legends. Enrichment tests of BTMs were performed using GSEA (Subramanian et al., 2005). 

BTMs were visualized using Cytoscape (Shannon et al., 2003).

Metabolomics and pathway analysis—Metabolite peaks were extracted using the 

metabolomics software package apLCMS (Yu et al., 2009). Only peaks that were present in 

> 50% samples were used for further analysis. Pearson correlation coefficient R between the 

three technical replicates was used as an indicator of analytical quality. Samples were 

removed if pairwise correlation between 3 technical replicates was R<0.7. Otherwise, 

average value of technical replicates was used. If a single technical replicate had R<0.7 with 

the other two, it was removed and other two were averaged. For each sample, data were log2 

transformed. A total of 5572 peaks and 5745 peaks were detected for positive and negative 

ion mode, respectively. Statistical tests, correlation analyses, and PCA were performed using 

MATLAB. Test details and significance cutoffs are reported in figure legends. Mummichog 

software (Li et al., 2013) was used to identify enrichment in metabolic pathways, using 

significant peaks selected as p<0.05 by pairwise t-test between each time point and the 

baseline (day −21 or day 0).
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Construction and query of MMRN—The MMRN integration of transcriptomics, 

metabolomics, microbiomics, and cell frequencies was performed similarly as previously 

described (Li et al., 2017), using updated software (hiconet). Briefly, feature clusters were 

first identified in each data type (excluding metabolomics) through similarity of expression 

across all time points via the Leiden algorithm (Traag et al., 2019), a common modularity 

algorithm for community detection. An additional step was performed prior to the clustering 

for the transcriptomics data, which were collapsed to BTMs, and module activity scores 

were taken as the mean value of member genes. The metabolomics data were clustered using 

a hierarchical clustering method customized for LC-MS data by taking into account 

chromatographic retention time, as described previously (Gardinassi et al., 2018). 

Associations between the feature clusters of each data type were then estimated by partial 

least square (PLS) regression. The significance of associations was computed by comparing 

with permutation data, resampling both features and sample labels. The resulting networks 

were visualized using Cytoscape (Shannon et al., 2003). To query the network for 

association with LCA or H1N1-specific IgG1 data, ranked lists of all network features 

(BTMs, m/z peaks, OTUs, and cell frequencies) were generated using Spearman correlation 

with either LCA or IgG1 as the ranking metric. Each cluster in the MMRN was then treated 

as a “geneset”, and enrichment testing was performed via GSEA (Subramanian et al., 2005) 

to identify clusters whose member features were enriched at either end of the ranked lists 

(highly correlated with LCA or IgG1).
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• Microbiome loss impairs antibody response in subjects with low pre-existing 

immunity

• Antibiotics treatment leads to enhanced inflammatory signatures in the blood

• Loss of secondary bile acids is linked to AP-1/NR4A and inflammasome 

activation

• Integrative analysis reveals divergent mechanisms of microbiome influence on 

immunity

Antibiotic use-induced alterations to the gut microbiome can adversely affect 

immunogenicity and responses to influenza vaccination in humans
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Figure 1. Study overview and evaluation of the effects of antibiotic use on the gut microbiome of 
healthy adults
(A) Study overview. A total of 22 study participants aged 18-45 received a trivalent 

influenza vaccine (TIV) on day 0. Eleven subjects were randomized to a five-day oral broad-

spectrum antibiotic regimen between day −3 and day 1. Samples were collected and 

analyses performed at regular intervals (black circles) as illustrated in the diagram.

(B) Normalized copy number of bacterial 16s ribosomal RNA per gram of stool. Each line 

corresponds to an individual subject. Controls are shown in blue, antibiotics-treated subjects 

in red. Median values and distributions for each time point are illustrated in the form of box 

plots.
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(C-D) Flagellin (C) and LPS (D) concentrations per gram of stool. Each thin line represents 

a single subject, thick lines represent geometric means.

(E) Relative abundance of bacterial families in the antibiotics-treated group at different time 

points. Each vertical bar corresponds to a study participant. On day 1 and day 3, data is 

available for 9 and 10 out of 11 individuals only, respectively.

(F) Dimensional reduction of the Bray-Curtis distance between microbiome samples, using 

the principal coordinates analysis (PCoA) ordination method. Each circle corresponds to a 

single individual.

(G) Alpha-diversity estimates. “Observed” diversity represents the number of OTUs 

(richness) present in each sample (left panel). “Shannon” diversity takes into account both 

richness and evenness of OTUs within a sample (right panel). Each circle corresponds to a 

single individual in the antibiotics-treated group. Median values and interquartile ranges 

shown in box plots.

Where calculated, comparisons between control and antibiotics-treated groups at specific 

time points were performed by Mann-Whitney tests. Wilcoxon matched-pairs signed rank 

tests were used to compare time points within the same group (panel G). *p<0.05; **p<0.01; 

***p<0.001; ****p<0.0001.

See also Figure S1.
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Figure 2. Impact of antibiotics treatment on humoral responses to TIV.
(A-B) Microneutralization (MN) titers against the 3 influenza strains contained in the 

2014-2015 (A) and 2015-2016 (B) TIV formulations. Geometric means are presented in 

thick lines, while shades are for geometric standard deviations (SD).

(C) IgG1-binding to A/California H1 for phase 1 (left panel) and phase 2 (right panel) 

measured by ELISA. Violin plots show sample distributions. Each circle represents an 

individual subject, while medians are presented in thick lines.

(D) Relative concentration of A/California H1 HA-specific IgG1 for phase 2 determined 

using a high-throughput Luminex-based assay (Brown et al., 2012). Violin plots show 

sample distributions. Each circle represents an individual subject, while medians are 

presented in thick lines.
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(E) Scatterplot of A/California H1 HA-specific IgG1 measured by ELISA vs A/California 

H1 HA-specific IgG1 measured by Luminex for phase 2 subjects on days 0, 7, 30. Each dot 

represents one subject.

(F) Off-rate measurements in seconds (sec) by surface plasmon resonance (SPR) to assess 

antibody affinity to A/California H1. The data is presented as reciprocally transformed and 

as fold change over the baseline. Each line represents one subject.

(G) A/California H1 HA-specific IgA isotype binding capacity measured by SPR and 

presented as maximum resonance units (max RU) for phase 2 subjects. Violin plots show 

sample distributions. Each circle represents an individual subject, while medians are 

presented in thick lines.

(H) Relative concentration of A/California H1 HA-specific IgA1 for phase 2 determined 

using a high-throughput Luminex-based assay, as for panel D. Violin plots show sample 

distributions. Each circle represents an individual subject, while medians are presented in 

thick lines.

(I) Scatterplot of A/California H1 HA-specific IgA isotype binding capacity measured by 

SPR vs A/California H1 HA-specific IgA1 measured by Luminex for phase 2 subjects on 

days 0 and 30. Each dot represents one subject. See STAR Methods for further details.

Where calculated, comparisons between control and antibiotics-treated groups at specific 

time points were performed by Mann-Whitney tests (panels A-D, F-H). Wilcoxon matched-

pairs signed rank tests were used to compare time points within the same group (panel F). 

Pearson correlation was used for panels E and I. *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001.

See also Figures S2 and S3.
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Figure 3. Transcriptional Responses to TIV in Control and Antibiotics-Treated Subjects
(A) Number of genes differentially expressed (log2 fold-change > 0.2 and t-test p value < 

0.01) relative to day 0 in control and antibiotics-treated subjects on days 1, 3, and 7 post-

vaccination.

(B) BTMs significantly enriched (FDR < 0.05, NES ≥ 2) in control and antibiotics-treated 

subjects post-vaccination. GSEA (Subramanian et al., 2005) was used to identify positive 

(red) or negative (green) enrichment of BTMs using ranked gene lists, where genes were 

ordered by t-statistic based on post-vaccination fold change relative to day 0.

(C-D) Temporal expression patterns of genes within modules M127 and M156.1 among 

antibiotics-treated (red) and control subjects (blue). Black line represents the mean fold 

change of all genes.

See also Figure S4 for comparison of responses in phases 1 and 2.
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Figure 4. Transcriptional and Cellular Responses to Antibiotics Administration
(A) BTMs significantly enriched (FDR < 0.05) following antibiotics use. GSEA 

(Subramanian et al., 2005) was used to compute the normalized enrichment score (NES) of 

BTMs using ranked gene lists, where genes were ordered by t-statistic based on day 0 versus 

screening (day −21) fold change in antibiotics-treated subjects. Enriched modules are 

colored according to their high-level functional annotation.

(B) Kinetics of dendritic cell subsets following antibiotics administration and vaccination. 

Solid lines represent mean fold change and shaded areas represent 95% confidence interval.

(C) Kinetics of AP-1/NR4A related BTMs following antibiotics administration and 

vaccination. Solid lines represent average module expression among antibiotics-treated (red) 

and control subjects (blue), and bar plots represent average module expression among young 
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(< 65 years, light blue) and elderly (≥ 65 years, maroon) subjects vaccinated with TIV 

during the 2010-2011 influenza season (Nakaya et al., 2015). Error bars represent standard 

error of the mean (SEM).

(D) Genes in AP-1/NR4A related BTMs. Each “edge” (gray line) represents a coexpression 

relationship, as described in Li et al. (Li et al., 2014); colors represent the day 0 versus 

screening (day −21) log2 fold change (positive – red, negative – green).

(E) Spearman correlation of AP-1/NR4A target genes (from TRANSFAC (AP-1) or Pei et al. 

(Pei et al., 2006) (NR4A)) with their corresponding transcription factors on day 1. For AP-1 

the average expression of FOS/JUN was used, and for the NR4A family the average of 

NR4A1/2/3 was used to compute the correlation.

Where calculated, comparisons between control and antibiotics-treated groups at specific 

time points were performed by Student’s t-tests. *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001.
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Figure 5. Impact of antibiotics administration and influenza vaccination on the blood 
metabolome
(A) Euclidean distance across the most variable metabolite features (coefficient of variation 

>8% across all time points) between the day 0 and screening (day −21) time point in control 

(blue) and antibiotics-treated (red) subjects. Error bars represent standard error of the mean 

(SEM).

(B) Metabolic pathways significantly enriched following antibiotics administration. 

Mummichog software (Li et al., 2013) was used to identify enriched pathways (p<0.05 by 

permutation test) based on differential metabolite features (p<0.05 by Student’s t-test) 

between the day 0 and screening (day −21) time point in antibiotics-treated subjects.
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(C) Fold change of primary and secondary bile acids in antibiotics-treated subjects on days 

0-7 relative to the screening time point (day −21).

(D) Euclidean distance across the most variable metabolite features (coefficient of variation 

>8% across all time points) on days 1-7 post-vaccination relative to day 0 in control and 

antibiotics-treated subjects. Error bars represent standard error of the mean (SEM).

(E) Metabolic pathways significantly enriched (p<0.05) following influenza vaccination in 

control and antibiotics-treated subjects.

(F) Metabolic trajectories along the first two principal components for control and 

antibiotics-treated subjects for days 0-7 relative to the screening time point. Here metabolic 

trajectories refer to the trajectory of each subject according to the changes in abundance 

across all differential metabolite features (p<0.01) throughout the time course of the study 

(days 0-7) when projected in the principal component space.

Where calculated, comparisons between control and antibiotics-treated groups at specific 

time points were performed by Student’s t-tests. *p<0.05; **p<0.01; ***p<0.001; 

****p<0.0001.

See also Figure S4 for comparison of responses in phases 1 and 2.
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Figure 6. Perturbation of secondary bile acids is associated with elevated NLRP3 inflammasome 
signaling in antibiotics-treated subjects
(A) Circos plot showing the log2 fold change in secondary bile acids, antibiotics-induced 

BTMs (Figure 4A), and inflammasome signaling genes on days 0-7 relative to screening 

(day −21) in control and antibiotics-treated subjects. Lines indicate significant correlations 

(p<0.01, Pearson correlation across all time points).

(B) Scatterplot of FOSB expression versus fold change of LCA in the plasma (all time 

points). Each dot represents one subject.
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(C-D) Fold change of genes in M35.0 in (C) antibiotics-treated and (D) control subjects. 

Each “edge” (gray line) represents a coexpression relationship; colors represent the day 1 

versus screening (day −21) log2 fold change (positive – yellow, negative – blue).

(E) Fold change of LCA in the plasma among antibiotics-treated (red) and control (blue) 

subjects. Each thin line represents a single subject, thick lines represent geometric means.

See also Figure S4 for comparison of LCA fold changes in phases 1 and 2.
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Figure 7. MMRN analysis suggests distinct functions of the gut microbiome in regulating 
inflammatory signaling and H1N1-specific IgG1 responses.
(A) Distribution of p values between the different data types included in the MMRN.

(B) Sub-network visualization of the day 0 vs screening connections in the MMRN, 

containing nodes associated with either LCA or H1N1-specific IgG1. Each node is a cluster 

of features from one data type. The links between nodes (gray) were established by 

significant association (FDR < 0.05) using partial least square regression and permutation 

test. The network was queried through an enrichment based approach to identify positive 

(red) or negative (green) associations (FDR < 0.05, NES > 2.6) between antibiotics-induced 
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(day 0 vs screening) changes in the nodes with either the day 0 vs screening change in LCA 

or the day 30 abundance of H1N1-specific IgG1. Individual cluster features are provided in 

Table S3. See Figure S5 and STAR Methods for details of MMRN construction.

(C) Pie charts showing the family membership of OTUs within bacterial clusters B0, B1, and 

B4.

(D) Scatterplots of plasma levels of LCA versus changes in bacterial load (measured by 16s 

rRNA qPCR), LPS, and flagellin (day 0 versus screening fold change). Each dot represents 

one subject.

(E) Scatterplots of the day 7 and day 30 abundance of H1N1-specific IgG1 versus flagellin 

measured in the stool (day 0 versus screening fold change). Each dot represents one subject.
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