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ABSTRACT: Aqueous electrolyte solutions containing multivalent ions exhibit various intriguing properties, including
attraction between like-charged colloidal particles, which results from strong ion−ion correlations. In contrast, the classical
Derjaguin−Landau−Verwey−Overbeek theory of colloidal stability, based on the Poisson−Boltzmann mean-field theory,
always predicts a repulsive electrostatic contribution to the disjoining pressure. Here, we formulate a general theory of surface
forces, which predicts that the contribution to the disjoining pressure resulting from ion−ion correlations is always attractive
and can readily dominate over entropic-induced repulsions for solutions containing multivalent ions, leading to the
phenomenon of like-charge attraction. Ion-specific short-range hydration interactions, as well as surface charge regulation, are
shown to play an important role at smaller separation distances but do not fundamentally change these trends. The theory is
able to predict the experimentally observed strong cohesive forces reported in cement pastes, which result from strong ion−ion
correlations involving the divalent calcium ion.

■ INTRODUCTION

The accurate prediction of forces between charged surfaces in
aqueous electrolytes is of paramount importance in diverse
scientific disciplines, ranging from colloidal science to
biophysics and polymer chemistry.1 Surface forces ultimately
determine whether colloidal particles and macromolecules,
such as DNA, proteins, and polymers, will aggregate or will
remain stable in dispersions.2−6 Typically, two different types
of forces operate between charged surfaces in electrolyte
solutions: short-range van der Waals forces, which are
predominantly attractive, and long-range electrostatic forces,
which can be attractive or repulsive depending on the sign and
magnitude of the charge on the interacting surfaces.7−9 The
most widely used model of colloidal stability is the classical
Derjaguin−Landau−Verwey−Overbeek (DLVO) theory,10,11

in which the electrostatic contribution to the disjoining
pressure (force per unit area acting on the charged surfaces)
is described using the Poisson−Boltzmann (PB) mean-field
theory, which assumes that the ions residing in the electric
double layer (EDL) at the charged surface feel a mean
electrostatic potential from the smeared out (volume-
averaged) charge density near the charged surface. The PB

model also assumes that the dielectric permittivity of the
solvent is constant and uniform, considers ions to be point-
sized, and neglects any form of ion−ion correlations. The
prediction of the disjoining pressure by the DLVO theory
utilizing the PB model is in very good agreement1,12−25 with
experimental data in the so called weak-coupling limit, that is,
the limit corresponding to a low surface charge density, high
solvent dielectric permittivity, low valency of counterions
(those ions containing charge of sign opposite to that of the
surface), or high temperature. In the case of multivalent
electrolytes, ion−ion correlations become important due to the
large valency of the counterions, and the PB model fails to
describe the disjoining pressure acting between charged
surfaces even qualitatively.26−30 In particular, the mean-field
PB theory always predicts a repulsive EDL pressure
contribution for like-charged surfaces, irrespective of the
magnitude of the surface charge density, the ion concentration,
or the valency of the counterions. This is in stark contrast to
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the experimental results31−34 and Monte-Carlo simula-
tions,29,35−37 which have provided ample evidence of the
phenomenon of like-charge attraction mediated by multivalent
ions. This clear signature of electrostatic correlations is
responsible for many important interfacial phenomena,
including cement cohesion,34,38 biopolymer aggregation,39

and colloidal coagulation,30,40 and nevertheless, it still lacks a
simple mathematical description.
Several theoretical approaches have been used in the past to

explain like-charge attraction, including the theory by Perel and
Shklovskii,41 the hypernetted-chain integral equation
theory,35,42 and the dressed-ion theory.43,44 Although these
theoretical approaches have certainly improved our under-
standing of ion−ion correlations, they lack the mathematical
simplicity underlying the PB theory, which allows the
disjoining pressure to be directly related to various system
parameters, including the salt concentration, the ion valency,
the solvent dielectric permittivity, the surface charge density,
and the temperature. To this end, a simple and general theory
of electrostatic correlations based on a Landau−Ginzburg-type
continuum framework was recently developed by Bazant,
Storey, and Kornyshev (BSK),45 and initially used to explain
screening phenomena in solvent-free ionic liquids. Compared
to the PB mean-field theory, the BSK free-energy functional
adds an additional term containing the second derivative of the
electrostatic potential to account for ion−ion correlations
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where ρ = e(z+c+ − z−c−) is the mean charge density, z± and c±
are the valencies and concentrations, respectively, of the
cations and the anions, in the EDL of volume V, ϕ is the
electrostatic potential, qs is the surface charge density, ϵ is the
dielectric permittivity of the solution, lc denotes the electro-
static correlation length, and g(c+,c−) is the entropic
component of the total free energy and corresponds to the
entropy density arising from the translational entropy of the
ions. Note that ϕ− |∇ |ϵ

2
2 and ρϕ represent the self-energy of

the electric field and the electrostatic potential energy of the
ions in this electric field, respectively. The potential gradient
term, ϕ− ∇ϵ l ( )

2 c
2 2 2, is used to model an additional contribution

to the self-energy resulting from electrostatic correlations
between the ions. The terms excluding the entropic
contribution, g, arise via a charging process in which ions are
added to a system in which they interact with the electrostatic
potential, ϕ. Although the higher-order equation is still solved
in the mean-field of spatially averaged ϕ and ρ, the higher-
order third term implies the nonlocal nature of the free energy
due to electrostatic correlations. One can interpret this term as
a phenomenological correction to the mean-field PB frame-
work that is solved for in the mean field. This simple extension
of the PB theory is a useful first approximation of ion−ion
correlation effects in ionic liquids46−50 and in so-called “water-
in-salt” electrolytes.51

The BSK model has also been applied to electrolytic
solutions52 and shown to capture various ion correlation
effects, including electrophoretic mobility reversals of colloidal
particles in multivalent electrolytes,53 micelle formation,54 and
ion conduction through biological ion channels.55−58 The first

challenge in applying the BSK theory to different systems is to
find a suitable approximation of the electrostatic correlation
length, lc. In the original article, Bazant et al.45 suggested using
the Bjerrum length, lb, for dilute electrolytes and the ionic
diameter for the opposite limit of room-temperature ionic
liquids (where it is typically much larger than the Debye
length). In the general case of a z:1 primitive-model
electrolyte, where z is the valency of the counterion, the
correlation length parameter was recently found to scale as59

∼ | | − −l l q e c( / )c b
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is the Bjerrum length,1 e is the unit of

elementary charge, and c0 is the bulk salt concentration. Note
that the Bjerrum length corresponds to the length scale at
which the electrostatic interactions between two monovalent
ions in the solution is comparable to the thermal energy, kBT,
where kB is the Boltzmann constant and T is the absolute
temperature. Physically, the correlation length, lc, scales with
the diameter of a correlation hole in the electrolyte, beyond
which the mean-field equations are sufficient to describe the
electrostatic interactions between ions, as reflected in the PB
model. In this article, we describe ion−ion correlations using
the BSK model for electrolytes and study their influence on the
disjoining pressure acting between charged surfaces.
The second challenge in applying the BSK model is the

choice of an additional boundary condition for the generalized
Poisson equation, which is a fourth-order ordinary differential
equation in our one-dimensional geometries. The second-order
PB equation requires only one condition on each bounding
surface, whereas the BSK equation requires two. Although
mixed boundary conditions were first proposed,60 the standard
choice, advocated by BSK for ionic liquids, has been to set the
third derivative of the potential to zero, effectively cutting off
ion−ion correlations at the distance of closest approach. Here,
we take advantage of the recent development of more
consistent and general boundary conditions, which are
obtained by equating the normal Maxwell stress at the charged
surface to its form in the absence of ion−ion correlations given
by the contact theorem.59

We should stress here that the phenomenon of like-charge
attraction can be modeled using solely the higher order term in
the BSK functional eq 1 (see the Results section for details).
However, for an accurate comparison of our theoretically
predicted disjoining pressure with experimental data, we also
incorporate some additional interactions, to arrive at a more
complete generalization of the DLVO theory. In particular, the
PB model assumes that ions are point-sized and are distributed
throughout the electrolyte according to the Boltzmann
distribution. This results in an exponential growth of
counterions near the charged surface.60 In practice, however,
the region closest to the charged surface is always hydrated by
a condensed layer of water molecules. This layer is inaccessible
to the counterions and is referred to as the Stern layer.11,61

Recently, Bohinc et al.62 formulated the Poisson−
Helmholtz−Boltzmann model to describe solvent-mediated,
nonelectrostatic interactions between ions based on a pair-wise
Yukawa potential. In this model, in addition to electrostatic
interactions, the ions experience a hydration (h) interaction
given by, Uh/kBT = e−κh(r−lh)/r, where Uh is the hydration
energy, r is the separation distance between the ions, κh is the
inverse of the length scale corresponding to the decay of
ordered water layers around an ion, and lh is the length scale at
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which Uh becomes comparable to the thermal energy, kBT. In
this study, we follow the approach of Bohinc et al.62,63 to
incorporate an additional solvent-mediated hydration inter-
action into the model in eq 1. Our approach serves two
important purposes. First, we can self-consistently model both
the Stern and the diffuse layer regions of the EDL using a
single theory. Second, we can study the effect of the Stern layer
region on the disjoining pressure acting between charged
surfaces. Recall that in the Stern layer region, counterions are
repelled from the charged surface due to the short-range
hydration interactions, whereas coions, which carry charge of
the same sign as that of the charged surface, are repelled due to
the unfavorable repulsive electrostatic interactions with the
charged surface. We later show that the short-range repulsive
hydration forces reported by Israelachvilli and Pashley,64 as
well as by LeNeveu and Rand,65 emerge naturally from the
incorporation of hydration interactions into our model of the
EDL.
After incorporating ion−ion correlations and hydration

interactions into our EDL model, we implement a final
modification by describing the phenomenon of surface charge
regulation (CR). This is the electrochemical mechanism by
which surfaces in contact with aqueous electrolytes acquire
charge from the dissociation of surface species, such as the
silanol groups that typically terminate glass or silica surfaces.66

In this case, the degree of dissociation depends strongly on the
pH of the solution. To validate our theoretical predictions on
like-charge attraction, we make use of the experimental data of
Plassard et al.34 who measured the disjoining pressure acting
between calcium silicate hydrate (CSH) layers in a calcium
hydroxide electrolyte solution. We incorporate the mechanism
of surface CR into our EDL model by assuming that the charge
on the CSH layers results from the dissociation of silanol
groups (SiO−) at the CSH surface,34 which allows us to relate
the surface charge density on the CSH surface to the calcium
hydroxide concentration in the solution.
The end result after incorporation of ion−ion correlations,

hydration interactions, and surface CRphenomena which are
all currently neglected in the DLVO theory, is a complete, self-
consistent theory of the disjoining pressure for multivalent
electrolytes. Specifically, we demonstrate that our theory can
be used to describe the phenomenon of like-charge attraction,
including predicting the disjoining pressure, in reasonably
good agreement with the experimental data of Plassard et al.34

for a broad range of salt concentrations.

■ MODEL AND METHODS
We begin our analysis by considering two similarly charged
surfaces immersed in a z:1 electrolyte solution, where z
denotes the valency of the counterion. For reference, we
assume that both surfaces are negatively charged, which
implies that cations are the positively charged counterions in
this system. Because hydration interactions are short-ranged,
we simplify our analysis by assuming that the hydration
interactions are only relevant for the cations and negligible for
the anions, which are anyway repelled because of the repulsive
electrostatic interactions with the negatively charged surface.
Therefore, in our model, the cations interact with the
negatively charged surface through both electrostatic and
hydration interactions, whereas the anions interact with the
negatively charged surface only through electrostatic inter-
actions. Furthermore, as shown in Figure 1, the region closest
to the negatively charged surface is accessible only to the water

molecules which serve as the source term for the boundary
condition for the hydration potential (see below). As discussed
by Brown et al.,63 this is similar in spirit to the surface charge
density at the charged surface serving as the boundary
condition for the electrostatic potential. The negatively
charged surfaces electrostatically attract cations from the bulk
reservoir, resulting in the formation of an EDL of ions in the
region between the charged surfaces. As shown in Figure 1, the
formation of the EDL results in the pressure felt by the charged
surfaces, referred to as the disjoining pressure, being
significantly different than the osmotic pressure in the bulk
reservoir.
After incorporation of additional contributions from

hydration interactions into eq 1, we arrive at the following
general functional for the total Helmholtz free energy of the
system
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where ψh is the dimensionless hydration potential, σh is the
surface density of water molecules at the charged surface which
mediate the interaction of cations with the charged surface, and
μ+ and μ− are the chemical potentials of the cations and
anions, respectively. The terms in the 1st and 2nd rows in eq 3
are the same as those of eq 1 and correspond to the free energy

Figure 1. Schematic of our model problem: a multivalent z:1
electrolyte is confined between two surfaces with surface charge
density, qs. The disjoining pressure, Π, is defined as the difference in
the pressure (P) felt between the plates due to the presence of the
EDL and the pressure in the bulk reservoir (P∞). As shown here, the
Stern layer which is the region closest to the charged surface is
accessible only to the water molecules (depicted as ellipsoids)
modeled using the hydration potential, whereas the concentration
profiles of the cations (depicted as red spheres) and the anions
(depicted as blue spheres) in the EDL are influenced by ion−ion
correlations, described in our theory using the BSK model.
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of the system after incorporating ion−ion correlations into the
PB model. Furthermore, the terms in the 3rd row and the 1st
term in the 4th row in eq 3 result from the incorporation of
hydration effects into our model. Finally, the last term in eq 3
couples the concentration of ions in the EDL confined by the
charged surfaces to that in the bulk reservoir. Although the
terms in eq 3 resulting from ion−ion correlations and
hydration interactions have been reported in refs 45 and 62,
respectively, for completeness, a detailed derivation of the
Helmholtz free energy expression in eq 3 is provided in the
Supporting Information document.
We note here that the incorporation of hydration

interactions automatically accounts for the finite size of the
ions. Therefore, there is no need to incorporate any additional
excluded-volume interactions in our model, and we can retain
the original expression for the entropy density, g(c+,c−), from
the PB model given by
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where c0i (i = ±) is the corresponding concentration of
cations/anions in the bulk reservoir.
Next, we enforce the conditions of thermodynamic

equilibrium in the system by setting δ δϕ =/ 0 for the
electrostatic potential and δ δψ =/ 0h for the hydration
potential in eq 3, respectively. For the electrostatic potential,
we obtain a fourth-order Poisson equation and a boundary
condition, respectively, given by

ϕ ρϵ ∇ − ∇ = = −+ −l zec ec( 1) ( )c
2 2 2

(5)

ϕ·̂ϵ ∇ − ∇ =n l q( 1)c
2 2

s (6)

Similarly, the governing equations for the dimensionless
hydration potential, ψh, and the corresponding boundary
condition are given by

ψ κ ψ π∇ − = − [ − ]κ
+l c c4 e l2
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We note here that eq 7 does not contain any term which
depends on the concentration of anions, c−, which is consistent
with our assumption that the hydration potential acts only
between cations. As discussed by Brown et al.,63 eq 8 results
from assuming that each ordered water molecule near the
negatively charged solid surface acts like a source term for the
hydration interaction of the cations with the charged surface.

At thermodynamic equilibrium,  =δ
δ ±

0
c

, which results in the

following expressions for the chemical potential of the
counterions and the coions
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where c+0 and c−0 are the bulk concentration of the counterions
and the coions, respectively. To satisfy the condition of
electroneutrality in the bulk, c+0 = c0 and c−0 = zc0 (c0 is the
concentration of the undissociated z:1 salt). Equating eq 10 at

any point in the EDL and in the bulk reservoir results in the
following expressions for the dimensionless counterion and the
coion densities in the EDL: c+̃ = e−zϕ̃+ψh, c−̃ = eϕ̃, where,

ϕ ̃ = ϕe
k TB

, ̃ =+c
c
c0
and ̃ =−c c

zc0
. For a numerical evaluation of

the electrostatic potential in the EDL, it is convenient to
convert eq 5 into a dimensionless form, given by
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where x̃ = x/λD, λD is the Debye−Hückel screening length,
which for a z:1 electrolyte is given by the expression:
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correlation length. The dimensionless correlation length for a
z:1 electrolyte is given by the following expression in ref 59
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In eq 12, the quantity, lGC, denotes the Gouy−Chapman
length, which is the length scale at which the interaction of a
counterion with a uniformly charged surface becomes
comparable to the thermal energy, kBT, and is given by

π
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Similar to the electrostatic potential, the dimensionless
governing equation for the hydration potential is given by

ψ κ λ ψ π λ∇̃ − = [ − ̃ ]κ
+l c c4 e 1l2

h h
2

D
2

h h 0 D
2h h (14)

Note that the governing equation for the dimensionless
electrostatic potential (eq 11) is fourth-order. Therefore, we
need four boundary conditions to solve for the dimensionless
electrostatic potential. Assuming that the negatively charged
surfaces are located at −d/2 − lh and d/2 + lh, where d is the
separation distance between the two negatively charged
surfaces, corresponding to the region accessible to the ions,
and lh is the hydration length parameter, eq 11 can be solved
using the following four boundary conditions:
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Note that boundary conditions (i) and (ii) result from
equating the electric displacement field at the charged surface,
which is similar to the approach used in the previous studies to
derive the boundary conditions for the PB model.
Furthermore, the boundary conditions (iii) and (iv) result
from enforcing a force balance at contact, where ionic
correlations must vanish.59 The boundary conditions to solve
for the dimensionless hydration potential using eq 14 are given
by:63
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Note that for a given d, the actual domain over which the
equations are being solved changes depending on whether the
hydration potential is included in the model. If the hydration
potential is included (i.e., lh ≠ 0), then the electrolyte domain
lies between x = −d/2 − lh and x = d/2 + lh. If not (lh = 0),
then the distance of closest approach must be subtracted, such
that the electrolyte domain consists of the region between x =
−d/2 and x = d/2. Such a distinction is important when the
predicted disjoining pressure is compared using different
models, as shown in the Results section, where the separation
distance between the charged surfaces is denoted using d for all
of the models considered.
Next, we present our derivation of the disjoining pressure by

expressing the total free energy of the system as follows:
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bulk variation, which together with the mathematical identities
of variational calculus can be used to obtain the following
relation (see the detailed derivation in the Supporting
Information document)
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At thermodynamic equilibrium for a z:1 electrolyte, the
following additional relations apply
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Adding eqs 16 and 17 and then subtracting the resulting
expression from eq 15 yields
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We note here that eq 18 is valid for any arbitrary separation
distance between the two charged surfaces. Furthermore, the
left hand side (LHS) of eq 18 is a constant, which can be
evaluated at any point between two charged surfaces.
Therefore, the constant in eq 18 should be in some way
related to the pressure acting between the charged surfaces.
Indeed, in analogy to the constant in eq 18, the condition of
thermodynamic equilibrium ensures that the pressure is

uniform throughout the region confined between the two
charged surfaces. The relationship between the constant in eq
18 and pressure becomes clearer when we consider the limit
where the two charged surfaces are placed very far apart, such
that the electrostatic potential, the hydration potential, and all
higher-order derivatives of the electrostatic and the hydration
potentials reduce to zero at the mid plane between the two
charged surfaces. In this case, when evaluating the LHS of eq
18 at the mid plane between the two charged surfaces, the first
five terms involving the electrostatic and the hydration
potentials, as well as their higher-order derivatives vanish and
only the last two terms remain finite. Further, the free-energy
functional, f, becomes equal to the entropy density, g, and

μ =±
∂
∂ ±

g
c
from eqs 16 and 17, respectively. On the other hand,

the expression for the pressure in this case can be readily
obtained by using the thermodynamic relation: U/V = TS/V −
P + ∑iμici, where U denotes the total internal energy of the
system, S is the total entropy, and T, P, and V denote the
temperature, pressure, and total volume of the system,
respectively. Because the Helmholtz free energy, F, can be
written as,  = −U TS, and the free-energy functional, f, is
equal to the Helmholtz free energy per unit volume, that is f =
F/V, we obtain, −P =  V/ − μ∑ ci i i = f − μ∑ ci i i = g −

∑ =±
∂
∂ci i

g
ci
. Therefore, the constant in eq 18 is equal to the

negative of the pressure, P, acting between the two charged
surfaces, which according to eq 18 is given by
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(19)

Using the expression for g from eq 4, and subtracting the
pressure in the bulk reservoir obtained by setting the
electrostatic potential, the hydration potential, and all higher-
order derivatives of the electrostatic and the hydration
potentials to zero in eq 19, the disjoining pressure, Π = P −
P∞, is given by
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(20)

It is noteworthy that the mathematical framework presented
here to derive the disjoining pressure, as expressed in eq 20, is
very general. In fact, in principle, this methodology can be used
to derive a closed-form analytical expression of the disjoining
pressure for any system given an expression for the free-energy
functional, f, of the system. Indeed, a similar methodology was
used previously by Misra et al.9 to derive an expression of the
disjoining pressure for a different system where solvent
polarization effects were included in the PB model.
Next, we analyze in more detail each of the terms

contributing to the disjoining pressure predicted in eq 20.
Specifically, the 1st term arises from the self-energy of the
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electrostatic field in the EDL, the 2nd and 3rd terms arise from
ion−ion correlations, the 4th term is a contribution due to the
translational entropy of the ions, and the 5th and 6th terms
arise from the incorporation of hydration interactions into the
EDL model. If hydration interactions are neglected, that is, ψh
= 0 and ψh′ = 0, the 1st four terms in eq 20 yield the expression
of the disjoining pressure in the context of the BSK model,
given by

∑

ϕ ϕ ϕ ϕΠ = − ϵ ′ −
ϵ ″ + ϵ ′′′ ′

+ [ − ]
=±

l
l

k T c c
2 2

i
i i

BSK
2 c

2
2

c
2

B 0
(21)

Furthermore, if ion−ion correlations are also neglected, that
is if we set lc = 0 in eq 21, we recover the exact expression of
the disjoining pressure for the PB model given by (see refs 11
and 67)

∑ϕΠ = − ϵ ′ + [ − ]
=±

k T c c
2 i

i iPB
2

B 0
(22)

The disjoining pressure in eq 20 is uniform throughout the
region confined by the two charged surfaces. However, one can
obtain additional insights about the nature of the terms
contributing to the disjoining pressure by evaluating eq 20 at
the mid-plane between the two charged surfaces. For example,
if the two surfaces carry charge of the same sign and magnitude
(similarly charged), the 1st derivative of both the electrostatic
and the hydration potentials are zero at the mid-plane between
the two charged surfaces due to symmetry conditions. In this
case, the predicted disjoining pressure is given by
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Equation 23 clearly shows that the contribution from the
water-mediated hydration interactions between the cations
(last two terms in eq 23) to the disjoining pressure is always
repulsive. The 2nd term in eq 23, which is the entropic
contribution to the disjoining pressure, is also always repulsive.
Note that the 2nd term in eq 23 corresponds to the disjoining
pressure according to the PB model. This is the reason why the
PB model always predicts a repulsive disjoining pressure
between similarly charged surfaces, irrespective of the surface
charge density, the salt concentration, and the valency of the
counterions. In contrast, the 1st term in eq 23, which arises
from the ion−ion correlations described by the BSK model, is
always negative. Therefore, eq 23 predicts that there can be an
attractive EDL contribution to the disjoining pressure even
between similarly charged surfaces, as long as the attractive
contribution due to ion−ion correlations dominates over the
contributions due to the repulsive entropic and hydration
interactions.
In addition to electrostatic interactions, van der Waals

interactions between the two planar surfaces can contribute to
the disjoining pressure, although their range is significantly
short-ranged. The van der Waals contribution to the disjoining
pressure can simply be added to eq 23, and is given by34

π
= −

+
P

A
d l6 ( 2 )vdW

h

h
3

(24)

where Ah is the Hamaker constant and determines the
magnitude of the van der Waals interaction between the two
planar surfaces. It is noteworthy that the attractive disjoining
pressure associated with the van der Waals interactions can
also result in like-charge attraction, especially if the charged
surface is neutralized by the multivalent counterions. However,
the magnitude of the attraction resulting from the van der
Waals interactions is highly system-specific. Indeed, the
attractive contribution to the disjoining pressure resulting
from the van der Waals interactions will depend on several
factors: (i) the nature of the counterion neutralizing the
charged surface, (ii) the thickness of the EDL of counterions
neutralizing the charged surface, and (iii) the magnitude of the
Hamaker constant of the interacting charged surfaces in air. All
these effects can be captured in our model by defining an
effective Hamaker constant to model the van der Waals
interaction between charged surfaces in the presence of a
confined electrolyte. Note that unless specifically stated, most
of the results in this article will not include the contribution in
eq 24 because our study is mainly focused on studying the
EDL contribution to the disjoining pressure. However, we will
include the van der Waals contribution to the disjoining
pressure when comparing the theoretically predicted disjoining
pressure to the experimentally measured one.
Finally, we also include the contribution due to the

phenomenon of surface CR into our EDL model. Although
there are several theoretical approaches to model surface
CR,68,69 we have adopted the formulation by Behrens and
Grier,66 which is useful to model surface CR in cases where the
surface charge is related to the dissociation of silanol groups
from the surface. Note that in the case of CSH layers, the
surface dissociation of silanol groups is primarily responsible
for the negative surface charge on the CSH layers, as reported
in the study by Plassard et al.70 To model the variation of the
surface charge density of CSH layers as a function of the
solution pH,70 we consider reactions of hydroxide ions with
silica sites, using the formulation of Behrens and Grier.66 In
basic solutions involving hydroxide ions, the surface reaction
proceeds as follows

F+ +− −SiOH OH SiO H O2 (25)

The surface is composed of negative (dissociated) and
neutral (undissociated) silica sites determined by the surface
reaction equilibrium of the hydroxide ions interacting with the
CSH layer. A total site balance on the Si atoms result in the
following equation

Γ = Γ + Γ−SiO SiOH (26)

where Γ is the total surface concentration of Si atoms, ΓSiO
−

and ΓSiOH are the surface concentrations of the negative and
the neutral silica sites, respectively. Note that the surface
charge density on the CSH layer can be expressed as the
product of the number of negative silica sites times their
charge, that is, qs = −eΓSiO

−. Similar to the study by Behrens
and Grier,66 we assume that the distribution of the hydroxide
ions near the CSH layer satisfies the Boltzmann distribution
given by, cOH−

,s = cOH−
,B exp(ϕ̃s), where ϕ̃s is the dimensionless

electrostatic potential at the CSH layer, and cOH−
,B and cOH−

,s
are the concentrations of hydroxide ions in the bulk and near
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the CSH layer, respectively. Furthermore, based on the surface
chemical reaction in eq 25, the following relation is obtained

= =
Γ

Γ
− −

−
K

c
10 K

b
p SiO

OH ,s SiOH

b

(27)

where Kb is the base dissociation equilibrium constant, and pKb
is the logarithmic dissociation constant characteristic of the
CSH−water interface. Because the Stern layer is already
modeled self-consistently through the incorporation of water-
mediated hydration interactions, the surface potential, ϕ̃s can
be set equal to the potential at the surface located at (x = ±d/2
± lh), without the need to account for the Stern capacitance, as
done in ref 66. Using the relation, qs = −eΓSiO

−, in conjunction
with eqs 26 and 27, the expression for the surface charge
density at the CSH layer is given by

ϕ
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Note that Γ and pKb are parameters characteristic of the
CSH−water interface and can be obtained through fitting to
experimental data. Because the correlation length is itself a
function of the surface charge density through its dependence
on lGC (see eqs 12 and 13), δc must be obtained in an iterative
manner. Specifically, the dimensionless electrostatic potential
(see eq 11) is solved using an initial guess for qs, and
subsequently, the deduced value of ϕ̃s is used to adjust qs for
subsequent iterations using eq 28. Finally, the converged value
of qs is used to obtain the dimensionless electrostatic potential
(see eq 11), and the disjoining pressure is obtained using eq 23
for various separation distances between the two similarly
charged surfaces.

■ RESULTS
Several key predictions of our theory are presented below.
First, we consider the role of ion−ion correlations on the
disjoining pressure acting between two similarly charged
surfaces, including studying the dependence on the valency
of the counterions and coions, the bulk salt concentration, and
the surface charge density of the charged surfaces. Second, we
study the effect of incorporating hydration interactions and
surface CR on the disjoining pressure into our EDL model.
Finally, after including the contribution of the van der Waals
interactions to the disjoining pressure, we compare the
predictions of the disjoining pressure made using our complete
model with the experimental data of Plassard et al.34

Ion−Ion Correlations Cause Like-Charge Attraction.
To isolate and properly quantify the effect of ion−ion
correlations on the disjoining pressure, as described by the
BSK theory, we initially neglect hydration interactions, surface
CR, and van der Waals interactions in our EDL model. This is
done by setting ψh = 0 in eq 20 (thereby neglecting hydration
interactions), assuming that qs is an independent parameter
irrespective of the bulk salt concentration (thereby neglecting
surface CR), and setting Ah = 0 in eq 24 (thereby neglecting
van der Waals contributions to the disjoining pressure). In
Figure 2a, we utilize eq 21 to plot the disjoining pressure
predicted using the BSK model as a function of the separation
distance between the two charged surfaces for the case of a 2:1
electrolyte solution. Note that throughout the article, the water
dielectric permittivity, ϵ, is expressed as ϵ = ϵrϵ0, where ϵ0 is
the permittivity of vacuum (8.85 × 10−12 F m−1). In Figure 2a,

the disjoining pressures predicted using the BSK model (see eq
21) and the PB model (see eq 22) are compared. Note that the
governing equation for the dimensionless electrostatic
potential in the PB model can be obtained simply by setting
δc = 0 in eq 11, including using boundary conditions (i) and
(ii) in the set of four boundary conditions used to solve eq 11
in the BSK model. As expected, the PB model always predicts a
repulsive (positive) disjoining pressure irrespective of the
separation distance between the two charged surfaces.
Furthermore, the repulsive disjoining pressure predicted by
the PB model decreases monotonically with an increase in the
separation distance between the two charged surfaces.
However, in stark contrast to the result predicted by the PB
model, it is possible to obtain an attractive (negative)
disjoining pressure using the BSK model. For example, as
shown in Figure 2a, the disjoining pressure curve predicted by
the BSK model displays an attractive well at a separation
distance of ∼0.8 nm between the two charged surfaces. For
separation distances greater than 1 nm, where the disjoining
pressure predicted by the BSK model is negative and
progressively goes to zero at larger separation distances, the
attractive pressure resulting from ion−ion correlations
dominates over the pressure arising from the entropic
repulsion.
To better understand the above-mentioned competition, in

the inset of Figure 2a, we plot the contributions to the

Figure 2. Disjoining pressures operating between two similarly
charged surfaces separated by a 2:1 electrolyte solution predicted
using the BSK (eq 21) and the PB (eq 22) models for qs = −0.1 C/
m2, c0 = 0.1 M, and ϵr = 80. (a) Variation of the disjoining pressure as
a function of the separation distance between the two charged
surfaces. The inset shows the contribution of the different terms in eq
21 based on the BSK model. (b,c) Comparison of the charge density
and the dimensionless electrostatic potential profiles, respectively,
predicted by the BSK model (eq 11) and the PB model (eq 11 with δc
set to zero) when the separation distance between the two charged
surfaces is 1 nm, and where x is the spatial coordinate perpendicular
to the plane of the charged surface.

Langmuir Article

DOI: 10.1021/acs.langmuir.9b01110
Langmuir 2019, 35, 11550−11565

11556

http://dx.doi.org/10.1021/acs.langmuir.9b01110


disjoining pressure due to each of the four terms appearing in
eq 21, all evaluated at the mid-plane between the two charged
surfaces. Because we are considering similarly charged surfaces,
the 1st derivative of the electrostatic potential is always zero at
the mid-plane between the two charged surfaces. Therefore,
the 1st and the 3rd terms in eq 21 do not contribute to the
predicted disjoining pressure. Moreover, as shown in the inset
of Figure 2a, the pressure resulting from ion−ion correlations
(2nd term in eq 21) is always attractive (negative), whereas the
entropic pressure (4th term in eq 21) is always repulsive
(positive). For separation distances much smaller than 1 nm,
the counterions get compressed between the two charged
surfaces, thereby greatly enhancing the entropic contribution
and making the overall disjoining pressure repulsive (positive).
On the other hand, for separation distances larger than 1 nm,
the disjoining pressure contribution from ion−ion correlations
always dominates over the repulsive entropic contribution,
which results in an overall attractive disjoining pressure as
shown in Figure 2a. Interestingly, as Figure 2b shows, at a
separation distance of 1 nm between the two charged surfaces,
the mean charge density (ρ = zec+ − ec−) and the
dimensionless electrostatic potential (ϕ̃) profiles obtained
using the PB and the BSK models are very similar. The
similarity in the two profiles suggests that the form of the
Helmholtz free energy, F, and a self-consistent expression of
the disjoining pressure, Π, derived from F, are essential in
order to obtain a negative disjoining pressure in the context of
the BSK model. For example, even if one utilizes eq 11 to solve
for the electrostatic potential using the BSK model, use of eq
22 which corresponds to the disjoining pressure from the PB
model would still result in a repulsive disjoining pressure for all
separation distances between the similarly charged surfaces.
Therefore, our study highlights the necessity to self-
consistently incorporate terms in the predicted disjoining
pressure (see eq 21) arising from ion−ion correlations to
explain the phenomenon of like-charge attraction between
similarly charged surfaces.
It is noteworthy that in the previous work, the BSK model

was shown to describe overscreening, or charge-inversion, in
the case of an EDL of solvent-free ionic liquids placed near a
charged electrode.45 In this case, strong ion−ion correlations
give rise to an oscillatory profile for the mean charge density, ρ,
where the 1st layer of ions in the EDL overscreens the charge
on the electrode, and subsequently, the net charge of the
electrode together with the 1st layer of ions is progressively
neutralized by additional layers of ions. In this study, we find
that although both the phenomena of charge-inversion and
like-charge attraction can result from strong ion−ion
correlations, there is no direct correlation between them. In
other words, it is not necessary for the phenomenon of like-
charge attraction to occur concurrently with the phenomenon
of charge-inversion.
Next, we study how the counterion valency affects the

disjoining pressure. As the counterion valency increases, the
BSK theory predicts a stronger attractive contribution to the
disjoining pressure, as shown in Figure 3a. The qualitative
shape of the pressure profile also changes significantly as the
counterion valency increases from 1 to 3, with a deep attractive
well developing in the case of a 3:1 electrolyte. Moreover, the
position of the minimum in the disjoining pressure shifts
toward the left with an increase in the counterion valency,
indicating an enhancement in the length scale over which an
attractive disjoining pressure is observed due to ion−ion

correlations. The predicted attraction is consistent with
experimental observations of like-charge attraction and
colloidal coagulation in the presence of multivalent salt
ions.26−30 Physically, increasing the counterion valency, z,
enhances ion−ion correlations, which is captured in our EDL
model by a nonlinear dependence of the dimensionless
correlation length on the counterion valency (see eq 12).
Increasing the value of z increases the dimensionless
correlation length parameter, which in turn enhances the
attractive ion−ion correlation contribution to the disjoining
pressure (see 1st term in eq 23).
In addition to studying the variation of the predicted

disjoining pressure with the counterion valency, it is also
interesting to explore the dependence of the predicted
disjoining pressure on the coion valency, that is, for a 1:z
electrolyte solution. To this end, we utilize the same parameter
values used to generate Figure 3a, except that we change the
sign of the surface charge density, qs, on the two surfaces. This,
in turn, is equivalent to studying a 1:z electrolyte solution
instead of the z:1 electrolyte solution considered earlier.
Furthermore, note that we also set z = 1 in eqs 12 and 13. In
Figure 3b, we show plots of the predicted disjoining pressure

Figure 3. Effect of the ion valency on the predicted disjoining
pressure acting between two similarly charged surfaces as a function of
the separation distance between the two charged surfaces for z:1 and
1:z electrolytes (z = 1, 2, and 3) solutions using the BSK model (eq
21). To generate the various plots, we used the following parameter
values: |qs| = 0.1 C/m2, c0 = 0.1 M, and ϵr = 80. (a) Predicted
disjoining pressure of a z:1 electrolyte solution, corresponding to a
negative charge on the two surfaces, qs = −0.1 C/m2. (b) Predicted
disjoining pressure of a 1:z electrolyte solution, corresponding to a
positive surface charge on the two surfaces, qs = +0.1 C/m2.
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for a 1:z electrolyte, where the sign of qs is positive.
Interestingly, the predicted disjoining pressure is not sensitive
to the coion valency, where the plots of the disjoining pressure
predicted using different coion valencies, z = 1, 2, and 3, are all
very similar to the predicted disjoining pressure plot for a 1:1
electrolyte solution. This indicates that the phenomenon of
like-charge attraction is more strongly controlled by the
valency of the counterion than by that of the coion. Our
important finding that the coion valency plays an insignificant
role in controlling the surface forces between two charged
surfaces is well supported by the recent experimental data of
Uzelac et al.71 These authors measured surface forces between
charged silica particles mediated by multivalent coions and
reported that the valency of the counterions, and not the
valency of the coions, controls the surface forces operating
between the charged silica particles that they considered.
Next, we explore the dependence of the predicted disjoining

pressure on the surface charge density and the salt
concentration of the bulk reservoir. As shown in Figure 4a,
increasing the surface charge density of the two charged
surfaces for a 2:1 electrolyte solution results in an enhance-
ment of the attractive well for the disjoining pressure as the

magnitude of qs is increased from −0.01 to −0.2 C/m2. In the
case of an electrolyte confined between two charged surfaces,
increasing the surface charge density of the two surfaces results
in an enhancement of the overlap of the EDLs produced by
each surface because more counterions over an extended
region are required to screen the increased charges on the
surfaces. This results in an increase in the curvature, or the
second derivative, of the electrostatic potential. As a result, the
attractive ion−ion correlation contribution to the predicted
disjoining pressure (2nd term in eq 21), which scales as the
square of the 2nd derivative of the electrostatic potential,
increases similarly. Consequently, increasing the surface charge
density in the context of the BSK model results in a
pronounced enhancement of the attractive well for the
predicted disjoining pressure.
Our findings clearly show that the disjoining pressure

predicted by the BSK model strongly disagrees with that
predicted by the DLVO theory, which uses the PB model to
predict the EDL contribution to the disjoining pressure acting
between the two charged surfaces. Notably, increasing the
surface charge density in the PB model enhances the overlap of
the EDLs originating from the two similarly charged surfaces,
which in turn results in an increased entropic repulsion and
consequently, in an enhancement of the repulsive disjoining
pressure acting between the two similarly charged surfaces.
Although it is certainly true that like in the PB model, the
magnitude of the repulsive entropic term (4th term in eq 21)
also increases with an increase in the surface charge density in
the BSK model, the attractive ion−ion correlation term
completely dominates over the repulsive entropic term, leading
to a deepening of the attractive well for the predicted
disjoining pressure in the case of the BSK model. Our result
is in good agreement with that obtained by Plassard et al.34

who experimentally measured the disjoining pressure operating
between charged CSH layers in a calcium hydroxide salt
solution. Indeed, Plassard et al.34 reported an enhancement of
the attractive well for the experimental disjoining pressure
upon increasing the surface charge density on the CSH layers.
The fact that the DLVO theory fails to predict the
experimentally observed trend, even at a qualitative level,
demonstrates the importance and need for the availability of a
theory such as the one presented here, which is capable of
accurately modeling ion−ion correlations.
As shown in Figure 4b, the predicted disjoining pressure also

depends strongly on the salt concentration of the bulk
reservoir. Indeed, as the salt concentration increases, the
depth of the attractive well increases, reflecting stronger ion−
ion correlations. In addition, the position of the disjoining
pressure minimum shifts toward the left, reflecting a decrease
in the overlap of the EDLs originating from the two similarly
charged surfaces. We have explored a wide parameter space for
the dependence of the predicted disjoining pressure on salt
concentration and surface charge density, as shown in the two
contour plots in the Supporting Information document (see
Figure S1).
We note that like-charge attraction can also be obtained in

the limit of a counterion-only system (also referred to as the
one-component plasma limit),29 where the surface charge is
screened by a fixed number of counterions, with no coions
present in the system. In this context, the BSK theory with the
appropriate correlation length scale and boundary conditions
has been shown to exactly match the strong and weak coupling
limits for the counterion-only system.59 Furthermore, the BSK

Figure 4. Effect of the surface charge density and the salt
concentration for a 2:1 electrolyte solution on the predicted disjoining
pressure as a function of the separation distance between the two
charged surfaces. (a) Predicted disjoining pressures for three surface
charge densities, where the following parameter values were used to
generate the three plots shown: c0 = 0.1 M and ϵr = 80. (b) Predicted
disjoining pressures for three salt concentrations in the bulk reservoir,
where the following parameter values were used to generate the three
plots shown: qs = −0.1 C/m2 and ϵr = 80.
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theory can also accurately reproduce the intermediate coupling
limit, including describing correlation-induced like-charge
attraction in the case of counterion-only systems.59

Another interesting question is whether the BSK theory can
predict like-charge attraction in systems with monovalent
counterions, as was shown recently in simulations of charged
nanoparticles.72 In Figure 5, we show the predicted disjoining

pressure curves for a 1:1 electrolyte solution with varying
surface charge density and varying bulk salt concentration.
Figure 5a clearly shows that, as the surface charge density
increases from −0.1 to −0.4 C/m2, the disjoining pressure
between two similarly charged surfaces predicted by the BSK
theory can become strongly attractive (negative), even in the
case of monovalent counterions.
Furthermore, increasing the bulk salt concentration can

result in the appearance of an attractive well in the disjoining
pressure predicted by the BSK theory, similar to the ones
predicted earlier in the case of a 2:1 electrolyte solution.
However, very high bulk salt concentrations or moderate to
high surface charge densities are needed to predict attractive
disjoining pressures in the case of a 1:1 electrolyte solution.
Our BSK model predictions for the disjoining pressure suggest
that attractive interactions between two like-charged surfaces
do not result exclusively from the presence of multivalent
counterions. However, the presence of multivalent counterions
can significantly augment the attractive disjoining pressure

arising from ion−ion correlations, as shown earlier in Figure
3a.

Contributions to the Disjoining Pressure from
Hydration Interactions and Surface CR. Along with the
contributions from ion−ion correlations, it is also interesting
to explore the role of short-range water-mediated hydration
interactions between the cations on the predicted disjoining
pressure. As expected, water-mediated hydration interactions
prevent two cations from approaching each other too closely,
where the distance of closest approach between any two
interacting cations is controlled by the parameter, lh, which is
the effective hydration size of the cation. In Figure 6, we plot

Figure 5. The disjoining pressure for a 1:1 electrolyte solution
predicted by the BSK theory can be attractive depending on (a)
surface charge density or (b) salt concentration. For (a), the bulk salt
concentration is fixed at c0 = 0.1 M. For (b), the surface charge
density is fixed at qs = −0.3 C/m2.

Figure 6. (a) Variation of the disjoining pressure with the separation
distance between two similarly charged surfaces for a 2:1 electrolyte
solution, predicted by the BSK and the PB models with inclusion/
exclusion of the hydration potential. Note that the parameters used to
generate these results include: qs = −0.1 C/m2, c0 = 0.1 M, ϵr = 80, σh
= 5/nm2 (from ref 63), κh

−1 = 0.3 nm (from ref 63), and lh = 0.2 nm.
The parameters for the hydration potential (σh, κh

−1, and lh) can be
further fine-tuned to reproduce the experimental data. (b)
Comparison of the counterion profiles predicted using the BSK
model without hydration and the BSK model with hydration, for d = 1
nm, as a function of x, where x is the spatial coordinate perpendicular
to the plane of the charged surface. (c) Same as (b), but for a
separation distance of 2 nm between the two charged surfaces.
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the predicted disjoining pressure operating between two
similarly charged surfaces for a 2:1 electrolyte solution,
where we incorporated hydration interactions into both the
PB model and the BSK model. As discussed earlier,
incorporation of hydration interactions allows us to model
the Stern layer self-consistently in both the BSK and PB
models. However, for an appropriate comparison between the
BSK model without hydration and the BSK model with
hydration, we need to shift the plot obtained in the case of the
BSK model with hydration toward the left by 2lh to be
consistent with the distance of closest approach in the two
models. Similarly, the plot for the PB model with hydration is
also shifted leftward by 2lh.
Figure 6a shows that incorporation of the hydration

potential into both the PB and the BSK models results in a
strong repulsive (positive) contribution to the predicted
disjoining pressure. In the case of the PB model, addition of
the hydration potential makes the predicted repulsive
disjoining pressure even more repulsive. In the case of the
BSK model, addition of the hydration potential results in a
disappearance of the attractive (negative) well, with a very
weak attractive (negative) disjoining pressure visible at ∼3 nm
separation distance between the two charged surfaces. Note
that the plots shown in Figure 6a were obtained using qs =
−0.1 C/m2, corresponding to low to moderate surface charge
densities, typically encountered on the two charged surfaces.
However, as shown later in this section, surface charge
densities reported in some experimental studies can exceed this
value. In such cases, we will be able to recover the attractive
well in the disjoining pressure predicted using the BSK model,
where hydration interactions are included. Note that we
selected qs = −0.1 C/m2 to carry out these calculations to
demonstrate the key role of the hydration interactions in
modulating the predicted disjoining pressure, especially at low
to moderate surface charge densities on the two charged
surfaces. Moreover, if the EDL is decomposed into Stern and
diffuse layer regions, with the diffuse layer region modeled
using an EDL theory such as the PB model, it follows that the
contribution of the Stern layer to the predicted disjoining
pressure cannot be modeled self-consistently. In this study, we
use the hydration potential to model the Stern layer and self-
consistently incorporate the repulsive contribution from the
hydration potential to the predicted disjoining pressure (see
3rd and 4th terms in eq 23), which are currently neglected in
the PB model. Furthermore, the predicted repulsive disjoining
pressures resulting from the hydration potential can also
qualitatively explain the repulsive pressures reported in the
experimental data of Israelachvilli and Pashley64 and of
LeNeveu and Rand.65

To further elucidate the role of hydration interactions in
modulating the predicted disjoining pressure, in Figure 6b,c,
we compare the counterion profiles predicted using the BSK
model without hydration and the BSK model with hydration,
when the two charged surfaces are separated by a distance of 1
and 2 nm, respectively. Note that the distances of minimum
approach for the BSK model and BSK model with hydration
are d and d + 2lh, respectively. This is the reason why the
counterion profiles in the context of the BSK model with
hydration extend beyond d in Figure 6b,c. An analysis of the
counterion profiles in Figure 6b,c shows that in the case of the
BSK model without hydration, the predicted counterion
concentrations near the two charged surfaces (at x = ±0.5
nm and x = ±1 nm, where x is the spatial coordinate

perpendicular to the charged surfaces) are unbounded and
several folds higher than those predicted in the case of the BSK
model with hydration. As discussed earlier, hydration
interactions limit the counterion concentrations near the two
charged surfaces to replicate a Stern layer region which is
devoid of counterions. Consequently, to neutralize the charge
on the two surfaces, the concentration of counterions at the
mid-plane between the two charged surfaces (located at x = 0
in Figure 6b,c) is higher in the BSK model with hydration than
in the BSK model without hydration. This results in an
enhancement of the repulsive entropic contribution to the
predicted disjoining pressure (2nd term in eq 23) in the BSK
model with hydration, which together with the new repulsive
terms arising from the incorporation of the hydration
interactions (3rd and 4th terms in eq 23) contribute
significantly toward making the overall predicted disjoining
pressure repulsive, especially at smaller separation distances. As
Figure 6b,c shows, increasing the separation distance between
the two charged surfaces from 1 to 2 nm weakens the
contribution from the hydration potential, such that the
counterion concentration near the midplane (at x = 0)
between the two charged surfaces, predicted using the BSK
model with hydration (dotted blue curve), approaches that
predicted using the BSK model without hydration (solid blue
curve).
Finally, to complete our analysis, we consider the effect of

surface CR on the predicted disjoining pressure and the
predicted surface charge density, where qs is no longer an
independent parameter but instead, depends on the bulk salt
concentration. As a representative example, we consider two
similarly charged CSH layers immersed in a calcium hydroxide
salt solution. We consider this system because, in the next
section, we will compare the disjoining pressure predicted by
our theory for this system with the experimental data of
Plassard et al.34 As discussed in the Model and Methods
section, the value of qs in eq 28 depends on the bulk
concentration of OH− ions as well as on the dimensionless
surface potential. As a result, qs needs to be obtained in an
iterative manner, such that eqs 11 and 7, together with the
boundary conditions, and eq 28 are simultaneously satisfied.
In Figure 7a, we plot the disjoining pressure as a function of

the surface separation distance, d, predicted by first including
hydration interactions into the PB and BSK models and,
subsequently, by including surface CR in the BSK and PB
models. The disjoining pressure versus the separation distance
profiles were predicted for a bulk salt concentration of 19.1
mM, a typical concentration for which the experimental data of
Plassard et al.34 is available. To predict the disjoining pressure
when CR is neglected (e.g., BSK model and BSK model with
hydration), we need to assign a value to the surface charge
density, qs, which serves as an independent parameter. To this
end, we choose qs = −0.63 C/m2, obtained by solving eq 28
using c0 = cOH−

,B = 19.1 mM. Figure 7a shows that choosing a
value of qs which is much larger than the qs value used to
predict the results in Figure 6a, we predict large attractive
(negative) disjoining pressures using the BSK model. Including
hydration interactions in the BSK model results in a large
repulsive (positive) pressure contribution to the disjoining
pressure. However, for qs = −0.63 C/m2, the predicted
attractive (negative) disjoining pressure contribution resulting
from ion−ion correlations dominates over the repulsive
(positive) contributions resulting from the entropy of the
ions as well as from the hydration interactions (2nd, 3rd, and
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4th terms in eq 23). This results in an attractive (negative) well
at ∼1 nm separation distance between the two charged
surfaces. For comparison, we also plotted the disjoining
pressure profiles predicted using the PB model. It is clear that if
ion−ion correlations are neglected, it will be impossible to
predict an attractive (negative) well for the disjoining pressure
using the PB model.

Interestingly, after inclusion of the hydration interactions in
the PB and BSK models, further inclusion of CR in the two
models does not affect the predicted disjoining pressure
profiles at all. This indicates that for both the BSK and PB
models, the surface charge density is almost insensitive to the
separation distance between the two charged surfaces. Indeed,
as shown in Figure 7b, the surface charge density varies with
the separation distance between the two charged surfaces only
at very small separation distances and remains constant beyond
a separation distance of 1 nm. In addition, there is not much
difference between the predictions made using the PB and the
BSK models, indicating that the dependence of the surface
charge density on the separation distance between the two
charged surfaces is insensitive to the modeling of ion−ion
correlations. In fact, the surface charge density shows a very
strong dependence on the pH of the solution. Recall that the
concentration of OH− ions present in the calcium hydroxide
salt solution in the bulk reservoir can be related to the pH of
the solution using the relation, cOH−

,B = 10pH‑14. Therefore,
increasing the pH of the solution results in a larger dissociation
of silanol groups at the CSH layer (see eq 25), which in turn
results in an increase in the surface charge density at the CSH
layer. Once again, the striking similarity of the variation of qs
with the pH of the solution, obtained using the PB and BSK
models, indicates that the variation of the surface charge
density with the pH of the solution is insensitive to the
modeling of ion−ion correlations. Finally, we also note that the
variation of qs with the solution pH, as predicted in Figure 7c,
is in good qualitative agreement with that reported
experimentally by Plassard et al.34 This finding is reassuring
in terms of the values of the surface CR parameters, Γ and pKb,
used to model the variation of qs with the solution pH in
Figure 7c. For example, Plassard et al. have reported that
increasing the solution pH from 10 to 12.5 results in a
monotonic enhancement in the surface charge density, qs, at
the CSH surface from −0.08 to −0.69 C/m2. Similarly, in
Figure 7c, for a similar variation of the solution pH, we predict
a monotonic enhancement of qs from −0.02 to −0.58 C/m2,
for both the BSK and the PB models.

Comparison of the Disjoining Pressures Predicted
from Our Complete Theory with the Experimental
Data. Plassard et al.34 used atomic force microscopy (AFM) to
study the surface forces responsible for the strong cohesive
strength of cement pastes. These authors observed strong
attractive (negative) disjoining pressures operating between
the CSH layers in the presence of a Ca(OH)2 electrolyte
solution. They attributed the observed behavior to the strong
ion−ion correlations between the divalent calcium ions.
Plassard et al. noted that because the DLVO theory neglects
ion−ion correlations, the disjoining pressure predicted by the
DLVO theory is not consistent with their experimental findings
even qualitatively. In Figure 8, we compare the disjoining
pressure versus the surface separation distance profiles
predicted by our complete theory (eqs 23 plus 24) to those
measured by Plassard et al. (see Figure 5 in ref 34) for five
Ca(OH)2 salt concentrations. Plassard et al. measured the
forces operating between the two CSH layers, and we
converted their experimental surface force data into disjoining
pressure data by dividing the reported surface forces by the
surface area of the CSH layers, estimated to be 64 nm2 in their
study.34

Note that in the study by Plassard et al., one of the CSH
layers was coated over an AFM tip, whereas the other CSH

Figure 7. (a) Disjoining pressure vs the surface separation distance
profiles predicted by the BSK model without hydration, the BSK
model with hydration, and the BSK model with hydration and with
CR are compared with those predicted by the PB model without
hydration, the PB model with hydration, and the PB model with
hydration and with CR. The parameters used to generate the results
shown here are: c0 = 19.1 mM, ϵr = 80, κh

−1 = 0.3 nm, σh = 5/nm2, lh =
0.2 nm, Γ = 1 × 1018 m−2, and pKb = 4. Note that when CR is
neglected, we used qs = −0.63 C/m2. (b) Surface charge density vs the
surface separation distance profiles predicted using the BSK model
with hydration and CR (blue dotted line) and the PB model with
hydration and CR (black dotted line). Note that the parameters: c0, ϵr,
κh

−1, σh, lh, Γ, and pKb are the same as those used in (a), and that due
to the incorporation of CR, qs varies with the separation distance
between the two charged surfaces. (c) Surface charge density vs the
solution pH profiles predicted using the BSK model with hydration
and CR (blue dotted line) and the PB model with hydration and CR
(black dotted line) for a separation distance of 4 nm between the two
charged surfaces. Note that both surfaces are assumed to be negatively
charged and to possess identical surface charge densities.
Furthermore, the parameters used to generate the surface charge
density profiles are the same as those used in (b).
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layer was coated over a calcite crystal. A key assumption made
by Plassard et al. (also implemented here) is that the
interaction of the two CSH layers can be approximated as
the interaction between two flat surfaces. Note that to solve for
the disjoining pressure, we used the following parameters: lh =
0.1 nm, κh

−1 = 0.3 nm, σh = 5/nm2, Γ = 1 × 1018 m−2, pKb = 4,
and Ah = 14 × 10−20 J. The following parameters were used in
our predictions: (i) the Hamaker constant, Ah, used in this
study is the same as that determined by Plassard et al. by
measuring the surface forces operating between two CSH
layers in air, (ii) the values of the hydration parameters, σh and
κh

−1, used here are identical to those reported by Brown et
al.,63 (iii) the value of the surface site density, Γ, is identical to
that reported by Behrens and Grier,66 (iv) the pKb is the same
as that used in Figure 7c, where we showed that the
combination of the surface CR parameters, Γ and pKb, is
able to predict the variation of qs with the solution pH in
reasonably good agreement with the experimental data of
Plassard et al., and (v) the lh parameter is obtained by fitting to
the experimental disjoining pressure data. We note here that
the choice of the parameters for the hydration potential, σh,
κh

−1, and lh, used to predict the disjoining pressure curves
reported in Figure 8, is not unique. Although the values of σh
and κh

−1 are quite reasonable as noted in the study by Brown et
al.,63 the value of lh (0.1 nm) used here is smaller than the
hydration shell diameter of 0.48 nm reported for the Ca2+ ion
(see the tabulated hydration shell radius in Table V of ref 73).
We note here that, in principle, one can choose a larger value
of lh to be closer to the corresponding experimental value of
the hydration shell diameter and still obtain similar disjoining
pressure curves reported here by also concurrently changing
the values of σh and κh

−1. However, we found that following
such an approach does not change any of the overall trends of
the disjoining pressure curves reported here.
As shown in Figure 8, the disjoining pressures predicted by

our complete theory are in good qualitative agreement with the
experimental data of Plassard et al. for the five Ca(OH)2
concentrations considered. For the 0.2 mM Ca(OH)2 salt
concentration, the predicted disjoining pressure is purely
repulsive (positive) for all values of the surface separation
distance (see the solid pink line) which agrees very well with

the corresponding experimental data (see pink circles).
However, as the Ca(OH)2 salt concentration increases, the
experimental disjoining pressures become increasingly attrac-
tive (negative; see the red, green, black, and blue circles in
Figure 8), a trend which is captured reasonably well by our
theory (see the red, green, black, and blue solid lines in Figure
8). Note that the Hamaker constant for CSH reported by
Plassard et al. is large when compared to the value for silica (Ah
= 2 × 10−21 J) reported in the literature.74,75 However, in the
Supporting Information document we show that, even if the
Hamaker constant is reduced to Ah = 2 × 10−21 J, our theory
can still capture the experimental trends with minor
modification in the value of σh, as shown in Figure S2.
Finally, it is noteworthy that although our complete theory

for the disjoining pressure (eqs 23 and 24) contains several
parameters: σh, κh

−1, lh, Γ, and pKb, these parameters are
introduced in order to incorporate new physics into the EDL
model, including hydration interactions and surface CR.
However, most importantly, no fitting parameter is introduced
in our theory to model ion−ion correlations because the
dimensionless correlation length is determined directly based
on eq 12. As Figure 8 clearly shows, accurate modeling of ion−
ion correlations is essential to predict the attractive electro-
static contribution to disjoining pressures between similarly
charged surfaces. This is, in fact, the main reason why the
DLVO theory, which neglects ion−ion correlations, fails to
model surface forces/disjoining pressures even qualitatively,
especially in solutions containing multivalent salt ions.

■ CONCLUSIONS
In this article, we formulated a general theory of the disjoining
pressure operating between two charged surfaces in a
multivalent electrolyte solution. We used the BSK framework
to model ion−ion correlations and derived a closed-form
expression for the contribution resulting from ion−ion
correlations to the disjoining pressure. In stark contrast to
the predictions of the PB mean-field theory, which always
predicts a repulsive (positive) disjoining pressure operating
between two similarly charged surfaces, we showed here that
the attractive (negative) disjoining pressure resulting from
ion−ion correlations can dominate over an entropic repulsion,
and thereby cause the overall disjoining pressure to be
attractive (negative). Our theory predicts that both the
magnitude as well as the sign of the disjoining pressure are
strong functions of the counterion valency. Indeed, increasing
the valency of the counterion significantly enhances the
attractive pressure resulting from ion−ion correlations, thereby
promoting attractions between similarly charged surfaces in
aqueous solutions containing divalent and trivalent counter-
ions. On the other hand, we found that the dependence of the
disjoining pressure on the valency of the coion is insignificant.
We also showed that the disjoining pressure in the case of
monovalent ions can still be attractive, provided that the
charge densities on the two charged surfaces are sufficiently
high to induce significant ion−ion correlations.
Another important limitation of the DLVO theory of

colloidal stability, and the PB model on which it is based, is
that it predicts an enhancement of the repulsive disjoining
pressure operating between two similarly charged surfaces
when the surface charge densities of the two surfaces increase.
This is in stark contrast with the available experimental data,34

which conclusively show that the disjoining pressure operating
between two similarly charged surfaces becomes attractive

Figure 8. Comparison of the disjoining pressure vs the surface
separation distance predicted by our complete theory (eqs 23 and 24,
solid lines) with the experimental data of Plassard et al.34 (circles) for
the five Ca(OH)2 salt concentrations shown.
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upon increasing the surface charge densities of the two
surfaces. Our new theory of the disjoining pressure can explain
this experimental finding based on the existence of ion−ion
correlations, which are neglected in the DLVO theory.
In addition to modeling ion−ion correlations, we also

included water-mediated hydration interactions and surface
CR in our theory to allow a direct comparison of the disjoining
pressure predicted by our theory with the experimentally
available disjoining pressure data. To this end, we showed that
modeling the Stern layer self-consistently through water-
mediated hydration interactions results in a significant
repulsive contribution to the disjoining pressure, although
the attractive pressure resulting from ion−ion correlations can
still dominate over the repulsive pressures resulting from the
entropy of the ions as well as from the hydration interactions.
Furthermore, incorporation of surface CR into our model
enabled us to relate the surface charge density at the charged
surface directly to the salt concentration in the electrolyte
solution. Finally, we demonstrated that the disjoining pressure
operating between the CSH layers in a calcium hydroxide salt
solution predicted by our theory is in reasonable qualitative
agreement with the experimental data of Plassard et al.34

Therefore, we believe that the complete theory of surface
forces presented here shows promise in overcoming the known
limitations of the DLVO theory, especially for multivalent
counterions.
In terms of future work, although the BSK model can

describe electrostatic correlation effects at an interface,
currently, it does not capture the Bjerrum pair formation,
which can decrease the effective ion concentration in the bulk
reservoir.76 Furthermore, the BSK model does not capture
long-range oscillations in the charge density at high electrolyte
concentrations.77 This can be corrected by considering
weighted concentrations in the expression for the entropy of
ions (i.e., the g(c+,c−) term in eq 3), as implemented in various
theoretical approaches, including the classical density func-
tional theory.77,78

Finally, at separation distances of ∼1 nm between the two
charged surfaces, in addition to an attractive disjoining
pressure resulting from ion−ion correlations, short-ranged
attractive van der Waals interactions as well as repulsive
hydration interactions can play important roles. A better
estimation of the parameters used to model the van der Waals
interactions, the hydration interactions, as well as of the scaling
proposed for the correlation length may be carried out through
a systematic comparison of the disjoining pressure predicted by
our theory with that available experimentally, as well as that
obtained using the Monte Carlo and molecular dynamics
simulations.
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(26) Jellander, R.; Marcělja, S.; Quirk, J. P. Attractive double-layer
interactions between calcium clay particles. J. Colloid Interface Sci.
1988, 126, 194−211.
(27) Kjellander, R.; Marcelja, S.; Pashley, R. M.; Quirk, J. P. Double-
layer ion correlation forces restrict calcium-clay swelling. J. Phys.
Chem. 1988, 92, 6489−6492.
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