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C L I M A T O L O G Y

Simulation of Eocene extreme warmth and high climate 
sensitivity through cloud feedbacks
Jiang Zhu1*, Christopher J. Poulsen1, Jessica E. Tierney2

The Early Eocene, a period of elevated atmospheric CO2 (>1000 ppmv), is considered an analog for future climate. 
Previous modeling attempts have been unable to reproduce major features of Eocene climate indicated by proxy 
data without substantial modification to the model physics. Here, we present simulations using a state-of-the-art 
climate model forced by proxy-estimated CO2 levels that capture the extreme surface warmth and reduced latitudinal 
temperature gradient of the Early Eocene and the warming of the Paleocene-Eocene Thermal Maximum. Our 
simulations exhibit increasing equilibrium climate sensitivity with warming and suggest an Eocene sensitivity of 
more than 6.6°C, much greater than the present-day value (4.2°C). This higher climate sensitivity is mainly attrib-
utable to the shortwave cloud feedback, which is linked primarily to cloud microphysical processes. Our findings 
highlight the role of small-scale cloud processes in determining large-scale climate changes and suggest a potential 
increase in climate sensitivity with future warming.

INTRODUCTION
The Early Eocene [~56 to 48 million years (Ma) ago], the warmest interval 
in the Cenozoic (the past 66 Ma), was a period of elevated atmo-
spheric CO2 concentrations [~1625 ± 760 parts per million by volume 
(ppmv)] (1, 2), substantially higher surface temperatures (3), and a 
latitudinal temperature gradient that was lower than today by at 
least 32% (4). The Eocene epoch began with the Paleocene-Eocene 
Thermal Maximum (PETM; ~56 Ma ago), the most severe of several 
short (105 to 106 years) hyperthermal events. During the PETM 
event, global surface temperature rose by 5° to 9°C (5, 6) in response 
to an estimated atmospheric CO2 increase of ~70 to 100%, suggesting 
an equilibrium climate sensitivity (ECS) of ~6°C (7–9). Simulating 
the extreme warmth of the Early Eocene and the large temperature 
increase in the PETM has been a challenge for climate models given 
their modest climate sensitivity (2.1° to 4.7°C) (10). The inability of 
climate models to match the warm conditions inferred from proxy 
evidence has been attributed to missing model components and 
physical processes, climate forcings, or misinterpretations and un-
certainties in proxy reconstructions (11–17).

Here, we conduct simulations of the Early Eocene using the 
Community Earth System Model version 1.2 (CESM1.2) with the 
Community Atmosphere Model version 5 (CAM5) (18) and compare 
them to proxy estimates of near-surface temperature. Following the 
Deep-Time Model Intercomparison Project (DeepMIP) protocol (2), 
four Eocene simulations are carried out with atmospheric CO2 
concentrations of 1×, 3×, 6×, and 9× preindustrial levels (PILs; 
285 ppmv). Other than CO2, the simulations use the same set of 
boundary conditions, including Early Eocene paleogeography, land-
sea mask, vegetation distribution, and preindustrial (PI) non-CO2 
greenhouse gas concentrations, soil properties, natural aerosol 
emissions, solar constant, and orbital parameters (Materials and 
Methods; figs. S1 and S2) (2). Our simulations capture major climatic 
features of the Early Eocene and the PETM in a state-of-the-art 
Earth system model forced by CO2 concentrations consistent with 

proxy reconstructions and without the addition of exotic forcings 
(16) or alteration of the model physics (19). That the CESM1.2 sim-
ulates the past Eocene extreme warmth within the uncertainty of 
proxy records provides additional confidence in this model’s simu-
lation of high-CO2 future climates.

RESULTS
Model-data comparison of the Early Eocene temperature
Global mean surface temperature (GMST) in the Eocene 1× simu-
lation is 4.5°C higher than in the PI simulation (Fig. 1A) due to the 
absence of ice sheets and anthropogenic aerosols, more widespread 
vegetation cover, and differences in the distribution of natural aerosols. 
Eocene GMST increases to 25.0°, 29.8°, and 35.5°C in the 3×, 6×, 
and 9× CO2 simulations, respectively. For comparison, we estimate 
the Early Eocene GMST from available terrestrial and marine proxy 
data to have been 29° ± 3°C (95% confidence interval; gray patch in 
Fig. 1A), 15°C greater than PI GMST and in close agreement with 
the latest estimate (Materials and Methods; table S1) (20). Interpolat-
ing our simulated GMSTs to the mean proxy estimate of CO2 for the 
Early Eocene (~1625 ppmv) yields a temperature of 29.4°C, a value 
in good agreement with proxy temperatures.

Our simulations also capture the marked reduction in the merid-
ional sea surface temperature (SST) gradient that is characteristic of 
the Early Eocene (4, 11). The 3×, 6×, and 9× simulations exhibit 
decreases in the SST gradient of 19, 24, and 32% relative to the PI 
case, all falling within the reconstructed range of 31 ± 13% for the 
Early Eocene (Fig. 1B; Materials and Methods). Simulated zonal 
mean surface temperatures over land and ocean compare well with 
proxy values at both high and low latitudes (Fig. 2). Our 3× and 9× 
simulations, which span the range of Early Eocene CO2 values (~3× 
to 8.5× PIL), bracket 80% of terrestrial and 50% of marine mean 
proxy temperatures. Site-by-site comparison of model and data 
paleotemperatures for the Early Eocene suggests a good model-data 
agreement with the root mean square error in simulations approach-
ing the uncertainty in proxy records (fig. S3).

Our simulations also reproduce the PETM warming within proxy 
uncertainties of GMST and atmospheric CO2. From proxy records, 
we estimate GMST to have increased by ~5°C from ~27° (pre-PETM 
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conditions) to ~32°C during the PETM (black arrow in Fig. 1A; 
table S2; Materials and Methods). PETM CO2 levels are not well 
constrained, and proxy and model estimates suggest an increase of 
approximately 70 to 100% over pre-PETM levels (7–9). Assuming a 
pre-PETM GMST of 27°C, we interpolate the corresponding CO2 
change in our 3×, 6×, and 9× simulations and calculate a PETM 
warming of 4.6° to 6.8°C. Model simulations match the PETM warm-
ing in all 21 proxy records within their uncertainty, with a root mean 
square error of ~3°C (fig. S4).

The CESM1.2 with CAM5 shows marked improvement over 
earlier models (gray markers in Fig. 1) in its ability to simulate 

Eocene extreme warmth and the low meridional surface temperature 
gradient at CO2 levels that are within the range inferred from proxies 
(1). In Community Climate System Model version 3 (CCSM3), a 
predecessor of the CESM, atmospheric CO2 levels of more than 
4560 ppmv were required to simulate an Eocene GMST of ~29°C 
(21). To address this limitation, past studies have simulated a warmer 
Eocene climate by introducing novel aerosol forcings (16) or by 
altering the model physics in ways that have not been validated 
against modern observational constraints (19). In contrast to these 
studies, the improvement in the CESM1.2 is due to the substantially 
larger climate sensitivity that is produced by self-consistent model 
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Fig. 1. Model-data comparison of the Early Eocene GMST and relative meridional SST gradient. (A) GMST (in °C) in model simulations (markers) as a function of CO2 
concentration compared with proxy estimates of the Early Eocene (gray patch) and the pre-PETM to PETM warming (black arrow). (B) Relative latitudinal gradient of SST 
in model simulations (markers) as a function of CO2 compared with estimates from proxies (gray patch). The CO2 ranges for the Early Eocene and PETM are from the latest 
estimates from proxies (1) and modeling (8), respectively. Eocene CESM1.2 simulations from this study are denoted as filled red circles. For reference, the PI simulation is 
marked as a black circle. Previous Eocene simulations (16, 19) including those from the Eocene Modeling Intercomparison Project (EoMIP) (3) are denoted by gray open 
markers. Note that methane concentrations in previous simulations that are different from the PI value have been converted to the equivalent CO2 concentration (Materials 
and Methods). In CCSM3KS simulations, the authors altered cloud properties substantially to account for presumed Eocene aerosol changes (16). Similarly, model physics 
are significantly altered in FAst Met Office/UK Universities Simulator (FAMOUS) (E17) (19).
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Fig. 2. Model simulated zonal mean temperature over land and ocean compared with proxy estimates. (A) Zonal mean land surface temperature in the Eocene 
simulations compared with Early Eocene terrestrial proxy evidence (11). (B) Zonal mean SST in the Eocene simulations compared with published Early Eocene SST data, 
compiled in this study (table S1). Inferred temperatures using 18O of planktic foraminifera, clumped isotopes, Mg/Ca of planktic foraminifera, and TEX86 are denoted as 
filled circles, upward-pointing triangles, squares, and downward-pointing triangles, respectively.
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physics under high CO2 levels. As we discuss below, this arises pri-
marily from improved treatments of cloud microphysical processes 
in the atmosphere model CAM5 (22, 23).

Increased climate sensitivity with warming and  
cloud feedback
We estimate the ECS, defined as the GMST response to CO2 dou-
bling, for the PI and the Eocene 1×, 3×, and 6× CO2 simulations using 
a slab ocean model (SOM) configuration (Materials and Methods). 
In the PI case, ECS is 4.2°C (Fig. 3A) and within the range of the 
latest estimates from the Intergovernmental Panel on Climate Change 
(IPCC) (10). ECS for the Eocene 1× case is 3.5°C, about 0.7°C lower 
than the PI ECS due primarily to a lower surface albedo feedback 
(Fig. 3B and table S3). Eocene ECS increases significantly with higher 
background CO2 levels to 6.6° and 9.7°C in the 3× and 6× simula-
tions, respectively (Fig. 3A). In contrast, ECS in previous Eocene 
simulations (3) and in SOM simulations using CAM4 (Materials and 
Methods), the predecessor of CAM5, is 2.1° to 4.3°C and exhibits 
only minor increases (<1.5°C) with CO2 increase up to 8× PIL. Ap-
proximately 30% of the increase in ECS from CAM4 to CAM5 
(from 3.2° to 4.2°C), under PI conditions, has been attributed to an 
increase in the efficacy of CO2 forcing (the radiative forcing per 
doubling CO2) as a result of the updated radiation scheme in CAM5 
(24). Here, from offline radiation calculations, we estimate the effi-
cacy of CO2 forcing to be 3.8 W m−2 for the PI simulation and 4.0, 
4.7, and 5.2 W m−2 for the Eocene 1×, 3×, and 6× experiments using 
CAM5, respectively. A similar increase in efficacy of CO2 forcing 
has previously been found and attributed to the rapid nonfeedback 
cloud adjustments to radiative forcing and nonlogarithmic CO2 
opacity (21). The increase in CO2 efficacy (by 0.7 and 1.2 W m−2) in 
the Eocene 3× and 6× runs accounts for ~20% (0.6° and 1.1°C) of 
the total ECS increase, assuming a linear relationship between radi-
ative forcing and GMST. These results suggest that physical processes 
(climate feedbacks) other than the CO2 radiative forcing explain the 
high ECS in our Eocene simulations.

To quantify the strength of climate feedbacks responsible for the 
increased ECS with warming in our Eocene simulation, we computed 
the climate feedback parameter, defined as the increase in net down-
ward radiation at top-of-the-atmosphere per unit of global warming, 
using a two-way partial radiative perturbation (PRP) calculation (25) 
(Materials and Methods; Fig. 3B and table S3). In the Eocene 1× 
simulation, surface albedo, cloud, lapse rate, Planck, and water vapor 
feedback parameters are 0.16, 0.50, −0.60, −3.03, and 1.97 W m−2 K−1, 
respectively, with a doubling of CO2. In the Eocene 6× simulation, 
the cloud feedback parameter increases by 110%, predominantly 
attributable to its shortwave component, and the water vapor feed-
back parameter rises by 67%. Meanwhile, albedo and lapse rate 
feedback parameters decrease, partly offsetting the increase in water 
vapor and cloud feedbacks. The intensification of the water vapor 
feedback results mainly from an increase in saturation vapor pressure 
and an increase in the height of the tropopause with warming (fig. S5) 
(26), responses that are consistent with previous Eocene simulations 
using CCSM3 (21). The doubling of the cloud shortwave feedback 
parameter from 1× to 6× PIL CO2 is, however, a fundamentally dif-
ferent response than in CCSM3 (21) and CAM4 SOM simulations, 
which exhibit insignificant or decreasing trends with warming up to 
6× PIL CO2 (fig. S6).

To further assess the importance of water vapor and cloud feed-
backs to ECS, we compare the feedback responses in CAM4 (with a 
low ECS) and CAM5 (with a high ECS) in an atmosphere-only con-
figuration (Materials and Methods). Under identical Eocene boundary 
and sea surface conditions, both models exhibit similar increases in 
atmospheric water vapor content and tropopause height with warm-
ing (fig. S5), results that are consistent with previous studies show-
ing a similar water vapor feedback between CAM4 and CAM5 
(27, 28). In contrast, using an approximated PRP (APRP) method 
(Materials and Methods), we find that the magnitude of the shortwave 
cloud feedback parameter is much greater in CAM5 (0.40 W m−2 K−1) 
than in CAM4 (0.11 W m−2 K−1). Furthermore, in response to an 
identical GMST increase from 19.3° to 25.5°C, the shortwave cloud 
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Fig. 3. ECS and climate feedback parameters in the Eocene simulations. (A) The ECS (in °C) in the PI (black circle) and Eocene 1×, 3×, and 6× simulations (red filled 
circles) as a function of the atmospheric CO2 concentration. For comparison, ECSs in previous Eocene simulations (3) and in CAM4 slab ocean simulations are shown as 
gray open markers and blue filled circles, respectively. ECS for Eocene 6× is shown as a smaller marker than the other Eocene simulations, as it is estimated from the 6× 
and 9× experiments instead of using slab ocean simulations (Materials and Methods). (B) Climate feedback parameters (in W m−2 K−1) diagnosed from the two-way PRP 
method as a function of the atmospheric CO2 concentration in the Eocene simulations. Surface albedo (ALB), cloud (CLD), lapse rate (LPR), Planck (PLK), and water vapor 
(WVP) feedback parameters are shown. The cloud feedback parameter is further decomposed into shortwave and longwave components. For reference, feedback param-
eters in the PI simulation are denoted as open markers. Detailed numbers and uncertainty are shown in table S3. (C) Contributions to the shortwave cloud feedback 
parameter from cloud fraction, scattering, and absorption properties calculated from the approximated PRP method using the Eocene 1× and 9× simulations.
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feedback parameter increases from 0.40 to 0.79 W m−2 K−1 in CAM5 
but decreases slightly in CAM4 (fig. S6). These results are a strong 
confirmation that the shortwave cloud feedback is responsible for 
the high ECS and its increase with warming in CAM5 compared 
with CAM4.

Linkages of cloud feedback to cloud microphysical processes
Using the APRP method, we attribute the strong shortwave cloud 
feedback in our Eocene simulations, as compared to the overall weak 

cloud feedback in CAM4, to changes in cloud fraction and scattering 
(Fig. 3C and figs. S5C and S6B; Materials and Methods). With 
warming from our 1× to 6× simulations, low- and medium-level 
cloud cover decreases, especially at mid- and high latitudes (except 
over the Arctic; Fig. 4, A and B), a response that is different from the 
slight increase in cloud cover in CAM4 (Fig. 6) and consistent with 
the changes in the shortwave cloud forcing with warming. At the 
same time, cloud liquid droplet sizes increase from 1× to 6× simula-
tions, with maximum values over mid-latitude regions rising from 
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12 to 15 m (Fig. 4, E and F). In theory, when cloud liquid water 
content remains constant, clouds with larger droplets are less opaque 
and preferentially scatter in the forward direction, resulting in 
enhanced shortwave radiation to the surface (29). In our Eocene 
simulations, mid- and high-latitude in-cloud liquid water content is 
not fixed but increases (Fig. 4, C and D), partly offsetting the de-
crease in cloud opacity there. A decreased high-latitude cloud glacia-
tion rate in a warmer climate could also decrease the cloud opacity 
(30). At lower latitudes, in-cloud liquid water content decreases with 
warming, which is another contributor to the decrease in cloud 
opacity. This thinning of clouds with warming is broadly consistent 
with a recent large eddy simulation of the subtropics (31). The com-
bined reduction in cloud cover and cloud opacity increases surface 
shortwave radiation and surface warming.

The reduction in cloud coverage and the increase in cloud droplet 
size with warming in our simulations are ascribed primarily to the 
implementation of a new two-moment cloud microphysical scheme 
in CAM5 (22, 23). The new scheme predicts both cloud water mix-
ing ratio and droplet number concentration, allowing a prognostic 
calculation of effective droplet radius. With the new scheme, cloud 
water content, particle size, and droplet number concentration in 
CAM5 are all in better agreement with recent satellite observations 
than previous models (22, 32–34). In contrast, CAM4 includes a 
one-moment cloud microphysical scheme that does not allow cloud 
droplet size to change and, thus, does not capture the corresponding 
changes in cloud shortwave scattering (35).

The reduction in low-cloud cover in our simulations is hypothesized 
to arise from more efficient conversion of cloud water into precipi-
tation under warming conditions via stronger accretion and auto-
conversion processes. As the two most important sinks of cloud 
condensates, autoconversion and accretion describe, respectively, the 

transformation of cloud particles to precipitation through coalescence 
and vapor diffusion and the growth of precipitation by droplet inter-
ception and accumulation of cloud water. In the Eocene 1× and 6× 
simulations, zonal mean in-cloud accretion and autoconversion rates 
increase everywhere in response to elevated CO2, with the maximum 
values increasing from ~1 to ~2 g kg−1 day−1 (Fig. 5). The increased 
accretion and autoconversion rates are associated with the increased 
mixing ratios of cloud water and rain water with warming and the 
slight reduction in droplet number concentration (Fig. 4, G and H) 
(22). We have confirmed the influence of the microphysical scheme 
on low-cloud cover through a series of CAM4 atmosphere-only 
simulations, in which we sequentially replaced the CAM4 physical 
parameterizations with the updated CAM5 ones (Materials and 
Methods). Replacing the CAM4 cloud microphysical parameterization 
with the new CAM5 scheme reproduces ~90% of the differences in 
low-cloud cover (Fig. 6). Other physical parameterizations play a 
minor role in decreasing low-cloud cover with warming.

DISCUSSION
The response of clouds to warming is responsible for much of the 
spread in model predictions of anthropogenically forced future cli-
mate change (10). Our study is one of many that have emphasized 
the role of clouds in amplifying CO2-induced warming (21, 30, 36, 37). 
These previous studies have attributed changes in cloud forcing to 
changes in SST patterns and the resulting decrease in tropospheric 
stability, thermodynamic effects from warmer SSTs, warming and 
drying by radiative forcing, increased convective mixing in the lower 
troposphere, and cloud interactions with aerosols (16, 17, 36–38). 
Here, we identify cloud microphysical processes as an important 
factor in cloud forcing. The important role of cloud microphysics in 
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determining climate sensitivity in the CESM1.2 justifies a greater 
effort to better understand and parameterize cloud microphysics 
through theory, observations, and simulations with multiple high-
resolution models and super-parameterizations.

As the only period of high atmospheric CO2 in the Cenozoic, the 
Eocene is arguably the most critical target for benchmarking climate 
models that are tuned to present-day CO2 levels. Here, a state-of-the-art 
Earth system model simulates the extreme warmth and low meridional 
temperature gradient of the Eocene and PETM with age-appropriate 
estimates of past CO2 and without any alteration of the model physics. 
The good match of our Eocene simulations with proxy data is due 
to the fact that climate sensitivity in the CESM1.2 increases substantially 
with CO2-induced warming. The cloud processes responsible for the 
increased climate sensitivity in our Eocene simulations are also active 
under modern conditions. In a simulation with 4× CO2 based on the 
PI boundary conditions, the ECS increases by 33% to 4.2°C from 
5.6°C in the PI simulation (fig. S7; Materials and Methods). These 
results suggest a higher climate sensitivity in a warmer future than 
typically estimated by the IPCC.

MATERIALS AND METHODS
Model simulations
Fully coupled simulations
The CESM1.2 with the CAM5 (18) was used in this study. The re-
leased version of the CESM1.2 has been slightly modified to incor-
porate an upgrade in the later versions of the radiation code that 
corrects the missing diffusivity angle specifications for certain long-
wave bands, which is important for simulation of warm climates. 
All CESM model simulations were run with a horizontal resolution 
of 1.9° × 2.5° (latitude × longitude) for the atmosphere and land, and 
a nominal 1° for the ocean and sea ice. The atmosphere component 
CAM5 has 30 levels starting from ~60 m above surface to a model 
top at ∼2 hPa (~40 km). The Eocene simulations were initialized 
from an equilibrated PETM state using the CCSM3 (16) and inte-
grated for more than 2000 years to ensure that the upper ocean 

reaches quasi-equilibrium (fig. S2). All Eocene simulations were run 
with the identical boundary conditions following the DeepMIP 
protocol (2) and differ only in atmospheric CO2 concentration. The 
Eocene boundary conditions included paleogeography, land-sea mask, 
vegetation distribution, and PI non-CO2 greenhouse gas concentra-
tions, soil properties, natural aerosol emissions, solar constant, and 
orbital parameters (2, 39). The emissions of PI natural aerosol have 
been redistributed according to the Eocene paleogeography (40). For 
comparison, simulations based on the PI conditions with 1× and 
4× PI CO2 were also conducted. All results presented here are based on 
climatological means of the past 100 years of each simulation.
SOM simulations
Following convention, SOM simulations (41) were used to calculate 
the ECS. In all SOM simulations, the CESM dynamic ocean model 
was replaced with a simple mixed-layer model, keeping all other 
model components unchanged. To reproduce the SST and sea ice 
conditions in the fully coupled simulation with dynamic ocean, surface 
heat flux convergence and mixed-layer depth were derived from 
ocean climatological state in a corresponding fully coupled run with 
identical boundary conditions and prescribed in the SOM simula-
tion. SOM simulations typically reach equilibrium in fewer than 
30 model years.

To calculate the ECS for different CO2 background states, two SOM 
simulations were conducted, one with the specified background CO2 
(e.g., 1× or 3× for Eocene simulations and 1× or 4× for simulations 
with the PI conditions) and another with twice the background CO2 
level. All runs were integrated for 60 years, with the past 30 years 
used for analysis. The ECS for a specific background state was esti-
mated as the difference in 30-year averaged GMST between a SOM 
simulation and its corresponding doubled CO2 run. Eocene simula-
tions experience a runaway greenhouse for CO2 at 12× PI levels, 
preventing us from directly calculating ECS for the 6× case using 
SOM simulations. Therefore, ECS for the 6× case was estimated from 
the fully coupled simulations. We first calculated the GMST difference 
to be 5.6°C between the 9× and 6× fully coupled simulations. We 
then used offline radiation code in CAM5 to calculate the adjusted 
radiative forcing within the 6× case by increasing CO2 to the 9× and 
12× PI levels, which were 2.98 and 5.16 W m−2, respectively. ECS for 
the 6× case was then estimated to be 9.7°C by multiplying the GMST 
difference by the ratio of radiative forcing (5.16/2.98 = 1.73). We 
note that a similar runaway greenhouse has been reported in other 
models at much lower CO2 levels (e.g., 4× or 8×) (3). It is unclear 
whether the runaway greenhouse in the simulation is real. Further 
studies are needed to test its sensitivity to boundary conditions and 
model physics. Additional Eocene SOM simulations were carried 
out using CAM4 to compare its climate sensitivity and feedback 
strength to that of CAM5.
Atmosphere-only simulations
To investigate the differing cloud responses to warming in CAM4 
and CAM5, Eocene atmosphere-only simulations were conducted 
for both models with prescribed climatological SST and sea ice 
derived from a corresponding fully coupled Eocene simulation with 
the same CO2 level. Any difference between these CAM5 and CAM4 
atmosphere-only simulations is attributable to differences in the 
model physical parameterizations of radiation transfer, aerosol, 
boundary layer processes, shallow convection, and cloud micro-
physical and macrophysical processes. To further isolate the exact 
physical process responsible for the different cloud response between 
CAM5 and CAM4, additional atmosphere-only simulations were 
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Fig. 6. Role of CAM5 physical parameterizations in changing low-cloud cover. 
Changes in low-cloud cover (in %) versus the GMST (in °C) in the Eocene atmosphere-
only simulations using CAM4 with individual CAM5 physical parameterizations 
switched on sequentially (Materials and Methods). The physical parameterizations 
of radiation transfer (rad), cloud microphysics (micro), turbulence and shallow con-
vection (uw), and cloud macrophysics (macro) are tested. For comparison, values 
of low-cloud cover have been realigned by subtracting the corresponding value in 
the 1× simulation. For reference, standard atmosphere-only simulations using CAM5 
(red filled circles) and CAM4 (orange filled circles) are also shown.
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conducted using CAM4 with CAM5 physical parameterizations 
switched on sequentially. We first switched on the CAM5 radiation 
transfer scheme (rad), then the cloud microphysical parameterization 
(micro), then the boundary layer and shallow convection schemes 
(uw), and, lastly, the cloud macrophysical scheme along with a few 
other parameter changes (macro). The role of different aerosol 
schemes was diagnosed as the differences between standard CAM5 
simulations and CAM4 simulations with CAM5 rad, micro, uw, 
and macro switched on. Note that when adding the uw scheme to 
CAM4, we also increased the vertical levels from 26 to 30, as is done 
in CAM5 (42). These atmosphere-only simulations enabled us to 
evaluate the impact of individual physical parameterizations on the 
cloud response to warming in CAM5.
Previous Eocene simulations
Eocene simulations using the CESM1.2 in this study were compared 
with published Eocene simulations, including those that participated in 
the Early Eocene Modeling Intercomparison Project (3, 11, 16, 19, 43–46). 
Note that methane concentrations in previous simulations that differ 
from the PI value have been scaled to the equivalent CO2 concentration 
using published relationships (47).

Estimating GMST for the Early Eocene, pre-PETM, and PETM
To estimate the GMST for the Early Eocene, we made use of published 
compilation of terrestrial records (11) and compiled a new set of marine 
SST records spanning the Early Eocene (53.3 to 49.4 Ma), the pre-
PETM period, and the PETM event in accordance with the DeepMIP 
protocol (2, 48). Specifically, the Eocene marine SST records consist of 
18O of planktic foraminifera from the Ocean Drilling Program (ODP) 
690B (49), ODP 738 (50, 51), ODP 865 (15), Deep Sea Drilling Project 
(DSDP) 277 (52), Tanzania (53), Waipara (54), and Lodo Gulch (55); 
revised Mg/Ca temperatures (4) from ODP 865 (56), DSDP 277 (57), 
Hampden Beach (57), Tora NZ (57), Tawanui NZ (57), and Waipara 
(58, 59); TEX86 temperatures (60) from ODP 929 (61), ODP 959 (20), 
ODP 1172 (62), Arctic Coring Expedition (ACEX) (63), Hampden 
Beach (61), Hatchitigbee Bluff (64), South Dover Bridge (61), Tanzania 
(53), Waipara (54, 58, 61), Western Siberian Seaway (65), and Wilkes 
Land U1356A (66); and clumped isotope (47) thermometry from 
Kutch India (4), Egem Belgium (4), and Hatchitigbee Bluff (64). The 
pre-PETM and PETM data consist of 18O from Bass River (55), Wilson 
Lake (54, 67), DSDP 277 (52), ODP 865 (15), Tanzania (68), Nigeria 
SQ (6), Lodo Gulch (55), Tumey Gulch (55), Milville (69), ODP 689 
(69), DSDP 401 (70), and DSDP 549 (71); revised Mg/Ca temperatures 
(4) from DSDP 401 (70), DSDP 277 (57), ODP 865 (56), DSDP 527 (72), 
ODP 1209 (73), Nigeria SQ (6), and Bass River (74); and TEX86 tem-
peratures from Bass River (75), Fur Section and Store Bælt Section 
(North Sea) (76), Harrell Core (77), Nigeria 1B10A/B (6), Nigeria SQ 
(6), ODP 1172 (78), ODP 959 (20, 79), Wilson Lake (67), ACEX (63), 
Waipara (54), and Western Siberian Seaway (65). For accurate model-
data comparison, paleolocations for all proxies were recalculated using 
the Herold14 reference frame (39), which is the paleogeography used 
for our simulations in accordance with DeepMIP recommendations 
(2). Proxies were also recalibrated in a consistent fashion. 47 and 
Mg/Ca data were converted to SST following Evans et al. (4). TEX86 data 
were calibrated using the BAYSPAR (linear bayesian spatially varying 
regression) approach (60). The TEXH

86 calibration (80) was not used 
here due to its regression dilution, which will systematically underestimate 
warm Eocene temperatures (60). 18O was recalibrated in a manner 
similar to the compilation in Lunt et al. (3). Using the Herold14 paleo-
locations, 18O seawater estimates were drawn from the nearest grid 

cells from two Eocene isotope-enabled simulations conducted with 
Goddard Institute for Space Studies (GISS) model E-R (46, 81) and 
Hadley Centre Coupled Model version 3  (HadCM3) (82), respectively. 
These were converted to the Vienna Pee Dee Belemnite (VPDB) scale, 
and SSTs were calculated using the high-light and low-light calibra-
tions of Bemis et al. (83). The upper and lower error bars for the 
18O therefore reflect both 18O seawater uncertainty and calibration 
uncertainty. Note that for site DSDP 401, only the HadCM3 estimate 
of 18O of seawater was used (the GISS estimate yielded an unreal-
istically low value of −3.13‰). The compiled proxy data average for 
each timeslice, along with paleolocations and corresponding source 
references, can be found in tables S1 and S2.

We estimated the Early Eocene GMST from proxy records using 
two methods. In the first method, we binned the proxy terrestrial 
and marine temperatures separately into 15° latitudinal bands and 
computed the arithmetic mean of land surface temperature and SST 
within each band. We next calculated the area-weighted global mean 
for land and ocean temperatures separately from available bands 
with records. Last, the GMST was obtained as the area-weighted 
average of land and ocean temperatures. In the second method, we 
first calculated proxy temperature anomalies from PI core-top tem-
peratures. We then compiled a GMST anomaly following the same 
procedure as the first method. Absolute GMST for the Early Eocene 
was the sum of the complied GMST anomaly and PI GMST. The 
Early Eocene temperature records are spatially unevenly distributed 
with many fewer records in the tropics (fig. S3). As a result, the first 
method (using absolute temperature) underestimates the GMST, 
and the second method (using anomalous temperature) overestimates 
the GMST because of the high absolute and low anomalous Eocene 
temperature in the tropics. Our final GMST estimate is the average of 
results from the two methods, which removes part of the biases from 
spatially unevenly distributed proxies. We explored different latitudinal 
band sizes to estimate GMSTs and found similar results with a differ-
ence of <1°C. Years 1851–1900 of the Berkeley Earth surface tempera-
ture (84) were used to calculate the average climate state for the PI.

A simulation-aided Monte Carlo approach was developed to 
estimate the uncertainty of proxy GMST, including the propagation 
of calibration uncertainty from individual proxies and the sampling 
error from scarce records. To propagate uncertainty from individual 
proxies, we randomly drew the same number and type of surface 
temperature within a 5° box around each proxy (to incorporate 
uncertainty in paleolocations) in an Eocene simulation and cal-
culated the GMST in the same way as we did for proxy records. We 
repeated this procedure for 10,000 iterations and calculated the 95% 
uncertainty interval to represent the uncertainty in proxy GMST 
propagated from individual records. To calculate sampling un-
certainty from scarce records, we randomly drew the same number 
and type of surface temperatures from all model grids and compiled 
the GMST. We calculated the sampling uncertainty from 10,000 
iterations. The total uncertainty was the sum of uncertainties 
from propagation and sampling. In this approach, we assumed 
that the uncertainty in proxy GMST due to sparse sampling and 
uncertain location is comparable to that from the CESM Eocene 
simulation. This assumption is reasonable, as our Eocene simula-
tions closely capture the warming and reduced SST gradient in 
proxy reconstructions (Figs. 1 and 2, and figs. S3 and S4). Our 
Monte Carlo estimated uncertainty does not vary much (<0.5°C) 
whether the 3×, 6×, or 9× CO2 Eocene simulation was used in 
the procedure.
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Calculating the latitudinal SST gradient
The latitudinal SST gradient in model simulations and PI observa-
tions was calculated as the SST difference between the averages in 
the low latitudes (|lat| < 30°) and the high latitudes (|lat| > 60°) (3). 
The SST gradient in Eocene proxy reconstructions was calculated 
following Evans et al. (4) We subtracted the mean of the benthic 
foraminifera Mg/Ca-derived deep ocean temperature record (85) 
from the mean of all available tropical SST data (i.e., records within 
30°S to 30°N in our Early Eocene SST compilation; table S1) for the 
interval 49.4 to 53.3 Ma. The uncertainty was derived using a similar 
Monte Carlo approach as described above for compiling GMST. 
Latitudinal SST gradients calculated in this way may reflect maximum 
steepness endmembers (4).

The PRP and feedback analysis
The PRP approach (25) was adopted to diagnose the strength of 
cloud, water vapor, lapse rate, Plank, and surface albedo feedbacks 
in model simulations. PRP calculates top of the atmosphere radia-
tive perturbations from an offline version of the model radiation 
code. First, we output high-frequency instantaneous radiation fields 
for both the control and the perturbed simulations. Then, offline 
radiation code was driven by the high-frequency radiation fields 
substituted one at a time. We adopted a two-way calculation; we 
first calculated the radiative perturbation by substituting fields from 
a lower CO2 run into a run with higher CO2 and then repeated the 
process substituting fields from a higher CO2 run into lower CO2 
run. The final radiation perturbation was obtained by averaging 
perturbations from the two substitutions. This technique has the 
advantage of largely reducing the error from two correlated fields 
(25). Note that the stratospheric temperature was not substituted 
when calculating the lapse rate feedback. The tropopause was diag-
nosed from instantaneous model output following the method of 
Reichler et al. (86). The Planck feedback was obtained by simply 
perturbing all model levels by the surface temperature change. We 
used the Parallel Offline Radiative Transfer tool released together 
with the CESM to carry out the offline radiation calculation (87). 
The sampling frequency in this study is 73 model steps, which is 
found to be a good balance of sampling frequency, data size, and 
accuracy (87). In each case, the offline radiation code was integrated 
for five model years, with the past 4 years used for analysis.

A less-expansive APRP method (88) was used to further de-
compose the shortwave cloud feedback into contributions from 
changes in cloud fraction, scattering, and absorption and to compare 
clouds in CAM4 and CAM5, as the full PRP method demands large 
storage of high-frequency global fields and considerable computa-
tional resources. The APRP method has been found to be efficient 
and satisfactory for diagnosing shortwave cloud feedback parameters, 
with a difference from the full PRP method of less than 7% (88).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/9/eaax1874/DC1
Fig. S1. Topography and bathymetry at model resolution.
Fig. S2. Spin-up of the Eocene simulations.
Fig. S3. Model-data comparison of Early Eocene surface temperature.
Fig. S4. Model-data comparison of PETM warming in SST.
Fig. S5. Comparison of CAM5 and CAM4 Eocene atmosphere-only simulations.
Fig. S6. Comparison of temperature and shortwave cloud feedback parameters between 
CAM5 and CAM4 Eocene SOM simulations.
Fig. S7. Increase in climate sensitivity and cloud feedback parameter with warming under 
modern conditions.

Table S1. Compilation of SST proxies for the Early Eocene.
Table S2. Compilation of SST proxies for the pre-PETM and PETM.
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