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Speech perception involves the integration of sensory input with expectations based on the context of that speech. Much debate sur-
rounds the issue of whether or not prior knowledge feeds back to affect early auditory encoding in the lower levels of the speech processing
hierarchy, or whether perception can be best explained as a purely feedforward process. Although there has been compelling evidence on
both sides of this debate, experiments involving naturalistic speech stimuli to address these questions have been lacking. Here, we use a
recently introduced method for quantifying the semantic context of speech and relate it to a commonly used method for indexing
low-level auditory encoding of speech. The relationship between these measures is taken to be an indication of how semantic context
leading up to a word influences how its low-level acoustic and phonetic features are processed. We record EEG from human participants
(both male and female) listening to continuous natural speech and find that the early cortical tracking of a word’s speech envelope is
enhanced by its semantic similarity to its sentential context. Using a forward modeling approach, we find that prediction accuracy of the
EEG signal also shows the same effect. Furthermore, this effect shows distinct temporal patterns of correlation depending on the type of
speech input representation (acoustic or phonological) used for the model, implicating a top-down propagation of information through
the processing hierarchy. These results suggest a mechanism that links top-down prior information with the early cortical entrainment of
words in natural, continuous speech.
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Introduction
Spoken language is one of the distinguishing characteristics of
our species. But precisely how our brain converts complex
spectro-temporal patterns into meaning remains unclear (Poep-

pel, 2014). There is convergent evidence in the literature that
points to hierarchical levels of specialization in linguistic process-
ing, in which different regions of the brain are implicated (Davis
and Johnsrude, 2003; DeWitt and Rauschecker, 2012). For exam-
ple, the superior temporal gyrus has been shown to encode fun-
damental spectro-temporal acoustic features relevant to speech
(Mesgarani et al., 2014), whereas the superior temporal sulcus is
thought to play a role in phonemic perception (Liebenthal et al.,
2005; Hickok and Poeppel, 2007). At higher levels, words are
subsequently retrieved from a mental lexicon, believed to be lo-
cated in the left middle temporal gyrus (Badre et al., 2005) whose
meanings are accessed through a widely distributed semantic net-
work (Binder et al., 2009; Huth et al., 2016; Anderson et al., 2017).
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Significance Statement

During natural speech comprehension, we use semantic context when processing information about new incoming words. How-
ever, precisely how the neural processing of bottom-up sensory information is affected by top-down context-based predictions
remains controversial. We address this discussion using a novel approach that indexes a word’s similarity to context and how well
a word’s acoustic and phonetic features are processed by the brain at the time of its utterance. We relate these two measures and
show that lower-level auditory tracking of speech improves for words that are more related to their preceding context. These
results suggest a mechanism that links top-down prior information with bottom-up sensory processing in the context of natural,
narrative speech listening.
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Much debate surrounds the issue of whether context-based
predictions of upcoming words that are made at these higher
levels feed back to affect processing at lower levels (Kuperberg
and Jaeger, 2016). It is widely acknowledged that semantic con-
text can influence the processing of individual words as seen in
reading (Ehrlich and Rayner, 1981; Hale, 2001; Frank, 2013;
Smith and Levy, 2013) and electrophysiological experiments
(Kutas and Hillyard, 1980), but whether this information can
shape the perception of speech at a prelexical stage remains con-
troversial (McClelland and Elman, 1986; Norris et al., 2000; Davis
and Johnsrude, 2007; Travis et al., 2013). Although there has been
compelling evidence on both sides of this debate, experiments
involving naturalistic speech stimuli to address these questions
have been lacking.

Cortical activity has been shown to track the temporal enve-
lope of speech (Ahissar et al., 2001) and is reflective of both the
acoustic (Aiken and Picton, 2008) and phonetic processing (Di
Liberto et al., 2015; Khalighinejad et al., 2017) of speech in EEG.
Recent studies have also shown how low-frequency cortical en-
trainment to the speech envelope increases as a function of
speech intelligibility (Luo and Poeppel, 2007; Ding et al., 2014;
Crosse et al., 2016b). This indicates that cortical tracking of the
speech envelope is not merely a passive following of the acoustic
signal but can be influenced by some top-down input. It remains
unclear, however, what is driving this modulation. It is well
known that selective attention modulates the cortical tracking of
speech, as seen in studies using the “Cocktail Party” paradigm
(Ding and Simon, 2012a; Power et al., 2012; Zion Golumbic et al.,
2013; O’Sullivan et al., 2015). Other factors, such as listening
effort (Peelle, 2018), have also been shown to affect tracking abil-
ity. Another possibility is that this increase in tracking could be
partially due to the amount of semantic context and word pre-
dictability made available with increasing speech intelligibility. It
has been shown that semantic information can improve per-
ceived intelligibility of speech in noise, comparing coherent sen-
tences with unrelated word lists (Miller et al., 1951), and coherent
with incoherent sentences (Davis et al., 2011). Semantic context
can also bias the perception of phonemes replaced with noise,
which has been shown in behavioral (Warren, 1970) and neuro-
physiological studies (Leonard et al., 2016). Such studies point to
a top-down, semantic-related effect on the auditory tracking of
the speech signal, but whether this occurs at prelexical stage re-
mains unclear.

In this study, we investigate the impact that semantic infor-
mation may have on the early encoding of natural speech at
acoustic-phonetic levels and whether this occurs for more natu-
ralistic stimuli, such as continuous speech. Here, we use a method
for quantifying words’ semantic similarity to their immediately
preceding sentential context, hereafter “semantic similarity”
(Broderick et al., 2018) and relate it to a commonly used method
for indexing low-level auditory encoding of speech. The relation-
ship between these measures is taken to be an indication of how
semantic context leading up to a word influences how its low-
level acoustic and phonetic features are processed.

Materials and Methods
All data used in the analysis were originally collected for Di Liberto et al.
(2015) and Broderick et al. (2018). These data are currently available to
download via Dryad at https://datadryad.org/resource/doi:10.5061/
dryad.070jc.

Participants
Nineteen native English speakers (6 female; 19 –38 years of age) partici-
pated. The study was undertaken in accordance with the Declaration of

Helsinki and was approved by the Ethics Committee of the School of
Psychology at Trinity College Dublin. Each subject provided written in-
formed consent. Subjects reported no history of hearing impairment or
neurological disorder.

Stimuli and experimental procedure
Subjects undertook 20 trials, each just �180 s long, where they were
presented with an audio-book version of a popular mid-20th century
American work of fiction (Hemingway, 1952), read by a single male
American speaker. The average speech rate was 210 words/min. The
mean length of each content word was 340 ms with SD of 127 ms. Trials
were presented chronologically to the story. All stimuli were presented
diotically at a sampling rate of 44.1 kHz using HD650 headphones
(Sennheiser) and Presentation software (Neurobehavioural Systems).
Testing was performed in a dark, sound-attenuated room, and subjects
were instructed to maintain visual fixation on a crosshair centered on the
screen for the duration of each trial, and to minimize eye blinking and all
other motor activities.

EEG acquisition and preprocessing
The 128-channel EEG data were acquired at a rate of 512 Hz using an
ActiveTwo system (BioSemi). Triggers indicating the start of each trial
were sent by the stimulus presentation computer and included in the
EEG recordings to ensure synchronization. Offline, the data were band-
pass filtered between 1 and 8 Hz using a Chebyshev Type II filter (order
54, cutoff 0.5 Hz for high pass filtering and 8.5 Hz for low pass filtering).
Passband attenuation was set to 1 dB, and stopband attenuation was set
to 60 dB (high pass) and 80 dB (low pass). The data were later filtered in
� and � bands using 1– 4 Hz (order 34, cutoff 0.5 Hz and 4.5 Hz) and 4 – 8
Hz (order 36, cutoff 3.5 Hz and 8.5 Hz) Chebyshev Type II bandpass
filters. These filters had the same passband and stopband attenuation as
the 1– 8 Hz filter. After filtering, data were downsampled to 64 Hz (back-
ward modeling) or 128 Hz (forward modeling; see below). To identify
channels with excessive noise, the SD of the time series of each channel
was compared with that of the surrounding channels. For each trial, a
channel was identified as noisy if its SD was �2.5 times the mean SD of all
other channels or less than the mean SD of all other channels divided by
2.5. Channels contaminated by noise were recalculated by spline inter-
polating the surrounding clean channels in EEGLAB (Delorme and
Makeig, 2004). Finally, the data were rereferenced to the global average of
all channels. We chose minimal preprocessing on the EEG signal (for
example, excluding common preprocessing steps, e.g., independent
component analysis) as the data would be further processed using the
temporal response function (TRF; see below). This analysis identifies
neural signals related to auditory processing and therefore acts as an
additional preprocessing stage. A similar preprocessing pipeline has been
selected for a variety of studies that use the TRF to investigate auditory
processing in the brain (Di Liberto et al., 2015; O’Sullivan et al., 2015;
Crosse et al., 2016b). We conducted an additional analysis to ensure that
unrelated artifacts, such as ocular artifacts, did not pose as a confound in
our main results (see Results).

Stimulus characterization
A speech signal can be represented in several different forms. Each char-
acterization can be thought to index different aspects of the same speech
signal and capture unique features from different levels of the language
hierarchy. In our methods, we extract a variety of acoustic and linguistic
features from each content word in our spoken narrative and use these
features as inputs at various points in a two-stage regression analysis.
These features can be categorized into three main groups based on their
role and what stage they are used in the analysis.

1. The first group of features were used as input in the TRF (see below),
mapping stimulus to neural response or neural response to stimulus.
These characteristics are used to assess the encoding of speech at different
levels of the hierarchy.

1a. Envelope. The broadband amplitude envelope of the speech signal
was calculated using the Hilbert transform.

1b. Spectrogram. The speech signal was filtered into 16 different fre-
quency bands between 250 Hz and 8 kHz according to Greenwood’s
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equations (Greenwood, 1961). After filtering, the amplitude envelope
was calculated for each band.

1c. Phonetic features. To create the phonetic feature stimulus,
Prosodylab-Aligner software (Gorman et al., 2011) was used. This auto-
matically partitions each word in the story into phonemes from the
American English International Phonetic Alphabet and performs forced
alignment, returning the starting and ending time points for each pho-
neme. Each phoneme was then mapped to a corresponding set of 19
phonetic features, which was based on the University of Iowa’s phonetics
project (http://prosodylab.cs.mcgill.ca/tools/aligner/).

2. The second group indexes higher-level linguistic features of words
and was used in the second stage of the regression analysis.

2a. Semantic similarity. Semantic similarity was calculated for each
content word in the narrative. It is based on the well-known word2vec
model (Mikolov et al., 2013a; Baroni et al., 2014), whereby each word can
be represented as a 400-dimensional vector (Baroni et al., 2014).
Word2vec semantic vectors encode the intermediary network-level pro-
cessing stage that precedes the activation of predicted words. Specifically,
vectors are network weights connecting word identity input nodes to a
hidden layer of 400 nodes that reflect textual contexts. The hidden con-
texts are the abstract latent structure within natural text corpora that are
discovered by network training. The hidden layer subsequently activates
an output layer of word identity nodes that encode the prediction. Cru-
cially, words that share similar meaning will have a closer proximity in
this 400-dimensional space. A word’s similarity index is calculated as 1
divided by the Euclidean distance between the word’s vector and the
averaged vector of all the preceding words in the sentence (Broderick et
al., 2018). Thus, small similarity values signify out-of-context words that
by extension are unexpected. Similar measures of semantic surprisal and
distance have been used to study reading time effects (Pynte et al., 2009),
reading comprehension (Frank and Willems, 2017), and brain imaging
of speech processing (Frank and Willems, 2017).

Semantic similarity values had a mean of 0.347 and SD of 0.072. To put
these values into perspective, we estimated distributions of semantic sim-
ilarity values for sentences that were purposefully constructed to reach
the upper and lower bounds of semantic similarity. We took example
sentence pairs from an N400 study designed by Federmeier (Federmeier
and Kutas, 1999), and calculated semantic similarity values for each word
in the second sentence relative to the first. This distribution of values was
taken to be the upper bound. We then replaced these sentences with
randomly selected sentences from the TIMIT dataset (Garofolo et al.,
1993) to simulate a second distribution, and lower bound, of semantic
similarity values. We found that the distribution of semantic similarity
values derived from our natural text lies between the upper (mean �
0.367, SD � 0.069) and lower (mean � 0.3, SD � 0.048) distributions of
semantic similarity values.

3. Finally, a third group of stimulus characterizations was identified.
The purpose of this group was to be included in the second-stage regres-
sion analysis as “nuisance regressors” to soak up any variance in word
reconstruction accuracy related to acoustic changes in the speaker’s voice
(detailed discussion below).

3a. Envelope variability. Envelope variability was calculated by taking
the SD of the speech envelope over the same time window used to mea-
sure word reconstruction accuracy. Here, we wished to control for rapid
changes in the envelope amplitude as it has been shown that cortical
responses monotonically increase with steeper acoustic edges (Oganian
and Chang, 2018).

3b. Relative pitch. Relative pitch was recently shown to be encoded in
EEG (Teoh et al., 2019). It quantifies pitch normalized according to the
vocal range of the speaker. Praat software (Boersma and Weenink, 2016)
was used to extract a continuous measure of pitch (absolute pitch). The
measure was then normalized to zero mean and unit SD (z units) to
obtain relative pitch.

3c. Resolvability. Resolvability measures whether the harmonics of a
sound can be processed within distinct filters of the cochlea (resolved) or
whether they interact within the same filter (unresolved). It has previ-
ously been shown using fMRI that pitch responses in auditory cortex are
predominantly driven by resolved frequency components (Norman-
Haignere et al., 2013). Custom-written scripts from an acoustic statistics

toolbox from the same study were used to extract a continuous measure
of harmonic resolvability.

Modeling of the stimulus–response relationship
Described below are two approaches for modeling the relationship be-
tween an audio stimulus and neural response. Our goal here is to exam-
ine how these measures might vary as a function of the amount of
semantic information carried by individual words in context. As de-
scribed below, the speech envelope can be reconstructed based on a
“backward” model (known as a decoder) trained on the neural data.
Conversely, the neural response can be predicted using a “forward”
model trained on the stimulus. Both approaches offer complementary
advantages (Crosse et al., 2016a). The backward modeling approach
takes into account the signal from all recorded electrodes simultaneously
and thus can do a better job at separating the speech-related signal from
the background EEG. Given that we did not have a good sense a priori of
how large the effect of semantic information on low-level processing
might be, we chose to first exploit the sensitivity of this backward mod-
eling approach to maximize our chances of identifying such an effect. On
the other hand, forward modeling gives channel-specific predictions and
can indicate scalp regions where the stimulus is most prominently rep-
resented. It can also more easily incorporate different multivariate speech
representations (e.g., spectrograms, phonetic features). As such, we also
sought to use the forward modeling approach with a view to identify how
different speech features might be differentially affected by semantic in-
formation and how any such effects might be distributed on the scalp.

Backwards modeling/envelope reconstruction
A backwards model, or decoder, was trained to reconstruct an estimate of
the speech envelope from the neural data (Mesgarani et al., 2009; Ding
and Simon, 2012b). A decoder, gn(�), describes a linear mapping from
neural response, rn(t), to stimulus, s(t), and can be expressed by the
following equation:

ŝ�t� � �
n

�
�

rn�t � �)gn���

where ŝ�t� is the reconstructed stimulus envelope; n indicates the re-
corded neural channels, and � is a specified number of time lags. Here,
the decoder, g, was obtained using ridge regression, written in matrix
form as follows:

g � �RTR � �I��1RTs,

where R is the lagged time series of the EEG data. The time lags ranged
from �100 to 300 ms. The regularization term was used to prevent
overfitting, where � is the ridge parameter and I is the identity matrix. In
a leave-one-out cross-validation procedure, a decoder, trained on all but
one trial, is used to reconstruct an estimate of the speech envelope of the
left-out trial. Envelope reconstruction accuracy is then found by calcu-
lating the correlation between the reconstructed envelope and the actual
envelope. This is repeated for each of the 20 trials in the experiment
(Crosse et al., 2016a). A range of decoders were constructed using differ-
ent � values between 0.1 and 1000. The � value corresponding to the
decoder that produced the highest envelope reconstruction accuracy,
averaged across trials, was selected as the regularization parameter for all
trials per subject.

Because the goal of the study was to assess the low-level encoding of
each individual word as a function of its semantic similarity, we focused
on the envelope reconstruction around each word. Specifically, each in-
dividual word’s reconstruction accuracy was assessed by looking at the
Spearman’s correlation between the reconstructed envelope and the ac-
tual envelope in the first 100 ms after the word’s onset (Fig. 1A, bottom
right). The length of this window was chosen to capture the fast-changing
dynamics of auditory encoding of each word’s low-level features. Because
we were interested in the effect that semantic similarity might have on the
earliest stages of processing after word onset, we initially looked at 0 –100
ms. Later, we shifted this window to show how these dynamics change
over the course of a word utterance, as described below. There were, on
average, 2 phonemes in every 100 ms window.
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Forward modeling/EEG prediction
The forward mapping of stimulus to response was done using the TRF
(Lalor and Foxe, 2010). The TRF can be thought of as a filter that de-
scribes the brain’s linear mapping between stimulus and neural response.
For N recorded channels, the instantaneous neural response r(t, n),

sampled at times t � 1 . . . T, and channel n, consists of a convolution of
the stimulus property, s(t), with a channel-specific TRF, w(�, n). The
response can be modeled as follows:

r�t,n� � �
�

w(�, n) s(t � �) � 	(t, n)

Figure 1. Overview of the analysis. A, Speech can be represented by its envelope or by each word’s semantic similarity to preceding sentential context, Sw. Using a backwards decoder, the speech
envelope is reconstructed from recorded EEG data. A word’s reconstruction accuracy is measured by comparing the predicted envelope with the actual envelope within a time window after each
word’s onset rw. The relationship between word reconstruction accuracy (rw) and semantic similarity (sw) is then measured by fitting a second-stage linear model with these variables and calculating
the model fit and slope coefficients of R 2 and 
. Bottom left, Outcomes of the model. Positive or negative 
 values would suggest that semantic context has an effect on the cortical tracking of words.
A 
 value of zero would suggest no interaction between the measures. B, Forward encoding models were derived to predict the EEG. These models can take different representations of speech as
their input. Here, spectro-temporal and phonetic feature representations were used to index different levels of language processing. The predicted EEG signal is compared with the actual EEG at a
specified time window enclosing each word to calculate word reconstruction accuracy. The parameters of the second-stage model are used to assess the relationship between semantic similarity and
word reconstruction accuracy at each EEG channel.
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The TRF is estimated as follows, written in matrix format as follows:

w � �STS � �I��1STr

Where S is the lagged time series of the stimulus. The time lags ranged
from �100 to 300 ms. Again, in a leave-one-out cross-validation proce-
dure, trained TRFs are used to predict the left-out EEG response based on
the corresponding stimulus. This predicted response is then compared
with the recorded neural data to assess EEG prediction accuracy. A range
of TRFs were constructed using different � values between 0.1 and 1000.
The � value corresponding to the TRF that produced the highest EEG
prediction accuracy, averaged across trials and channels, was selected as
the regularization parameter for all trials per subject.

We created three separate forward TRFs based on representing the
speech input as its spectrogram (spectrogram-only), a discrete set of
time-aligned phonetic features (phonetic features-only), and as a com-
bination of its spectrogram and phonetic features (Fig. 1B, bottom left)
(Di Liberto et al., 2015). These models were used to generate three sepa-
rate sets of EEG predictions that reflect cortical responses to the spectral
and phonological properties of speech.

Again, we wanted to look at the low-level encoding of each word. As
such, for the forward modeling, we calculated the word-response predic-
tion accuracy as the Spearman’s correlation between the predicted EEG
signal and the recorded EEG, for a time window of 0 –100 ms after the
onset of each word (Fig. 1B, bottom right). Because the forward model-
ing provides a prediction for each EEG channel, we can derive sets of
word-response prediction accuracies at each electrode and thus assess the
scalp locations where interactions between semantic similarity and cor-
tical tracking are most pronounced.

Modeling the relationship between semantic information and
cortical tracking
The main goal of the present study was to assess how the abovementioned
speech encoding measures of words (envelope reconstruction and re-
sponse prediction accuracy based on spectral and phonetic features) vary
as a function of the semantic information associated with them. To that
end, the strength of relationship between stimulus reconstruction or
response prediction accuracy and semantic similarity to context was
measured using a second-stage linear regression model with each content
word in the narrative as a datapoint to the model (N � 5431) and with
associated reconstruction/prediction accuracy and semantic similarity
values as dependent and predictor variables, respectively. We used a
linear mixed-effects (LME) model which models variability due to items
and subjects simultaneously. The model is described as follows:

rw � 
sem � sem � 
env � env � 
 f rel � f rel � 
resolv � resolv

� �1�subject� � 	

In addition to semantic similarity (sem), low-level acoustic correlates of
pronunciation, measured in the first 100 ms after word onset, were in-
cluded in the model. These were envelope variability (env), average rela-
tive pitch ( frel), and average resolvability (resolv). The roles of these
variables were to act as nuisance regressors to ensure no underlying
acoustic-related confound existed between our two main measures. It
has been shown that semantic information associated with a word will
affect how it is spoken (Lieberman, 1963). Therefore, it was important to
ensure that any effect of semantic information on cortical tracking was
not indeed an indirect one, by proxy of changes in the speaker’s voice
rather than top-down effects in the listener’s brain. We studied the model
fit, R 2, and semantic similarity features weight, 
sem, to determine
whether there was some relationship between the variables. All variables
were normalized to zero mean and unit SD (z units) before being input to
the model. Pairwise correlations for the predictor variables in the second-
stage regression were calculated using Pearson’s correlation and are given
in Table 1.

For our forward modeling analysis, EEG prediction accuracies, de-
rived from the combined spectrogram and phonetic features TRF, were
used as the dependent variable in the second-stage LME model, with
identical predictor variables as the second-stage backwards model. To
investigate the effect of semantic context on isolated measures of acoustic

and phonological processing, two additional second-stage models were
constructed. These models were the same as the second-stage forward
model but included prediction accuracies from the spectrogram-only
TRF or the phonetic features-only TRF as additional nuisance regressors
for each other. The rationale for including these nuisance regressors was
that phonological feature and spectrogram representations of speech
share redundant information. So, for example, including EEG prediction
accuracies from the spectrogram TRF allowed us to partial out that re-
dundant contribution and identify the effects of semantic information
on phonetic feature processing in isolation. The analogous analysis was
performed to identify effects of semantic context on spectrographic pro-
cessing in isolation also.

Statistical analysis
Permutation testing. To test the significance of our model, we ran re-
peated permutation tests in which reconstruction or prediction accuracy
values were fixed and semantic similarity values were randomly shuffled
between words, taking the parameters of the model at each permutation.
The testing consisted of 1000 permutations. Parameters of the true model
(
 and R 2) were deemed significant if they exceeded 95th percentile of
the distributions of model parameters based on shuffled semantic simi-
larity values.

Correcting for multiple comparisons. Multiple-comparison correction
was required for analyses that involved statistical testing at multiple scalp
electrodes, multiple time windows, or both. A cluster-mass nonparamet-
ric analysis was conducted (Maris and Oostenveld, 2007) to overcome
the multiple-comparison problem. This approach includes biophysically
motivated constraints that can increase the sensitivity of the statistical
test compared with a standard Bonferroni correction. Neighboring elec-
trodes or time windows that show a significant correlation between se-
mantic similarity and reconstruction/prediction accuracy (measured as
the T value of the regression coefficient being higher than the critical
threshold value; � � 0.05) were clustered together. Cluster-level statistics
were calculated by summing the T values in each cluster separately. Per-
mutation testing was then performed on all the data, and Monte Carlo p
values were calculated for all significant clusters under the permutation
distribution of the maximum cluster-level statistic (Maris and Oosten-
veld, 2007).

Results
Early auditory encoding of words is influenced by their
semantic information
We wished to investigate the relationship between a word’s sim-
ilarity to its preceding context and how well it was encoded in the
initial stages of its acoustic-phonetic processing. To measure the
cortical tracking of words, we first reconstructed the speech en-
velope from the recorded neural data using a linear decoder (Fig.
1A, right). Word reconstruction accuracy was then found by
comparing the reconstructed envelope with the actual spoken
envelope of the word. Each content word was also scored on its
similarity to preceding sentential context. The resulting sets of
semantic similarity values and envelope reconstruction accura-
cies were used to fit a linear model with the number of datapoints
corresponding to the number of spoken content words (N �
5431). The model included low-level speech features of envelope
variability, pitch, and resolvability to control for confounding

Table 1. Pairwise correlations between predictors variable in second-stage
regression

Semantic
similarity

Envelope
deviation frel Resolvability

Semantic similarity 1 — — —
Envelope variability 0.038* 1 — —
Relative pitch 0.0011 0.295* 1 —
Resolvability �0.029 0.236* 0.386* 1

*Significant correlation after correcting for multiple comparisons.
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acoustic (or bottom-up) effects on reconstruction accuracy.
Table 2 gives the feature weights of the model. This shows a
significant positive relationship between a word’s semantic sim-
ilarity and its auditory encoding (
 � 0.0126, p � 5 � 10�11). In
other words, the more semantically similar a word is to its con-
text, the more faithfully the envelope of that word is reflected in
its EEG response. The low-level acoustic predictors, most notably
envelope variability, are also correlated with reconstruction ac-
curacy. This is unsurprising given that cortical responses are sen-
sitive to such acoustic measures (Oganian and Chang, 2018).
Importantly, however, the relationship between semantic simi-
larity and envelope reconstruction holds despite these measures
accounting for a substantial amount of the variance explained in
envelope reconstruction accuracy. The proportion of the vari-
ance explained by the full model is R 2 � 0.0171 (residual degrees
of freedom � 103,183).

Although the p values show the fit and semantic variable co-
efficient to be highly significant, this could be an artifact of the
large sample size (Lin and Lucas, 2013). Therefore, to further test
the significance of this relationship, we fixed the word recon-
struction accuracy values, but shuffled the values of semantic
similarity and recomputed the model fit and 
 values. This was
repeated 1000 times. The null distribution of resulting R 2 values
(left) and 
 values (right) are shown in Figure 2A, with the true
model values indicated by the vertical dashed line. The average
variance explained by the models with randomly permuted se-
mantic similarity is R 2 � 0.0167. It is clear from these plots that
the true semantic similarity values for each word are significantly
related to the accuracy of their decoding.

In the second-stage regression, we used an LME model, which
can model variability due to items and subjects simultaneously.
To test for the robustness of the effect within subjects, separate
linear models were fit based on individual reconstruction accu-
racies to calculate R 2 and 
 values. 
 values were significantly �0
across subjects (t � 4.2, p � 5.4 � 10�4; one-sample t test, N �
19). Again, we conducted permutation testing, shuffling seman-
tic similarity values for each subject’s individual model. This gen-
erated null distributions of R 2 and 
 for every subject. The mean
of these null distributions, along with R 2 and 
 for models with
unshuffled values, are plotted in Figure 2B for each subject. Indi-
vidual subjects’ R 2 and 
 values were significantly higher than the
means of these null distributions (t � 3.76, p � 1.4 � 10�3 and
t � 4.2, p � 5.4 � 10�6, paired t test, N � 19). Nine of 19 subjects
had R 2 values that exceeded the 95th percentile of their null dis-
tribution (p � 1.1 � 10�7, cumulative binomial probability of
achieving � n results at p � 0.05 level), and 9 of 19 subjects had 

values that exceeded the 95th percentile of their null distribution
(p � 1.1 � 10�7, cumulative binomial probability of achieving �
n results at p � 0.05 level).

The reconstruction accuracies for each word were based on
the correlations between the envelope and the reconstructed en-
velope in the first 100 ms of the word’s utterance. To study how
semantic similarity may affect the tracking of a word as it unfolds
in time, we shifted this 100 ms window over the word, recalculat-
ing reconstruction accuracies at each 15 ms increment. Each set

of reconstruction accuracies was regressed with the fixed seman-
tic similarity set of values to calculate a model weight 
 for each
time window. Figure 2C shows the resulting model weight 
 for
each time window. The 95% CIs of 
 are shown in light blue.
Asterisks indicate time windows where 
 values were significantly
�0 after correcting for multiple comparisons. The relationship
between word reconstruction accuracy and semantic similarity is
maximal and at time window of 0 –100 ms (window center � 50
ms). It is worth noting that this peak 
 value corresponds to the
one calculated from the model in Figure 2A as this model was
estimated on the first 100 ms of the reconstruction.

Finally, we wished to test whether any correlation existed be-
tween semantic similarity and potentially confounding measures
extracted from the raw EEG signal that might not be related to
linguistic processing. We estimated the mean variance across
channels in the EEG signal in the first 100 ms of each word and fit
an LME model for this variable with semantic similarity. This
returned a slope parameter estimate that was not significant (
 �
0.043, SE � 0.13, p � 0.74). We also looked at the relationship
between semantic similarity and channel-specific variances in the
EEG signal, fitting an LME model to each channel. We found no
significant relationship between semantic similarity and channel-
specific EEG variance.

Next, we wanted to measure the relationship between seman-
tic similarity and the influence of ocular artifacts on the EEG data
as recent evidence suggests that such activity may pattern with
cognitive activity (Jin et al., 2018). To investigate this, we ran
independent component analysis on the raw EEG data for each
subject (Hyvärinen, 1999) and identified the independent com-
ponent related to eyeblinks for each subject based on weighting
topographies. We calculated mean and SD of the time series of
this IC for the first 100 ms of each word and regressed this quan-
tity onto semantic similarity. We found no significant relation-
ship between eye blinks and semantic similarity (
 � 0.0023,
SE � 0.0026, p � 0.39 for mean eyeblink magnitude and 
 �
7.4 � 10�4, SE � 1.1 � 10�3, p � 0.51 for eyeblink variance). We
additionally included all mentioned measures as nuisance regres-
sors in the second-stage linear model and found no change in

sem.

Semantic information interacts with tracking at different
levels of the processing hierarchy
Cortical tracking can further be assessed by using a forward en-
coding model, or the TRF (Lalor and Foxe, 2010) to predict the
EEG (Fig. 1B). This maps stimulus to response, predicting
channel-specific neural responses from the speech input. This
method can be advantageous as it provides an indication of scalp
locations where interactions between high-level semantic infor-
mation and low-level auditory processing are most prominent.
Forward modeling can also use different multivariate represen-
tations of speech as input to the model. The most commonly used
representation for this approach has been the speech envelope.
However, recent work has shown that spectro-temporal and pho-
nological representations of speech can improve EEG prediction
accuracy (Di Liberto et al., 2015). The use of a forward model in
tandem with our approach, therefore, gives the added benefit of
indicating at which processing stage (spectral or phonological
analysis) cortical activity is affected by semantic information. We
created a TRF based on representing the speech signal as a com-
bination of its spectrogram and a discrete set of time-aligned
phonological features. This gives EEG predictions from which
word prediction accuracies were derived. As before, a second-
stage regression analysis was conducted to measure the strength

Table 2. Model weights of the second-stage regression


 SE t statistic p

Semantic similarity 0.013 0.0018 6.76 1.3 � 10 �11

Envelope variability 0.074 0.002 36.52 3.4 � 10 �290

Relative pitch �0.015 0.0026 �5.74 9.24 � 10 �9

Resolvability �0.022 0.002 �10.66 1.4 � 10 �22
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of the relationship between a word’s EEG
prediction accuracy and its semantic sim-
ilarity to context. The model weight of the
semantic similarity variable 
 can now be
described as a function of the time win-
dow by channel by speech representation.

Figure 3A (top row; FS) shows 
 plot-
ted across all EEG channels for three time
windows (0 –100, 50 –150, and 100 –200
ms) and for a combined spectrogram and
phonetic feature model. Black dots indi-
cate the channels and time windows
where 
 coefficients were significantly
�0, after correcting for multiple compar-
isons. This revealed that interactions
between semantic similarity and early au-
ditory encoding were significant over
frontocentral scalp regions.

Next, we wished to determine the ef-
fect that semantic similarity to context
may have on cortical tracking at the levels
of spectrogram and phonetic feature pro-
cessing in isolation. This was done by run-
ning the same second-stage model but
including prediction accuracies from the
spectrogram TRF or phonetic features
TRF as reciprocal nuisance regressors to
account for any variance related to pro-
cessing at the other level. These models
can be denoted as either FS-S (phonetic)
or FS-F (acoustic). We have conducted
similar analyses in the past (Di Liberto et
al., 2018) to show that top-down prior in-
formation affects the processing of acous-
tically degraded speech specifically at the
level of phonemes. As seen in Figure 3A
(middle and bottom rows), the isolated
phonetic features model shows similar 

values to the combined model at earlier
stages (0 –50 and 50 –150 ms windows)
but relatively reduced 
 values in later
windows, whereas the isolated spectro-
gram model shows an overall reduction in

. Figure 3B shows 
 as a function of time
window center for frontocentral scalp
electrodes.

To further test the robustness of this
effect at an individual subject level, we
constructed subject models through the
same forward modeling pipeline based on
individual subject EEG prediction accura-
cies. We looked at the 
 values, averaged
across frontocentral channels, for the 3
models (isolated spectrogram, isolated
phonetic features, combined) at an earlier
stage and later stage after word onset. We
chose 2 windows that were nonoverlap-
ping in time (0 –100 ms and 100 –200 ms,
respectively) to represent these two stages.
Figure 3C shows boxplots of scalp mean 

values for individual subjects for the 3
models and 2 time windows. We ran a
two-way ANOVA with factors of model

Figure 2. Backward modeling approach. A, Vertical dashed lines indicate fitted model parameters, R 2 (left) and 
 weights for
the semantic variable (right). Histograms represent the distribution of resulting parameters for models in which the semantic
variable was shuffled (1000 permutations). B, Individual subject fitted model parameters, R 2 (left) and 
 coefficients (right)
compared with the mean distribution values for models based on shuffled semantic similarity values (n � 1000). Each color
represents a different subject. C, Second-stage linear models were constructed for word envelope reconstruction accuracies for
increasingly shifted time windows, all 100 ms in length. Plotted are the 
 coefficients for each fit model as a function of the moving
time window center. Light blue areas represent the 95% CIs of the 
 coefficients. Asterisks indicate the time windows where 
 was
significantly greater than 0, after correcting for multiple comparisons. **p � 0.01, ***p � 0.001.
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Figure 3. Forward modeling approach. A, Second-stage model semantic weights (
sem) plotted across all EEG channels for three time windows and for TRF inputs of spectrogram (bottom row),
phonetic features (middle row), and combined spectrogram and phonetic features (top row). Black dots indicate the channels and time points where the 
sem was significantly �0, after
multiple-comparison correction (B). Time course of model 
sem weights for spectrogram (blue), phonetic features (red), and combination (green) models for frontocentral (Figure legend continues.)
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(spectrogram, FS-F; phonetic features, FS-S; combined FS) and
time window (0 –100 ms, 100 –200 ms). We found significant
main effects for model (F � 11.47, p � 0.05) and time window
(F � 10.69, p � 0.05) and a significant interaction effect of model
and time window (F � 3.49, p � 0.05). Due to the significant
interaction effect, we further compared each model for the two
separate time windows using paired t tests. Significant differences
after FDR correction (Benjamini and Hochberg, 1995) are shown
in Figure 3C. This indicates that peaks in 
 are being driven
largely by the effect of semantic information and phonological
processing. The significant interaction effect of time windows
and model suggests a propagation of information through time
from higher linguistic levels of processing to lower ones.

Impact of semantic similarity on tracking in � band
The low-frequency EEG signal was further filtered into � and �
bands to investigate the effect of semantic context on tracking in
different frequency ranges. This was based on previous studies
that have posited different roles in speech processing for the � and
� bands (Ding et al., 2014).

The filtered EEG signal was put through the same backward
and forward modeling pipelines as described above. Figure 4A
shows 
 weights of individually fitted second-stage models for
EEG filtered into � and � bands using the backward modeling
approach. Results show that 
 values are significantly �0 for both
bands (t � 3.52, p � 2.4 � 10�3 for � and t � 6.69, p � 2.8 �
10�6 for �; one-sample t test, N � 19) as well as a significant
increase for 
 values derived from � band cortical tracking com-
pared with � band (t � 3.24, p � 0.004, paired t test, N � 19). The
forward modeling approach confirms these results. 
 weights for
a group-level averaged second-stage model were higher for �
band compared with � band. Topographical plots taken for time
windows of 0 –100 and 60 –160 ms show significant 
 values over
frontocentral electrodes for � range, whereas 
 values related to �
band show activity over peripheral temporal electrodes.

Discussion
In this study, we investigated the relationship between a word’s
similarity to its context and the neural processing of its acoustic
and phonological features. We found that the more similar a
word was to its context, the better it was encoded in the initial
stages of its utterance. This is seen first in the backward modeling,
where the reconstruction accuracy of a word’s acoustic envelope
is positively correlated with its semantic similarity. The result is
mirrored by the forward modeling approach where the predic-
tion of the EEG at the time of the word is higher for more seman-
tically similar words. This suggests a mechanism that links
top-down prior information with the early cortical entrainment
of words.

Previous studies that look at the relationship between cortical
activity and top-down information tend to involve paradigms
where the acoustic information is masked, usually with noise, to
vary intelligibility (Luo and Poeppel, 2007; Davis et al., 2011;
Sohoglu et al., 2012; Ding and Simon, 2013; Ding et al., 2014).
Although much insight has been gained from these studies, there
are two main drawbacks to consider. First, changes in the intelli-

4

(Figure legend continued.) electrodes. Top right, The channels selected for this region. C,
Second-stage model semantic weights (
sem) for individual subject models, averaged across
frontocentral electrodes and taken at time windows of 0 –100 ms (left) and 100 –200 ms
(right). Post hoc test revealed significant differences between models in each time window:
*p � 0.05, **p � 0.01, ***p � 0.001; after correction.

Figure 4. Effects of semantic similarity on tracking in different frequency bands. A, Back-
ward model. Second-stage model semantic weights (
sem) for individual subject models show
that semantic similarity has a larger effect on � band (4 – 8 Hz) tracking than � band (1– 4 Hz).
**p � 0.01. B, Forward model. Second-stage model semantic weights (
sem) for combined
phonetic features and spectrogram TRF for � and � band filtered EEG. Topographical plots at
time windows of 0 –100 ms and 60 –160 ms (top) show significant 
 values for � band pre-
dominantly over frontocentral channels. Bottom, Time course of model 
 weights for � (red)
and � (blue) bands average over frontocentral electrodes.

7572 • J. Neurosci., September 18, 2019 • 39(38):7564 –7575 Broderick et al. • Early Auditory Encoding of Natural Speech



gibility of the speech signal inevitably lead to changes in the
acoustic properties of the same signal (Peelle et al., 2013). Thus,
the observed decrease in � and � band tracking as a function of
intelligibility could be due primarily to changes in the acoustic
signal. Second, the change in a listener’s attention for different
levels of intelligibility could represent something of a confound-
ing effect when considering the relationship between linguistic
information and neural activity. Attention is known to modulate
cortical tracking of speech (Zion Golumbic et al., 2013; O’Sullivan et
al., 2015) and, therefore, could be the cause of differences in en-
coding measures rather than the intelligibility or linguistic con-
tent per se. Our method circumvents this confound by using
natural continuous speech that does not change in its level of
intelligibility. Furthermore, by implementing a general linear
modeling approach, we can partially control for low-level acous-
tic factors of the speech signal by including them as predictor
variables in the model. Subjects were instructed to engage with
the audiobook, all reporting an enjoyment of the story. It is rea-
sonable, therefore, to assume that no systematic, tonic attentional
effects were influencing the auditory processing of the speech.

Better speech envelope reconstruction for words that are
semantically similar to their context
The findings using the backward modeling show a significant
relationship between a word’s similarity to context and how well
its speech envelope was reconstructed from the neural data (Fig.
2). The quality of reconstruction is taken to be a measure of how
well that word was represented in or tracked by the cortex during
the time of its presentation. Notably, the magnitude of this effect,
measured by model fit R 2 and 
, is small. However, the depen-
dent variable used for the regression is the neural signal measured
for single spoken words with no averaged repetitions. It is there-
fore reasonable to expect low model fit and parameter values.
Reconstructing the envelope from EEG usually produces accura-
cies ranging from 0.1 to 0.2 (O’Sullivan et al., 2015; Crosse et al.,
2016a), revealing that a high proportion of the EEG signal is
unrelated to the stimulus envelope. Permutation tests, whereby
the semantic values for words are shuffled, provide a baseline
distribution of our dependent measures. From this, we can see
that our R 2 and 
 values, though small, are significantly higher
than would be expected by chance. Another striking feature of the
interaction between semantic similarity and envelope tracking is
its timing. Figure 2C shows that the enhancement of tracking due
to context is strongest in the first 100 ms of a word’s utterance.
This implies that this interaction occurs rapidly and at a prelexi-
cal stage.

Semantic similarity differentially influences the encoding of
the spectrogram and phonetic features of speech.
The forward modeling approach revealed that interactions be-
tween cortical tracking and semantic similarity were significant
over frontocentral channels, within the first 100 ms of a word’s
utterance. Distinct aspects of this interaction emerged when dif-
ferent levels of the processing hierarchy were isolated. We showed
that the processing of a word’s phonetic features was more
strongly affected by its similarity to context than the processing of
its acoustic features and that early interactions between semantic
information and tracking were likely attributable to this phono-
logical processing. We also show that semantic information af-
fects phonological processing at an earlier latency than acoustic
processing. This is indicative of a top-down mechanism, where
high-level semantic information propagates down through hier-
archical levels, first activating representations associated with the

phonetic features of the speech and then with the lower-level
acoustic features. This finding is in line with studies showing how
prior knowledge modulates activity in regions associated with
higher-level processing, such as the inferior frontal gyrus, before
regions associated with lower-level sensory processing (Sohoglu
et al., 2012).

We also see that this top-down relationship is more promi-
nent in the � band filtered signal compared with the same signal
filtered into the � band. Previous studies have shown how � band
is largely implicated in the tracking of speech and how it is sensi-
tive to changes in intelligibility (Luo and Poeppel, 2007; Ding et
al., 2014).

We have shown that higher semantic similarity can improve
the accuracy of the predicted EEG or reconstructed audio signal.
However, what exact mechanism underlies this improvement?
One possible explanation of our effects is that the EEG signal is
capturing the preactivation of internal representations of pre-
dicted sounds or phonemes. In this framework, higher-level in-
ferences predictively preactivate lower-level representations
before the arrival of bottom-up auditory information (Kuper-
berg and Jaeger, 2016). This preactivation works to facilitate the
processing of bottom-up input. A number of studies support this
notion of predictive preactivation ranging from reading (Ehrlich
and Rayner, 1981) to event-related potential studies (Federmeier
and Kutas, 1999; DeLong et al., 2005). Complementary to this
framework is the idea that predictive preactivation can influence
the perception of phonemes when the auditory input is ambigu-
ous (Warren, 1970). Studies using electrocorticography have
shown how neural signatures of perceived items are represented
in the brain after a subject is biased to hear them based on seman-
tic context (Leonard et al., 2016). A recent MEG study using
representational similarity analysis gives evidence for patterns of
neural activity related to distinct, item-specific lexico-semantic
predictions (Wang et al., 2018). These studies are in line with our
findings supporting the notion that words more strongly related
to their context, and hence more strongly preactivated, are rep-
resented better in the EEG signal. Furthermore, the impact of this
preactivation appears to propagate down through the hierarchy
over time, showing first an enhancement of phonological repre-
sentations of the word, followed, more weakly, by an enhance-
ment of acoustic representations.

An alternative explanation is related to the notion of resource
allocation. Strauß et al. (2013) postulate that, under adverse lis-
tening conditions, the language system is forced to narrow its
expectations about possible upcoming words due to the greater
perceptual load in processing a noisy signal. Results of our study
may align with this in suggesting a dynamic allocation of re-
sources between the semantic and auditory systems to deal with
the perceptual and cognitive loads of incoming words (Mattys et
al., 2009). In Strauß et al. (2013), it was shown that a loaded
auditory system leads to a deficit of processing for the semantic
system. Our results indicate the same effect but in the opposite
direction where a more loaded semantic system leads to reduced
tracking of words in the auditory system. This cognitive load
could be related to the amount of information carried by a word.
Recent modeling studies reveal reading times and neural signals
associated with the entropy of a word or how much information
it bears (Frank, 2013; Brodbeck et al., 2018; Gwilliams et al.,
2018). In the context of our study, words that are more dissimilar
to their previous context will bear more information and thus will
lead to a higher processing load on the semantic system. This will
result in a reduction in auditory tracking of a word.
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Finally, our results at first glance may appear at odds with
what one might expect within a predictive coding framework
(Rao and Ballard, 1999; Friston, 2005; Clark, 2013). Within this
framework, it is believed that accurate prior knowledge leads to a
reduction in error signal between top-down predictions and
bottom-up sensory information, which results in an overall re-
duction in neural activity (Sohoglu et al., 2012). However, it is
important to stress that we are not looking at the relationship
between top-down information and the magnitude of neural ac-
tivity but rather how accurately the neural activity represents the
top-down prediction (Rao and Ballard, 1999). It is reasonable to
expect that unpredictable words would lead to lower reconstruc-
tion/prediction accuracies because they are associated with both
larger neural error signals and less accurate top-down neural sig-
nals. Here, our measure of word predictability is based on
word2vec, which is shown to be a powerful model for capturing
associations between words (Mikolov et al., 2013b). However,
this is just one way to estimate the likelihood of upcoming words
given their context. Future work will explore different language
models to test the relationship between semantic expectation and
auditory encoding of speech.
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