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Abstract

Background: Recent functional connectivity (FC) studies have proved the potential value of 

resting-state functional magnetic resonance imaging (rs-fMRI) in the study of major depressive 

disorder (MDD); yet, the rs-fMRI-based individualized diagnosis of MDD is still challenging.

Methods: We enrolled 82 treatment-naïve first episode depression (FED) adults and 72 matched 

normal control (NC). A computer-aided diagnosis framework was utilized to classify the FEDs 

from the NCs based on the features extracted from not only traditional “low-order” FC networks 

(LON) based on temporal synchronization of original rs-fMRI signals, but also “high-order” FC 

networks (HON) that characterize more complex functional interactions via correlation of the 

dynamic (time-varying) FCs. We contrasted a classifier using HON feature (CHON) and compared 

its performance with using LON only (CLON). Finally, an integrated classification model with both 

features was proposed to further enhance FED classification.
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Results: The CHON had significantly improved diagnostic accuracy compared to the CLON 

(82.47% vs. 67.53%). Joint classification further improved the performance (83.77%). The brain 

regions with potential diagnostic values mainly encompass the high-order cognitive function-

related networks. Importantly, we found previously less-reported potential imaging biomarkers 

that involve the vermis and the crus II in the cerebellum.

Limitations: We only used one imaging modality and did not examine data from different 

subtypes of depression.

Conclusions: Depression classification could be significantly improved by using HON features 

that better capture the higher-level brain functional interactions. The findings suggest the 

importance of higher-level cerebro-cerebellar interactions in the pathophysiology of MDD.

Keywords

Depression; Treatment naïve; Functional magnetic resonance imaging; Dynamic functional 
connectivity

1. Introduction

Major depressive disorder (MDD) is the most common mental disease. It is characterized by 

the loss of interest or pleasure, a feeling of guilt and persistent sadness. According to the 

World Health Organization (WHO), over 300 million people are suffering from MDD 

worldwide, distinguishing this disorder among the ranks as the largest single contributor to 

disability (Geneva., 2017). The prevalence of MDD is close to 11–15% (Bromet et al., 2011) 

and the number of people living with MDD increased by 18.4% between 2005 and 2015 

(Collaborators, 2016). However, the diagnosis of MDD is still challenging because the 

diagnosis is primarily based on both the patient’s cooperation and the psychiatrist’s 

experience (Kipli et al., 2013). It was also reported that primary care physicians with less 

experience could only correctly identify depression in about 50% of the positive case 

(Mitchell et al., 2009). The diagnosis could be complicated since the clinical signs may not 

always manifest. Due to the constraint of the number of experienced doctors, the length of 

consultation time, and the imbalance of medical resource, an accurate and objective method 

to help to diagnosis depression is in urgent need.

Magnetic resonance imaging (MRI) has been extensively used in vivo studies of MDD with 

different imaging modalities, such as structural MRI (Singh et al., 2013), functional MRI 

(fMRI) (Zhang et al., 2016), and diffusion tensor imaging (DTI) (Kieseppa et al., 2010). 

Machine learning methods have been utilized in studies of computer-aided MDD 

classification based on the image features from the non-invasive multimodal MRI (Orru et 

al., 2012). However, previous MRI-based MDD diagnosis studies have exhibited large 

variability in accuracy reported, which is ranging from 67.5% to 94.3% (Mwangi et al., 

2012; Nouretdinov et al., 2011; Zeng et al., 2012). However, only a few imaging-based 

computer-aided MDD diagnosis studies have tackled treatment-naïve and first episode 

depression (FED). FED diagnosis is of more clinical value because a misdiagnosis may lead 

to unappropriated treatment causing prolonged illness duration and treatment resistance 

(Souery et al., 1999). Furthermore, previously applied antidepressant medicine could cause 
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alterations in brain function (Anand et al., 2005) and structures (Frodl et al., 2003), which 

could confound the computer-aided diagnosis. Taken together, the study of FED diagnosis 

could lead to a better understanding of depression-related pathological changes in the brain 

without possible interference by the confounding factors.

Due to the difficulty in FED subject enrollment, only handful studies had conducted MRI-

based computer-aided treatment-naïve FED classification (Costafreda et al., 2009; Fang et 

al., 2012; Fu et al., 2008). A classification study focused on brain structural changes but 

reported unsatisfactory performance (Costafreda et al., 2009). Another paper used DTI-

based structure connectivity for FED classification with high accuracy (Fang et al., 2012), 

but it was based on a limited sample size. Although a task-based fMRI study showed an 

increased FED diagnosis accuracy (Fu et al., 2008), the result may highly depend on the task 

and be affected by task-related confounding factors (e.g., different strategies and cooperation 

problem). In contrast to task-based fMRI, resting-state fMRI (rs-fMRI) does not require task 

performance. It is easy to implement in the clinical setting and places less demand on the 

patients. Therefore, rs-fMRI has been widely used in recent decades for disease studies. 

With the blood-oxygenation-level-depend (BOLD) signals measured for characterizing brain 

spontaneous activity (Cole et al., 2010), functional connectivity (FC) can be calculated on 

the temporal synchronization of the BOLD signals between any pair of brain regions. 

Previous studies have shown that FC is sensitive to various psychiatric diseases (Anderson et 

al., 2011; Shen et al., 2010), including depression (Greicius et al., 2007). To our best 

knowledge, only a few pioneering studies (Guo et al., 2012; Guo et al., 2014a) have used rs-

fMRI to construct whole-brain FC networks for FED classification. However, their sample 

sizes are limited (N = 38 in (Guo et al., 2012) and N = 36 in (Guo et al., 2014a)), leading to 

concerns on the generalization ability (Arbabshirani et al., 2017). A relatively large sample 

size study of computer-aided FED diagnosis based on rs-fMRI and brain functional network 

is highly required.

In this study, we used a large group of treatment-naïve, FED patients to evaluate the 

feasibility of classification model and explore potential imaging biomarkers. Rather than 

only constructing simple FC networks based on the traditional pairwise temporal correlation 

of the BOLD signals (namely, “low-order” FC networks, or LON), we took a step further to 

construct a dynamic “high-order” FC networks (HON) to facilitate FED classification. The 

concept of the HON is based on our previous observations that temporal coherence among 

different time-resolved, dynamic FC links could be used as effective imaging markers in the 

detection of early Alzheimer’s disease (Chen et al., 2016). In our following studies, we 

found that HON could reflect how the adaptive, state-related, time-varying FC are topologies 

are organized, which has been suggested to be more sensitive to disease-related changes than 

the conventional LON (Chen et al., 2017b; Zhang et al., 2017). In addition, HON could carry 

supplementary information to LON and jointly using both types of FC networks could 

further improve individual diagnosis (Liu et al., 2016).

In the present study, we proposed that HON characterize the more complex functional 

organization of the brain, which can help for FED diagnosis. Specifically, we aimed to 

construct classifiers by using HON with a relatively large sample of treatment-naïve FED rs-

fMRI dataset and detect new imaging feature involving high-order cognitive function-related 
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brain areas. Collectively, we proposed a comprehensive rs-fMRI-based, automated FED 

classification model by fusing both HON and LON, which could be potentially applicable in 

the future studies on neurological and psychiatric diseases.

2. Methods

2.1 Participants

A total of 82 (53 females, 29 males) treatment-naïve FED adults and 72 (39 females, 33 

males) age-, gender- and education-matched normal controls (NC) participated in this study 

from August 2015 to June 2017. The patients were recruited at The First Affiliated Hospital, 

Guangzhou University of Chinese Medicine, Guangdong, China. The diagnosis of 

treatment-naïve, first-episode depression was made between two attending psychiatrists who 

have more than 10 years of experience with Diagnostic and Statistical Manual of Mental 

Disorder (DSM-5) using the Structured Clinical Interview (SCID) (Qiu et al., 2018). A 17-

item Hamilton Rating Scale for Depression (HAMD) (Hamilton, 1967) was used to evaluate 

depression severity (Guo et al., 2015). All the patients were at their first episode of 

depression and had no history of treatment, including antidepressants (e.g., antipsychotics, 

benzodiazepines or sedatives), psychotherapy and so on (Qiu et al., 2018). The inclusion 

criteria are: 1) aged between 18 and 55 years old, 2) right-handed native Chinese speaker, 3) 

no history of neurological illnesses or other psychiatric disorders (e.g., bipolar disorder, 

psychosis), and 4) HAMD ≥ 18. Subjects were excluded if they had significant systemic or 

neurologic illness, alcohol or drug abuse, or any contraindications to MRI scan. All NCs had 

HAMD-17 < 7. Two experienced radiologists determined that all subjects were normal on 

conventional MRI. Our inclusion criteria ensure that all our patients were treatment-naïve 

and at their first episode of depression (Qiu et al., 2018). All participants provided written 

informed consent and the study was approved by the Ethics Committee of the First Affiliated 

Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

2.2 Data Acquisition and Preprocessing

In this work, MRI data were acquired with a 3.0T GE Singa HDxt scanner with 8-channel 

head coil. The conventional brain images included axial T1-weighted, T2-weighted, and 

fluid-attenuated inversion recovery (FLAIR) to exclude any cranial diseases. High-resolution 

T1-weighted images were acquired for registration purpose (repetition time (TR)/echo time 

(TE) = 10.4/4.3 ms, flip angle = 15°, slice thickness = 1.0 mm, slice gap = 0 mm, matrix size 

= 256 × 256, field of view (FOV) = 256 mm × 256 mm, and slices number = 156). The rs-

fMRI parameters were: TR/TE = 2000/30 ms, flip angle = 90°, matrix size = 64 × 64, FOV = 

240 mm × 240 mm, slices number = 33, slice thickness = 4.0 mm, scanning time = 8’20’’ 

(250 volumes). During the scan, subjects were instructed to remain still with their eyes 

closed and to avoid falling asleep. The rs-fMRI data were preprocessed by DPARSF version 

2.3 (http://rfmri.org/DPARSF). Specifically, the first 10 volumes of each subject were 

discarded. After slice timing and head motion correction, T1 image was co-registered to the 

rs-fMRI from the same subject and further segmented using unified segment (http://

www.fil.ion.ucl.ac.uk/spm) and registered to the standard Montreal Neurological Institute 

(MNI) space using Diffeomorphic Anatomical Registration through Exponentiated Lie 
Algebra (DARTEL). The rs-fMRI data was then warped to the MNI space, spatially 
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smoothed with a Gaussian kernel (6 × 6 × 6 mm3), and temporally band-pass filtered 

(0.01−0.1Hz). After nuisance covariates regression, Automated Anatomical Labeling 

template (AAL) was applied to extract regional mean rs-fMRI time series of 116 regions-of-

interest (ROIs). Subjects with maximum displacement in any directions larger than 2 mm or 

head rotation in any directions larger than 2° were excluded.

2.3 Classification based on High-order FC Networks

Our proposed classification framework based on HON is shown in Fig. 1. The steps of the 

training phase are as follows: 1) The entire BOLD signal were partitioned into multiple 

overlapping segments by using sliding windows, with window length set to 90 and the step 

size was 2 (Chen et al., 2016); 2) For each subject, a set of pair-wise LONs matrices were 

constructed from every BOLD signal segment, forming a dynamic FC time series for each 

link or ROI pair; 3) All subjects’ dynamic FC time series were concatenated along the 

temporal dimension and then grouped into 800 clusters (Chen et al., 2017b); 4) By treating 

each cluster as a new node, a HON was constructed by calculating Pearson’s correlation 

between each pair of cluster-averaged dynamic FC time series; 5) Weighted-graph-based 

local clustering coefficients (Rubinov and Sporns, 2010) were extracted for each node as a 

high-order FC feature (Jie et al., 2014); 6) A small subset of the informative high-order FC 

features were selected based on LASSO (Least Absolute Shrinkage and Selection Operator) 

(Tibshirani, 1996); and 7) a support vector machine (SVM) (Cortes and Vapnik, 1995) was 

learned based on the training subjects with the selected HON features. In the subsequent 

testing phase, the trained model was applied to the testing subjects and the performance of 

the classification on all the testing subjects was evaluated based on leave-one-out cross-

validation (LOOCV). LOOCV can be essentially considered as a variant of k-fold (k = total 

number of subjects) cross-validation (Patel et al., 2016). Given L subjects, L-1 subjects are 

used for training, while the remaining one is used for testing in each loop of LOOCV. In this 

way, one can test the model established on the training set using the unseen subject. LOOCV 

is a popular, valid, and well-established method for testing a classification model in the field 

of machine learning (Wong, 2015). There are many other works also used LOOCV as the 

model evaluation method for testing the generalizability (Hahn et al., 2011; Mourao-

Miranda et al., 2011), as when the samples are largely independent (like this study), the 

model has the lowest variability and without any bias to the mean accuracy (Bengio, 2004). 

Finally, the validation measures the average of values from all the iterations to evaluate the 

overall performance of our method. The details of the high-order FC and HON construction 

are detailed in our previous paper (Chen et al., 2016) and Supplementary Materials.

We compared the classification performance using HON only (CHON) with that using 

traditional (static) LON only (CLON) by repeating the above feature extraction, feature 

selection, and classification for LON. To jointly use the potentially complementary HON 

and LON features for even better FED classification, we trained two SVMs using LON and 

HON features, respectively. A combined classification was conducted by using an ensemble 

learning algorithm (Chen et al., 2017a), which integrates the two SVMs at the decision level 

by weighted linear combining the scores from them. This yielded a comprehensive FED 

identification model (i.e., CHON+LON).
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2.4 Identification of Discriminative Features

We ranked the HON (or LON) features based on the frequency during all cross-validation 

runs to figure out the discriminative features. We only chose the features that were 100% 

selected (indicating a good reproducibility). The values of these features were put into a 

subsequent regression analysis to further detect symptom-related features for both HON and 

LON.

2.5 Statistical Analysis

All the statistical analysis including demographic and clinical data were carried out using the 

SPSS version 23.0 (Chicago, IL, USA). Demographic and clinical data were compared 

between the two groups by using two-sample t-tests or chi-square tests. A p-value < 0.05 

(two-tailed) was considered significant.

To investigate the association between multiple discriminative HON (or LON, for 

comparison) features and each of the two symptomatic variables (HAMD score and illness 

duration), a stepwise linear analysis (Song et al., 2008) was conducted for HON and LON, 

separately. The threshold was set as p < 0.05 (two-tailed). Age, gender, education level, the 

averaged strength of individual brain functional network, and the averaged clustering 

coefficients across all nodes were used as covariates during regression. The detailed 

procedure is provided in Supplementary Materials.

3. Results

3.1 Demographic and Clinical Data

The demographic and clinical information of the subject is summarized in Tab. 1. No 

significant difference was observed in gender, age, and education among FEDs and NCs.

3.2 High-order FC Network

Online Supplementary Fig. S1 shows the averaged connectivity matrices representing the 

group-level HON for two groups. For comparison, the results of the LON were shown. 

Visual comparison of the group averaged HONs shows greater differences between the 

FEDs and NCs (Online Supplementary Fig S1a, b), while such differences are less 

prominent with LONs (Online Supplementary Fig S1c, d).

3.3 HON-based FED vs. NC Classification

We evaluated the performances of the FED vs. NC classification using accuracy (ACC), area 

under curve (AUC) of the receiver operating characteristic (ROC) curve, sensitivity (SEN), 

specificity (SPE), Youden’s Index (Youden), F-score, and balanced accuracy (BAC) 

(Sokolova et al., 2006). The equations of the indices are given in Supplementary Materials. 

The performance comparison results among CHON, CLON, and CHON+LON are shown in Tab. 

2.

The proposed CHON achieved much better results than CLON with respect to all the 

performance indices. Specifically, the use of HONs boosted the FED classification accuracy 

by ~15% (to 82.47%), with balanced sensitivity (85.37%) and specificity (79.17%). In 
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contrast, LON led to less accurate (but still satisfactory considering the difficulty in 

separating the two groups) classification results. Moreover, CHON+LON achieved slightly 

better performance with an elevated AUC of ~0.91, which outperformed both CHON and 

CLON. The ROC curves of the three methods are shown in Online Supplementary Fig. S2.

3.4 Discriminative HON Features

After discriminative feature identification, 28 HON features were consistently selected in all 

cross-validation runs and shown in Fig. 2. Most of the HON features had a star-shaped 

pattern with one hub region in the center, i.e., the cluster of the synchronized dynamic FC 

links shared one node (ROI). Many of these hub regions are located at the cerebellum, 

especially the vermis and the crus II. The other regions connected with the hubs are mainly 

located in the hippocampus, anterior cingulate gyrus (ACG), posterior cingulate gyrus 

(PCG), the orbitofrontal cortex (ORB), and the temporal pole. These regions mainly 

encompass the default mode network, central executive network, and salience network.

A total of 15 discriminative brain regions were consistently identified from the LON; they 

were visualized in Online Supplementary Fig. S3. These regions are mainly located at the 

hippocampus, PCG, temporal pole and cerebellum. Several of them are overlapped with the 

HON features as shown above, but they jointly achieved a lower FED classification 

accuracy.

3.5 Correlation between Imaging and Clinical Feature

Results from the stepwise linear regression are shown in Fig. 3 with multiple views of HON 

features and summarized in Online Supplementary Tab. S1. A total of four HON features 

(node #108, #265, #311 and #350) were found to be significantly correlated with the clinical 

scores. From the HON node #265, we found that several dynamic FC links that involve the 

thalamus and the cerebellar vermis are negatively associated with HAMD scores. The HON 

features with dynamic FC links encompassing ORB, inferior frontal gyrus (IFG) and 

temporal gyrus were associated with illness duration. Specifically, illness duration was 

negatively correlated with the HON node #311 and #350, including the dynamic FC clusters 

mainly involving cerebellum-to-cortex connections, where ORB, IFG, middle temporal 

gyrus (MTG) and inferior temporal gyrus (ITG) were involved. The positive correlation 

between depression duration and the HON feature is at HON node #108, which mainly 

encompasses cerebellum-to-subcortical regions, involving putamen (PUT) and pallidum 

(PAL). However, there is no significant correlation between the clinical scores and the LON 

features.

4. Discussion

In this study, we finally recruited 82 treatment-naïve FED patients and 72 normal controls. 

According to previous works, DSM-5 is used to diagnose depressive patients (Gong et al., 

2018). Our stringent inclusion criteria and consensus-based diagnosis ensure that all the 

patients were at their first episode and treat-naïve (Qiu et al., 2018). However, it is not easy 

to make an accurate diagnosis of treatment-naïve first episode depression, especially for the 

primary care physicians with less experience. The diagnosis is challenging because it is 
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based on both the patient’s cooperation and the psychiatrists’ experience. Therefore, it is 

urgent to provide an accurate and objective method to help diagnose depression. In our 

study, we proposed an automated classification framework for individualized identification 

of treatment-naïve FED subjects, aiming to provide an effective model for helping identify 

treatment-naïve first episode major depressive disorder patients. Rs-fMRI is noninvasive and 

easy to perform during the clinical process. It can capture the sensitivity functional 

connectivity information between any paired regions of the brain, which may be regarded as 

promising biomarkers for early diagnosis of disease.

Instead of using traditional and static low-order FC, we calculated time-varying (dynamic) 

FC and further measured their temporal synchronization to model more complex higher-

level functional associations. With HON, we improved the classification accuracy by 15% to 

82%, thus further pushing boundaries of the clinically orientated rs-fMRI studies. In 

addition, we found that an ensemble of two types of functional networks further improved 

classification performance. The results indicate that the HON may serve as a feasible 

approach to study FED and, furthermore, the promising future of HON-based computer-

aided clinical applications to help for diseases early diagnosis.

Of note, the feasibility of our method was tested with a relatively larger sample size of FEDs 

compared to the previous studies, together with rigorous cross-validation. Moreover, we 

revealed that the most discriminative brain regions were located at three major higher 

cognitive function-related “core networks” (Mulders et al., 2015), including the default 

mode network, central executive network, and salience network. Besides, we reported the 

significant role of the cerebellum in FED diagnosis, especially the vermis and the crus II. No 

LON but HON features within cerebellum-to-cortical/subcortical connections were found to 

be related to the clinical scores. The results indicate that higher-level cerebro-cerebellar 

connections can serve as potential image markers to distinguish FED.

4.1 Discriminative Brain Biomarkers in the “Core Networks”

We observed several discriminative brain regions for FED classification, including the 

hippocampus, ACG, PCG, ORB and the temporal pole, which are mainly within so-called 

“core networks”. It contains the default mode network, salience network and central 

executive network, supporting higher cognitive functions in depression (Mulders et al., 

2015). Among these regions, hippocampus, ACG, and PCG are involved in the default mode 

network (Laird et al., 2009) associated with depression (Guo et al., 2013; Guo et al., 2014b). 

The default mode network plays a key role in consciousness and memory processing in 

depression (Andrews-Hanna et al., 2014) and has a strong connection with the limbic system 

(Mulders et al., 2015). The limbic system, including the hippocampus and ACG, is believed 

to mediate emotion regulation and memory processing. The hippocampus mediates episodic 

memory, stress, negative emotion (Eichenbaum, 2013) and helplessness via gene expression 

(Kohen et al., 2005). The current finding of the hippocampus is consistent with the previous 

study (Shen et al., 2017) and is further supported by the animal model study, which 

suggested that glucocorticoid levels may negatively influence neurogenesis in the 

hippocampus (Campbell and MacQueen, 2004).
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Our study revealed that ORB and the temporal pole, which are the components of the central 

executive network and salience network, respectively, could also be discriminative 

biomarkers for FED classification. The central executive network carries the function of 

attention regulation, working memory and decision-making (Miller and Cohen, 2001) while 

the salience network has a critical role in emotional control (Mulders et al., 2015). Previous 

studies explored the intrinsic relationship among three core networks in depression and 

found decreased FC between the default mode network and central executive network but 

increased between the default mode network and salience network (Manoliu et al., 2014). 

Our findings provide new evidence for the potential close relationship and possible 

complicated interactions among these core networks.

4.2 Vermis and Crus II in the Cerebellum

In this study, we found the cerebellum, especially the vermis and the crus II, connected with 

limbic/paralimbic, and orbitofrontal areas could be affected by depression. Fig. 2 showed 

that many hub regions are located at the cerebellum. Our findings not only further validated 

the previously believed higher-level cerebro-cerebellar interactions and their importance in 

maintaining normative psychological status but also provided new evidence of the impaired 

dynamic cerebral-cerebellum FCs in FED. Although the cerebellum is more related to motor 

coordination, researchers have found it has a close relationship with cognitive and emotion 

processing (Phillips et al., 2015). These observations are consistent with a few prior studies 

(Baldacara et al., 2008; Turner et al., 2007), showing a key role of the cerebellum in 

depression and its potential relationship with core networks. The sub-regions of the 

cerebellum were shown to be functionally coupled with the sensorimotor network and the 

cognitive control network in a human parcellation study (Buckner et al., 2011). Some of 

these connections are likely associated with depressive clinical symptoms such as slower 

movements and cognitive changes (Harvey et al., 2005). Meanwhile, animal experiments 

have explored the emotion regulative mechanism in the cerebellum. Cerebellar volume was 

positively correlated with social avoidance in mice (Anacker et al., 2016) and abnormal 

energy metabolism in amino acid metabolism, glycolysis, and adenosine triphosphate (ATP) 

biosynthesis were found in rat’s cerebellum under chronic mild stress, a major risk factor for 

depression (Shao et al., 2015). An important contribution in this work is to demonstrate the 

dramatic influence of the cerebellum, providing new insight into the pathogenesis of MDD.

Our results also suggested that the vermis could be a potential biomarker for FED diagnosis. 

We observed that the connections between the vermis and the hippocampus, ORB as well as 

the thalamus, which are all believed to be critical in mood regulation (Bremner et al., 2002). 

The vermis, located in the midline of the cerebellum, has been found to mediate emotion and 

cognition (Schmahmann, 2004). In the early studies, researcher found notable behavioral 

and affective changes when the vermis had lesions (Schmahmann and Sherman, 1998). The 

abnormal structure and FC of the vermis have been found in a few depression studies. Yucel 

et al. found larger vermis volume in patients with MDD (Yucel et al., 2013), while a geriatric 

depression rs-fMRI study identified decreased FC of the left vermis with the ventromedial 

prefrontal cortex and PCG (Alalade et al., 2011). The vermis has putative connections to the 

limbic system (Schmahmann, 2000), which is also supported by animal studies (Vilensky 

and Vanhoesen, 1981). In addition, animal data also suggest direct connections between the 
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motor cortex and the vermis (Coffman et al., 2011), which may explain the movement 

symptom in depression. Collectively, our observation may indicate that vermis could be 

associated with depression symptoms via wide connections to the cortical and subcortical 

brain regions.

Alongside the vermis, the crus II may be another promising biomarker for FED diagnosis. 

Compared to the previous studies of the crus I about emotional processing (Krienen and 

Buckner, 2009) and working memory (Desmond et al., 1997) functions, not much attention 

has been paid to the crus II and its relationship with depression. A study of geriatric 

depression showed significantly reduced FC between the crus II and the ventromedial 

prefrontal cortex (Alalade et al., 2011). The cerebellum is believed to be coupled with 

cerebral association areas (e.g., default mode network), showing a possible role in memory 

and planning processing (Buckner et al., 2011). We observed that the connections between 

crus II and the precentral gyrus were correlated with the rating of depressive symptoms. We 

speculate such connections may indicate regulation of depression symptoms, providing the 

first evidence of the crus II’s participation in the development of depression.

4.3 Correlation with Clinical Variables

In our study, the high-order FC between thalamus and the vermis were correlated with 

HAMD scores (Fig. 3a), while cerebellum, ORB, IFG, and temporal gyrus were correlated 

with illness duration (Fig. 3b–d). This result largely supplements the previous FED studies 

that found no significant correlation between the traditional static FC and the clinical scores 

(Wang et al., 2014; Zou et al., 2016). Specifically, a negative correlation was observed 

between the symptom severity and the local efficiency at the HON node #265, which 

involves synchronization dynamic FC between thalamus and the vermis. The more efficient 

this HON node is, the less severe depression the subject has. It is shown that the cerebellum 

has a widespread connection with the cerebral cortex (i.e., the cortico-cerebellum loop) via 

the thalamus (Heyder et al., 2004). Based on this, we further hypothesize that the more 

efficient vermis-to-thalamus high-order FC could make such a cerebro-cerebellar loop, thus 

either alleviating the depression symptom or being less affected by the depressive 

pathological attack.

Furthermore, the vermis and ORB were found to be negatively correlated with illness 

duration (Fig. 3b). That is, the more efficient these connections are, the shorter the time 

elapse to the commencement of the depression break. ORB is a part of the prefrontal cortex 

and it has been involved in decision making and expectation (Kringelbach, 2005). 

Furthermore, the prefrontal areas are responsible for negative emotional judgment in 

depression (Grimm et al., 2008). This result indicates that the cerebellum could link to the 

prefrontal cortex and such link could be weakened with the progression of the depression. 

Similar findings could be found at the HON node #350 (Fig. 3d), which are also cerebellum-

to-cortex connections but involving widespread cerebral regions, including the ORB, IFG, 

and the temporal gyrus (MTG and ITG). This is in part accordance with previous MDD 

studies that showed similar negative correlations between illness duration and FC in the 

prefrontal gyrus and parietal cortex (Cao et al., 2012). In addition, IFG was suggested to be 

associated with emotion recognition (Shamay-Tsoory et al., 2009). A meta-analytic MDD 
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study also demonstrated that the temporal cortical regions active abnormally in response to 

positive emotional stimuli (Fitzgerald et al., 2008). MTG is located at the extended dorsal 

attention system and related to cued attention and working memory (Fox et al., 2006) and 

ITG is involved in high-level visual and memory processing (Freedman et al., 2003). Finally, 

illness duration had a positive correlation with the HON node #108 (Fig. 3c), involving 

cerebellum-to-subcortical (PUT and PAL) connections. PAL is related to emotion processing 

in depression (Diener et al., 2012). PUT is a key region in the hate circuit and associated 

with negative emotion stimuli in depression (Fitzgerald et al., 2008). The hate circuit is 

believed to process hate feeling and its abnormality might be associated with impaired 

cognitive control and cause over pervasive in the self-loathing, a common symptom in 

depression (Tao et al., 2013). A possible explanation of such a finding is that the high-order 

association between the cerebellum and PUT could be strengthened to attempt to control the 

abnormally processed negative emotions that could increase the disease prolonging.

4.4 Other issues

Since this is a machine learning-based classification study, the sample size becomes an 

important issue. Although our sample size (N = 154) was relatively large compared to the 

previous FED classification studies, it is still not large enough and we will have to increase 

the sample size in the future. Low statistical power and false positives may occur from small 

sample size in fMRI studies (Chen et al., 2018; Patel et al., 2016). A recent study reviewing 

241 fMRI articles showed that the median sample size was 14.75 per group for two-group 

studies, resulting in unacceptable statistical power for most studies (Carp, 2012). Another 

study found that reliability, sensitivity and positive predictive value (PPV) rose steadily as 

the sample size increased (Chen et al., 2018). A recent study showed the prediction accuracy 

and its stability exponentially were found to increase with the increasing sample size, and 

the authors suggested a minimum sample size of 200 for machine learning regression 

prediction studies (Cui and Gong, 2018), based on which our sample size is acceptable. An 

interesting finding by a recent meta-analysis is reaffirming that “large samples are associated 

with narrower error margins and thus likely to tune classification results toward realistic 

estimates” (Neuhaus and Popescu, 2018). Especially for the machine learning-based 

depression diagnosis, the analysis found an inverse relationship between classification 

accuracy and sample size used in these classification studies and imaging modalities 

(Neuhaus and Popescu, 2018). The result can be further supported by a recent meta-analysis 

of multimodal MRI-based MDD diagnosis, where resting-state fMRI studies achieved better 

diagnostic sensitivity and specificity than structural MRI (Kambeitz et al., 2017).

It could be also beneficial if the FEDs can be separated into several symptom-based 

depression subtypes (melancholic, atypical and psychotic depression) or depression severity 

subgroups (mild depression, moderate depression, and severe depression), based on which 

the classification models can be trained to classify these subtypes or subgroups to unravel 

more meaningful findings. Depression severity is dynamically progressing and its diagnosis 

as mild depressed, moderate depressed, and severely depressed needs the evaluation by the 

experienced psychiatrist with DSM-5 using SCID. Previous research suggests that 

depression severity does not only rely on symptoms but also the degree of functional 

impartment, disability, or both (Park and Zarate, 2019), indicating that the symptom-based 
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subgrouping could actually be a much more complicated work than the case of merely using 

a 17-item Hamilton Rating Scale for Depression (HAMD). However, the aim of this study is 

to diagnose FEDs from normal controls, rather than diagnosing FED subgroups. A small 

sample size of different subgroups could negatively affect the model training and is more 

likely to cause an overfitting issue. Different depressive subtypes and severity subgroups 

could have different neurobiological mechanisms, and should be separately investigated with 

a larger sample size in the future.

There are several limitations to the study. First, we did not consider subgroups of depressive 

patients. Second, the current diagnostic model was only tested using LOOCV. On the other 

hand, k-fold cross-validation, another suitable cross-validation strategy for machine learning 

studies, can also be used to evaluate the model generalization ability, when provided 

adequate sample size. In the future, 80–20% (i.e., 5-fold) cross-validation could be adopted 

with a larger sample size to further test our model. Finally, we only used a single imaging 

modality and FC networks as features for classification. Other imaging modalities, such as 

diffusion tensor imaging (DTI), could provide supplementary (e.g., structural connectivity) 

diagnostic information and could be jointly used for better FED classification in the future.

4.5 Conclusions

In conclusions, based on large sample size, we, for the first time, construct a novel 

computer-aided individualized treatment-naïve FED classification model based on the 

resting-state dynamic FC and its spatiotemporal organization, high-order FC network 

(HON). We found that jointly using HON and LON achieve satisfactory accuracy in 

identification of FED individuals, showing the potential diagnostic value of the high-order 

FC between cerebellar and cerebral regions in mental disorder diagnosis. Our findings not 

only highlight the malfunctions of the core networks but also promising cerebellar 

biomarkers in depression.
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FC Functional connectivity

Rs-fMRI Resting-state functional magnetic resonance imaging

FED First episode depression

Zheng et al. Page 12

J Affect Disord. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NC Normal control

LON Low-order FC networks

HON High-order FC networks

MDD Major depressive disorder

MRI Magnetic resonance imaging

HAMD Hamilton rating scale for depression

BOLD Blood-oxygenation-level-depend
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Highlights:

• High-order functional connectivity networks can capture dynamic and higher-

level brain functional interactions, indicating potential value for treatment-

naïve, first episode depression diagnosis.

• The default mode network, central executive network and salience network 

are regarded as three major higher cognitive function-related “core networks” 

in treatment-naïve, first episode depression.

• The high-level interactions between cerebellar and cerebral regions could be 

the key neuroimaging indications in depression.
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Fig. 1. Framework for FED classification based on the high-order FC network (HON).
Both the training phase (top) and testing phase (bottom) are shown. The training phase 

includes sliding window-based dynamic FC analysis for all the 6670 pairs of brain regions (a 

total of 116 ROIs based on AAL template), clustering the dynamic FC time series of all 

subjects. HON construction was based on correlation analysis of the cluster-wise dynamic 

FC time series. After HON features extraction and selection, a support vector machine 

(SVM)-based classification was used. In the testing phase, the re-fMRI data of new subjects 

went through the entire processing and the trained classification model until the diagnosis 

performance was generated.

Abbreviations: BOLD, blood oxygenation level-depend; FC, functional connectivity; FED, 

first episode depression; NC, normal control.
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Fig. 2. The discriminative features selected based on the HON-based FED diagnosis model.
Each HON feature was represented by a group of pairwise connections in each of the 

subplots. The hubs (cluster centers) were highlighted with larger size (according to the nodal 

degree in the cluster) with their names. Abbreviations: CRBL3.L/R: left/right lobule III of 

cerebellar hemisphere; CRBL7b.L/R: left/right lobule VIIB of cerebellar hemisphere; 

CRBL10.L/R: left/right lobule X of cerebellar hemisphere; TPOmid.L: left temporal pole 

(middle); HIP.R: right hippocampus; TPOsup.L: left temporal pole (superior); PreCG.L: left 

precentral gyrus left; SOG.L: left superior occipital gyrus; ORBsup.L: left orbitofrontal 

cortex (superior); DCG.L: left middle cingulate gyrus; CRBLCrus2.L: left crus II of 

cerebellar hemisphere. More detail of each HON feature and the abbreviations of the brain 

regions can be found in Online Supplementary Tab. S2 and Tab. S3.

Zheng et al. Page 21

J Affect Disord. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Correlation between four HON features and clinical data in FED patients.
The thalamus and cerebellar vermis in HON node #265 are involved in a significant 

correlation between HON features and HAMD scores (a). Illness duration was jointly 

correlated with three HON features involving the HON node #311, #108 and #350, and was 

separately plotted with each HON node (b-d). Abbreviations: ORB, orbitofrontal cortex; 

PUT, putamen; PAL, pallidum; CRBL7b. R, right lobule VIIB of the cerebellar hemisphere; 

IFG, inferior frontal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; 

CRBL10.R, right lobule X of the cerebellar hemisphere; HAMD, 17-item Hamilton 

Depression Scale.
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Tab. 1.

Demographic and clinical information for all subjects

FED (N=82) NC (N=72) t/χ2 P value

Age 30.84±10.38 29.65±10.52 0.705 0.48

Gender (M/F) 29/53 33/39 1.747 0.19

Education (yrs.) 11.77±3.48 12.43±2.48 −1.370 0.17

HAMD-17 22.46±3.72 NA NA NA

Illness duration (mo.) 8.96±11.64 NA NA NA

Abbreviations: FED, first episode depression; NC, normal control; HAMD-17, 17-item Hamilton Depression Scale; NA, not available.
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Tab. 2.

Performance comparison between different methods in FED diagnosis

Method ACC AUC SEN SPE Youden F-score BAC

LON 0.6753 0.7087 0.6951 0.6528 0.3479 0.6951 0.6739

HON 0.8247 0.8826 0.8537 0.7917 0.6453 0.8383 0.8227

HON + LON 0.8377 0.9075 0.8415 0.8333 0.6748 0.8466 0.8374

Abbreviations: ACC, accuracy; AUC, area under curve; SEN, sensitivity; SPE, specificity; BAC, balanced accuracy; LON, classification using 
LON features only (CLON); HON, classification using HON features only (CHON), and HON + LON, ensemble classification using both HON 

and LON features (CHON+LON). The bold contents indicate the proposed methods (both CHON and CHON+LON).

J Affect Disord. Author manuscript; available in PMC 2020 September 01.


	Abstract
	Introduction
	Methods
	Participants
	Data Acquisition and Preprocessing
	Classification based on High-order FC Networks
	Identification of Discriminative Features
	Statistical Analysis

	Results
	Demographic and Clinical Data
	High-order FC Network
	HON-based FED vs. NC Classification
	Discriminative HON Features
	Correlation between Imaging and Clinical Feature

	Discussion
	Discriminative Brain Biomarkers in the “Core Networks”
	Vermis and Crus II in the Cerebellum
	Correlation with Clinical Variables
	Other issues
	Conclusions

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Tab. 1.
	Tab. 2.

