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Abstract

Astrocytes are susceptible to HIV infection and potential latent HIV reservoirs. Tat is one of three 

abundantly expressed HIV early genes in HIV-infected astrocytes and has been shown to be a 

major pathogenic factor for HIV/neuroAIDS. In this study, we sought to determine if and how Tat 

expression would affect HIV infection and latency in astrocytes. Using the VSV-G-pseudotyped 

red-green HIV (RGH) reporter viruses, we showed that HIV infection was capable of establishing 

HIV latency in astrocytes. We also found that Tat expression decreased the generation of latent 

HIV-infected cells. Activation of latent HIV-infected astrocytes showed that treatment of GSK126, 

a selective inhibitor of methyltransferase Ezh2 that is specifically responsible for tri-methylation 

of histone 3 lysine 27 (H3K27me3), led to activation of significantly more latent HIV-infected Tat-

expressing astrocytes. Molecular analysis showed that H3K27me3, Ezh2, MeCP2, and Tat all 

exhibited a similar bimodal expression kinetics in the course of HIV infection and latency in 

astrocytes, although H3K27me3, Ezh2 and MeCP2 were expressed higher in Tat-expressing 

astrocytes and their expression were peaked immediately preceding Tat expression. Subsequent 

studies showed that Tat expression alone was sufficient to induce H3K27me3 expression, likely 

through its regulation of Ezh2 and MeCP2 expression. Taken together, these results showed for the 

first time that Tat expression induced H3K27me3 expression and contributed to HIV latency in 

astrocytes and suggest a new role and novel mechanism for Tat in HIV latency.
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INTRODUCTION

Macrophages/microglia and astrocytes are major target cells for HIV infection in the central 

nervous system (CNS) (Burdo et al, 2013; Kaul et al, 2005). Astrocytes are the most 

abundant and long-lived cell type in CNS (Churchill and Nath, 2013; Kramer-Hammerle et 

al, 2005; Sofroniew and Vinters, 2010). They are susceptible to cell-free HIV infection as 

well as cell-cell contact HIV infection in vitro (Carroll-Anzinger et al, 2007; Dimitrov et al, 

1993; Hubner et al, 2009; Luo and He, 2015). HIV-infected astrocytes have also been 

documented in vivo (Gorry et al, 2003; Saito et al, 1994; Tornatore et al, 1994). Up to 20% 

of perivascular astrocytes have been found to be HIV-infected and to be correlated with the 

severity of encephalitis and dementia (Luo and He, 2015), ascertaining the important roles 

of HIV infection of astrocytes in HIV/neuroAIDS. Astrocytes have been proposed to be HIV 

latent reservoirs in the CNS (Barat et al, 2018; Diaz et al, 2015; Huang and Nair, 2017; 

Thompson et al, 2011). However, the underlying molecular mechanisms remain largely 

unknown. Understanding these mechanisms is expected to help contribute to development of 

strategies for complete HIV eradication.

Tat is one of the three early-encoded HIV-1 proteins translated from the multiply spliced 

viral RNA transcript following HIV infection (Sabatier et al, 1991; Schwartz et al, 1990). It 

is required for HIV transcription and elongation to produce full-length viral transcripts 

through binding to TAR, cyclin T and CDK9 and phosphorylation of the C-terminal domain 

of RNA polymerase II (Wei et al, 1998). In addition, Tat has been shown to be a major 

pathogenic factor for HIV/neuroAIDS. Tat protein is detected in the HIV-infected brain 

(Hudson et al, 2000) and is secreted from HIV-infected-microglia/macrophages and 

astrocytes (He et al, 1997). It can cause direct neurotoxicity (Aprea et al, 2006; Brailoiu et 

al, 2006; Caporello et al, 2006; Kruman et al, 1998; Norman et al, 2007; Orsini et al, 1996), 

or indirect neurotoxicity through its chemokine-like activity and infiltration of monocytes/

macrophages and lymphocytes into the CNS (Albini et al 1998; Benelli et al, 2000; de Paulis 

et al, 2000; Jones et al, 1998; Lafrenie et al, 1996; Park et al, 2001), or through its 

interaction with astrocytes (Fan and He, 2016a; Fan and He, 2016b). Nevertheless, it is not 

known whether and how abundant Tat expression following non-productive HIV infection of 

astrocytes would affect HIV latency in astrocytes.

In the current study, we first aimed to determine effects of Tat on establishment of HIV 

latency in astrocytes. We took advantage of astrocytoma cell line U373.MG and its 

derivative U373.MG.Tat that stably express Tat protein (Zhou et al, 2004), infected them 

with VSV-G-pseudotyped red-green reporter viruses, compared HIV replication and latency 

in these cells, and determined the molecular changes in the course of HIV infection and 

latency. We showed that Tat expression resulted in a lower level of HIV latency in astrocytes. 

Meanwhile, we demonstrated for the first time that Tat expression led to increased histone 3 

tri-methylation at lysine 27 (H3K27me3) and subsequently facilitated HIV latency in 

astrocytes, likely through regulation of MeCP2 and Ezh2 expression.
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MATERIALS AND METHODS

Cells

Human embryonic kidney 293T, human astrocytoma U373.MG, and human T 

lymphoblastoid cell line Jurkat and were obtained from American Tissue Culture Collection 

(Manassas, VA) and maintained in Dulbecco modified Eagle medium (DMEM, for 293T and 

U373.MG), or in Roswell Park Memorial Institute 1640 medium (RPMI-1640, for Jurkat), 

supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin-

streptomycin-L-glutamine. U373.MG.Tat stably expressing Tat was established through 

transfection with pTat.myc, followed by selection of stable cell clones in the presence of 

G418 (Invitrogen, CA) (Zhou et al, 2004) and was maintained in DMEM containing 0.5 

μg/ml G418. Human near-haploid cell line HAP1 and its MeCP2-knockout derivative Hap1-

MeCP2−) were obtained from Horizon Discovery (Waterbeach Cambridge, United 

Kingdom) and maintained in Iscove modified Eagle medium (IMEM) supplemented with 

10% heat-inactivated FBS and 1% penicillin-streptomycin-L-glutamine.

Antibodies and reagents

Tri-methyl-histone 3 (H3K27me3) antibody (G.299.10), histone 3 (H3) antibody 

(PA5-16183), and Ezh2 antibody (144CT2.1.5) were purchased from Life Technologies 

(Grand Island, NY). PCNA (PC10) antibody and MeCP2 (H300) antibody were purchased 

from Santa Cruz Biotechnology (Santa Cruz, CA). GSK126 (A34465) was purchased from 

Apexbio Technology LLC (Houston, TX).

Plasmids

The red green HIV (RGH) plasmid was obtained from NIH AIDS Reagent Program 

(donated by Dr. I. Sadowski and Dr. S. Viviana of University of British Columbia, Canada) 

(Dahabieh et al, 2013). pHCMV-G was a kind gift from Dr. J. Sodroski of Harvard Medical 

School, and it encodes the glycoprotein from vesicular stomatitis virus (VSV-G) under the 

control of the CMV promoter. pcDNA3 was purchased from Clontech (Mountain View, 

CA). pTat.myc was constructed as previously described (Liu et al, 2002). The MeCP2 

promoter-driven luciferase reporter plasmid was purchased from Switchgear Genomics 

(Carlsbad, CA).

Cell-free HIV virus preparation and infection

293T were transfected with RGH/pHCMV-G plasmids (3:1) using a standard calcium 

phosphate precipitation method. The transfection medium was replaced with fresh medium 

16 hr post transfection. The culture medium was collected 72 hr after the medium change, 

removed of cell debris, purified and concentrated by passing through a 20% sucrose cushion 

at 100,000 g for 2 hr, and then suspended in PBS, aliquoted and stored at liquid nitrogen. 

Viral titers were determined by the reverse transcriptase (RT) assay as previously described 

(Lopez-Herrera et al, 2005) and expressed as counts per minute (cpm). For cell-free HIV 

infection, U373.MG and U373.MG.Tat (1 × 106) were infected with HIV equivalent to 

10,000 cpm RT in a final volume of 1 ml DMEM complete medium at 37°C, 5% CO2 4 hr. 

At the end of the infection, unbound viruses were removed, the cells were rinsed with 

Liu et al. Page 3

J Neurovirol. Author manuscript; available in PMC 2020 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multiple PBS washes and then cultured in fresh medium at a density of 0.3-1.0 × 106 

cells/ml. The percentage of actively infected and latent cells was determined based on GFP 

and mCherry expression by flow cytometry.

Luciferase activity assay

The Renilla luciferase activity was measured using the luciferase assay system (Promega, 

Madison, WI) according to the manufacturer’s directions. Briefly, transfected cells were 

washed with PBS and collected in 1× Renilla luciferase lysis buffer at 72 hr post 

transfection. Lysates were centrifuged briefly to obtain clear cell lysates. The clear lysates 

were mixed with Renilla luciferase substrate, and the luciferase activity was measured by an 

Opticomp Luminometer (MGM Instruments, Hamden, CT).

Western blotting and protein quantitation

Cell lysates were prepared at 48 hr post-transfection unless stated otherwise using a 

modified RIPA buffer containing a higher concentration of NaCl (50 mM Tris.HCl, pH 8.0, 

0.5% NP-40, 2 Mm EDTA, 500 mM NaCl, 10% glycerol) and separated on a 12% 

polyacrylamide-SDS gel. The proteins were transferred onto nitrocellulose membranes, 

probed with appropriate primary antibodies and HRP-conjugated secondary antibodies (0.5 

μg/ml), and visualized using enhanced chemiluminescence reagents. ImageJ was used to 

quantitate protein expression levels on the blots.

RNA isolation and qRT-PCR

Total RNA was isolated from cells using the TRIzol (Invitrogen) according to the 

manufacturer's instructions. Total RNA (1 μg) was used to synthesize cDNA using an iScript 

cDNA synthesis kit (Bio-Rad) and used as the template for PCR using Sso Advanced SYBR 

green Supermix and the CFX96 real-time PCR detection system (Bio-Rad). The primers and 

their sequences are as follows: for β-actin, 5′-AAA CTG GAA CGG TGA AGG TG-3′ and 

5′-AGA GAA GTG GGG TGG CTT TT-3′; for Tat from RGH, 5’-AGC CTT AGG CAT 

CTC CTA TGG-3’ and 5’′-CTA TTC CTT CGG GCC TGT CGG GT-3’; for Tat from 

U373.MG.Tat, 5′-AAA CTG GAA CGG TGA AGG TG-3′ and 5′-AGA AAT GAG CTT 

TTG CTC CTC TGC-3’. Threshold cycle (CT) values were calculated using Bio-Rad CFX 

manager software. The 2-ΔΔC T value was calculated to represent the fold change of the 

target gene mRNA using β-actin as the reference.

Histone methyltransferase activity assay

Transfected cells were trypsinized and washed in cold PBS. Nuclear pellets were obtained 

following first treatment with hypotonic buffer, then with an EpiQuik Nuclear Extraction Kit 

(#OP-0002, Epigentek, Farmingdale, NY). An equal amount of nuclear lysate was used to 

determine the histone methyltransferase activity using an EpiQuikTM histone 

methyltransferase activity/inhibition assay kit (H3K27) (#P-3005, Epigentek).

miRNA analysis

Total RNA (500 ng) was used to synthsize cDNA by using a qScript microRNA cDNA 

synthesis kit (Quanta PN 95107, QuantaBio, Beverly, MA). Then, synthesized cDNA at an 
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equivalent of 10 ng initial total RNA was mixed with Perfecta SYBR Green SuperMix 

(Quanta PN 95054) and Universal PCR Primer (Quanta PN 95109) with miR-132 Perfecta 

microRNA Assay Primer (has-miR-132a-3p) in 10 μl qPCR reactions. The qPCR plates 

were run in a CFX96 real-time PCR detection system (Bio-Rad) using a two-step cycling 

protocol (95 °C for 2 min followed by 40 cycles of 95 °C for 10 s and 60 °C for 30 s) and 

followed by a melting curve. Threshold cycle (CT) values were calculated using Bio-Rad 

CFX manager software. 2(-ΔΔCT) value was calculated to represent the fold change of the 

target miRNA.

Data analysis.

Where appropriate, values were expressed as Mean ± SD of triplicate experiments. All 

statistical analyses were performed by one-way and two-way analyses of variances followed 

by Bonferroni correction or Dunnett's test. A p value of <0.05 was considered statistically 

significant and shown as *; a p value of <0.01 was considered highly significant and shown 

as **; and a p value of <0.001 was considered strongly significant and shown as ***. All 

data are representative of multiple repeated experiments.

RESULTS

Establishment of HIV latency in astrocytes and its inhibition by Tat

Astrocytes possess several attributes to be HIV reservoirs and several studies suggest that 

these cells can harbor integrated latent HIV (Carroll-Anzinger et al, 2007; Churchill and 

Nath, 2013; Gorry et al, 2003; Luo and He, 2015). To ascertain the notion that HIV is 

capable of establishing latency in astrocytes, we took advantage of a recently developed dual 

red-green fluorescent HIV reporter virus (RGH) (Dahabieh et al, 2013) (Fig. 1A), in which 

the green fluorescence protein gene (gfp) is inserted in-frame between matrix (MA) and 

capsid (CA) of gag gene, and a CMV-driven mCherry-expressing cassette (CMV-mCherry) 

is inserted in place of nef gene. In addition, env gene is disrupted by Kpn I digestion, 

blunted and re-ligation. RGH was designed in such a way that GFP expression alone (G+M

−), mCherry expression alone (G−M+), expression of both GFP and mCherry (G+M+) in 

RGH-infected cells would be used to represent infected but not integrated, latent infection, 

and integrated/active infection, respectively (Dahabieh et al, 2013). Human astrocytoma cell 

line U373.MG were then infected with VSV-G-pseudotyped RGH using a standard HIV 

latency protocol, which have proven to generate the maximal number of HIV latent cells 

(Luo and He, 2015). The infected cells were then monitored for the percentage of G+M+ 

cells (active infection) and G−M+ cells (latent infection) every 3-5 days by flow cytometry. 

The percentage of G+M+ cells (active infection) showed an initial increase during the first 

three days (Fig. 1B), representative of de novo infection and replication (Dahabieh et al, 

2013), then a gradual decrease to a background level at day 30 post infection. On the other 

hand, the percentage of G−M+ cells (latent infection) showed a gradual increase to about 

95% at day 30 (Fig. 1C). These results confirm that HIV infection is capable of establishing 

latency in astrocytes.

HIV-1 Tat is a major factor in HIV/neuroAIDS pathogenesis(Hudson et al, 2000). It is 

secreted from HIV-infected microglia/macrophage and astrocytes in the CNS (He et al, 
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1997; Hudson et al, 2000), it is expressed abundantly as one of the early genes in astrocytes 

(Bagashev and Sawaya, 2013; He et al, 1997), and it is present in the CNS of HIV-infected 

individuals with HIV suppression by antiretroviral therapy (Heaton et al, 2010; Yilmaz et al, 

2012). Therefore, U373.MG.Tat, an U373.MG derivative that stably express HIV-1 Tat 

protein (Zhou et al, 2004) were in parallel infected with VSV-G-pseudotyped RGH to 

determine if Tat expression would affect establishment of HIV infection and latency. The 

infected cells were similarly monitored for the percentage of G+M+ cells (active infection) 

and G−M+ cells (latent infection). The percentage of G+M+ cells in VSV-G-pseudotyped 

RGH-infected U373.MG.Tat cells was slightly higher than that in VSV-G-pseudotyped 

RGH-infected U373.MG cells at each point of analysis beginning at day 10 post infection 

and lasting until day 30 post infection (Fig. 1B). In parallel, the percentage of G−M+ cells in 

VSV-G-pseudotyped RGH-infected U37.MG.Tat cells was about 9% lower than that in 

VSV-G-pseudotyped RGH-infected U37.MG cells (Fig. 1C). The differences of the 

percentage of latent HIV-infected cells between U373.MG and U373.MG.Tat appeared to be 

independent of the amount of input viruses and starting number of cells (data not shown). 

These results showed that ectopic Tat expression led to increased active HIV replication 

while decreased establishment of HIV latency in astrocytes.

Selective HIV activation in Tat-expressing astrocytes by GSK126

HIV latency involves multiple molecular mechanisms (Khan et al, 2018; Matsuda et al, 

2015; Mbonye and Karn, 2017). To determine possible HIV latency mechanisms in 

astrocytes, the same number of HIV latent (G−M+) U373.MG and U373.MG.Tat at day 30 

to 40 post-infection with VSV-G-pseudotyped RGH were treated with HIV activation 

reagents PMA, LPS, TNF-α, or 5’-azacytide (5’-Aza), one DNA methyltransferase inhibitor 

and analyzed for their effects on HIV activation, the percentage of G+M+ cells determined 

by flow cytometry. Compared to the control, LPS treatment led to little HIV activation, 

while PMA, TNF-α, 5’-Aza treatment showed about 9%, 16%, and 21% HIV activation, 

respectively (Fig. 2). There were no differences between U373.MG and U373.MG.Tat for all 

these four reagents. Then, these cells were treated with GSK126, a new and most potent, 

highly selective, S-adenosyl-methionine-competitive, small molecule inhibitor of histone 

methyltransferase enhancer of zeste homolog 2 (Ezh2), which is a subunit of polycomb 

repressive complex 2 (PRC2) (McCabe et al, 2012; Van Aller et al, 2014). Compared to the 

control and other four reagents, GSK126 treatment led to HIV activation in about 23% 

U373.MG and in 61% U373.MG.Tat. Co-treatment of 5’-Aza and GSK126 led to HIV 

activation in 46% U373.MG and 70% U373.MG.Tat, suggesting a likely additive effect of 

these two reagents on HIV activation. These results confirmed that HIV latency in astrocytes 

is susceptible to activation by external stimuli and provide the first evidence that Tat 

expression may regulate PRC2 through Ezh2 during HIV latency and subsequently affect 

establishment of HIV latency.

Relationship among Ezh2, H3K27me3, MeCP2, and Tat expression during HIV-1 infection 
and latency

PRC2 is one of the two classes of polycom-group proteins and has four subunits: Suz12, 

Eed, Ezh1 or Ezh2, and RbAp48, it trimethylates and binds to histone 3 (H3) on lysine 27 

(H3K27me3) through Ezh1 or Ezh2, and represses transcription including HIV transcription 
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and latency (Friedman et al, 2011; Khan et al, 2018; Matsuda et al, 2015). MeCP2 has been 

shown to stimulate Ezh2 expression and H3k27 methylation (Hite et al, 2009; Mann et al, 

2010). Therefore, we next determined the relationship among Ezh2, H3K27me3, MeCP2, 

and Tat expression in the course of HIV infection and latency in both U373.MG and 

U373.MG.Tat. VSV-G-pseudotyped RGH-infected U373.MG and U373.MG.Tat were 

harvested every 3-5 days post infection and analyzed for Ezh2, H3K27me3, and MeCP2 by 

Western blotting, followed by quantitation or Tat expression by qRT-PCR. In U373.MG (left 

panel, Fig. 3A), Ezh2 expression showed gradual increases, peaked at day 6 post-infection, 

decreased to and remained at the basal level, and began to increase again at day 30 (Fig. 3B). 

H3K27me3 expression showed gradual increases, peaked at day 6 post-infection and 

remained the level up to day 20 post-infection, began to increase again until day 27 and then 

decreased to the basal level (Fig. 3C). MeCP2 expression showed gradual increases, peaked 

at day 6 post-infection, then decreased to and remained at the basal level until day 35 post-

infection (Fig. 3D). In comparison, Ezh2, H3K27me3, and MeCP2 in U373.MG.Tat (right 

panel, Fig. 3A) all exhibited a distinct synchronized bimodal expression kinetic with first 

peak at day 6 post-infection, and second peak at day 24 post-infection (Fig. 3B-D). In 

addition, of note was that Ezh2, H3K27me3 and MeCP2 all generally expressed at a higher 

level in U373.MG.Tat than that in U373.MG. To determine Tat mRNA expression, qRT-PCR 

was performed using primers that were specific for Tat mRNA from RGH infection or from 

U373.MG.Tat. Tat mRNA from RGH infection exhibited a bimodal kinetic with the first 

peak at day 3 post-infection and the second peak at day 20 post-infection in both U373.MG 

and U373.MG.Tat (Fig. 3E), both of which immediately preceded the peaked expression of 

all Ezh2, H3K27me3 and MeCP2. Interestingly, Tat mRNA expression in U373.MG.Tat also 

followed a similar bimodal kinetic (Fig. 3F), suggesting regulatory effects of RGH infection 

or RGH Tat expression on CMV-driven Tat expression in U373.MG.Tat.

Tat expression led to increased global H3K27me3 level

H3K27me3 have been directly linked to establishment of HIV latency(Friedman et al, 2011; 

Khan et al, 2018; Kim et al, 2011), but it is not known whether any HIV proteins are 

involved in H3K27me3 regulation. The findings above raised the possibility that HIV Tat 

might be involved. To address this possibility, three different cell lines (U373.MG, Jurkat, 

and 293T) were transiently transfected with Tat expression plasmid and analyzed for 

H3K27me3 expression by Western blotting. Tat expression alone showed to be sufficient to 

induce a significantly higher level of H3K27me3 expression in U373.MG (Fig. 4A), Jurkat 

(Fig. 4B), and 293T (Fig. 4C). Similarly, a significantly higher level of H3K27me3 and 

MeCP2 was detected in U373.MG.Tat than U373.MG, and GSK126 treatment of these cells 

led to significant decreases in H3K27me3 expression but little changes in MeCP2 expression 

in both U373.MG and U373.MG.Tat (Fig. 4D). These results demonstrated that HIV Tat 

expression directly induced H3K27me3 expression, which likely contributes to Tat 

regulatory roles in HIV latency.

Requirement of MeCP2 for Tat-induced H3K27me3

We have recently shown that Tat induces miR-132 expression, which in turn down-

modulates MeCP2 expression (Rahimian and He, 2016). MeCP2 has been shown to co-

localize with nucleosomes and bind to CpG islands within the promoters and repress 
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transcription (Rube et al, 2016). As discussed above, MeCP2 has been shown to be a 

positive regulator of EZH2 expression and H3K27me3 expression (Hite et al, 2009; Mann et 

al, 2010). Thus, we next sought to determine the roles of MeCP2 in Tat-induced H3K27me3 

expression. We took advantage of a human haploid cell line Hap1-MeCP2−, in which the 

MeCP2 gene was knocked out using the CRISPR/Cas9 genome editing technology. MeCP2 

expression was detected in Hap1 (Mock, right half, Fig. 5), but not in its derivate cell line of 

Hap1-MeCP2− (Mock, left half, Fig. 5). Then, both Hap1 and Hap1-MeCP2− were 

transfected with Tat, doubled amount of Tat (Tat*), RGH, or RGH and Tat (RGH+Tat) and 

analyzed for Ezh2 and H3K27me3 expression by Western blotting. Ezh2 expression showed 

slight increases with Tat, RGH, or both, but giving rise to little H3K27me3 expression in 

Hap1-MeCP2−.In comparison, Tat, RGH, or both led to significantly increased MeCP2, 

Ezh2, and H3K27me3 expression in Hap1. These results showed that Tat or RGH up-

regulated MecP2 and subsequently Ezh2 expression and that MecP2 was involved in Tat-

induced H3K27me3 expression.

Up-regulation of miR-132, MeCP2, H3K27me3 expression, and H3K27-specific 
methyltransferase activity by Tat expression

We have recently shown that Tat induces miR-132 expression, which in turn down-

modulates MeCP2 expression (Rahimian and He, 2016). The findings above also suggest the 

possibility that Tat expression up-regulates MeCP2 expression. To ascertain the relationship 

between Tat, miR-132, and MeCP2 expression, U373.MG were transfected with increased 

amounts of Tat expression plasmid [0, 1X (+), 2X (++)], along with a MeCP2 promoter-

driven luciferase reporter gene and analyzed for Tat and miR-132 expression by qRT-PCR, 

the luciferase gene expression, H3K27me3 and MeCP2 expression, and histone 

methyltransferase activity. Tat expression (Fig. 6A) led to increased miR-132 expression 

(Fig. 6B) and luciferase activity (Fig. 6C). Consistent with the findings above, Tat 

expression also led to increased H3K27me3 and MeCP2 expression (Fig. 6D). Importantly, 

Tat expression led to increased histone methyltransferase activity (Fig. 6E). These results 

demonstrated that Tat expression up-regulated MeCP2 expression, which may or may not be 

through miR-132, or through reciprocal regulation between miR-132 and MeCP2(Klein et 

al, 2007; Martinowich et al, 2003; Rahimian and He, 2016; Su et al, 2015). These results 

further confirm that Tat expression led to increased H3K27me3 and H3K27-specific 

methyltransferase (Ezh2) activity.

DISCUSSION

In the study, we started with establishment of HIV latent astrocytes using VSV-G-

pseudotyped RGH reporter viruses. We showed that RGH viruses were capable of 

establishing latency in both U373.MG and U373.MG.Tat (Fig. 1), which differed by about 

10%, suggesting that Tat expression led to fewer HIV-infected cells entering the latency 

stage. We then attempted to activate the latent HIV-infected cells with several known 

activation reagents and found that GSK126, a selective inhibitor of histone 3 

methyltransferase Ezh2 differentially activated HIV-infected U373.MG.Tat from HIV-

infected U373.MG (Fig. 2), raising the possibility for the first time that Tat expression might 

promote histone 3 tri-methylation at lysine 27 (H3K27me3) and subsequently lead to HIV 
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repression. Next, we analyzed expression kinetics of Ezh2, H3K27me3, and MeCP2 in 

relation to Tat expression in the course of HIV infection and latency in astrocytes. We 

showed that all exhibited similar bimodal expression kinetics with higher levels of 

expression in U373.MG.Tat than U373.MG (Fig. 3). Interestingly, we noticed that Tat 

expression oscillated immediately prior to Ezh2, H3K27me3, and MeCP2 expression. 

Subsequent studies showed that Tat expression alone was sufficient to induce H3K27me3 

expression level (Fig. 4), that MeCP2 was required for Tat-induced H3K27me3 expression 

(Fig. 5) and H3K27 methyltransferase activity (Ezh2) (Fig. 6). Taken together, these results 

demonstrated that Tat expression induced H3K27me3 expression and HIV latency, likely 

through its regulation of MeCP2 and Ezh2 expression.

HIV-1 infection of astrocytes leads to abundant expression of HIV-1 early gene products 

such as Tat despite its restricted nature (Gorry et al, 2003; Messam and Major, 2000; Ranki 

et al, 1995). Since Tat is an essential transcription factor in HIV-1 replication, it is not 

workable to knock out or knock down Tat to determine the roles of Tat in HIV latency in 

astrocytes in this study. Instead, we took advantage of a stable Tat-expressing cell line 

U373.MG and used it in the study. It is conceivable that Tat inhibited latency development, 

as it functions to transactivate HIV-1 LTR promoter of provirus and HIV replication. 

However, the finding that GSK126 treatment led to activation of more latent Tat-expressing 

astrocyte indicated that Tat expression was involved in the regulation of the histone 

methyltransferase Ezh2 and H3K27me3 expression. Ezh2 is the only methyltransferase 

responsible for the tri-methylation of H3K27. Therefore, we studied the H3K27me3 

expression along with Ezh2 during HIV infection and latency. The absence of new infection 

from viral gene expression in this RGH model would allow us to study the dynamic 

regulation of the LTR activity. There were two peaks of Ezh2, H3K27me3, MeCP2, and Tat 

expressions during this period. This could be a complicated process in which cellular/viral 

factors induced by HIV-1 transcription and exogenous Tat expression together promoted 

methylation of H3K27 in the early stage at day 6. Then followed by de-methylation of 

H3K27me3 process in the middle of the process. This could be induced from the inhibition 

of activity of methyltransferase Ezh2 from day 12 to day 20. Thus, it would be interesting to 

identify the inhibitory factors of methyltransferase Ezh2 compared with the first peak of 

induction through global gene expression analysis. The second peak of H3K27me3, EZH2, 

and MeCP2 expression occurred on day 24 prior to HIV latency. expression preceded Ezh2, 

H3K27me3 and MeCP2 expression in both peaks, supporting the notion that Tat expression 

alone or Tat expression from HIV infection is responsible for regulation of their expression.

Ezh2 expression and activity could be regulated by many different factors (Cao et al, 2002; 

Fujii et al, 2011; Mann et al, 2010; Margueron and Reinberg, 2011; Sander et al, 2008; Tang 

et al, 2004), and MecP2 is one of them (Mann et al, 2010). A major portion of MeCP2-

bound nucleosomes contains H3K27me3 in brain fractions (Thambirajah et al, 2012). 

MecP2 are highly expressed in the brain and is recognized as epigenetic DNA methylation 

marks to repress gene transcription (Chahrour et al, 2008). Therefore, it is likely that Ezh2 

activity induced by Tat is mediated by regulation of MeCP2 expression. Using human 

haploid cell model HAP1 in which MecP2 is knocked out through CRISPR/Cas9 genome 

editing technology, we found that Tat and/or RGH expression increased global H3K27me3 

expression only when MeCP2 was expressed. Tat and/or RGH regulated Ezh2 expression 
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regardless of MeCP2 expression. Ezh2 was dramatically down regulated without MeCP2, 

implying the importance of MeCP2 in maintaining Ezh2 at a certain level. However, up-

regulation of Ezh2 by Tat and HIV-1 both in absence of MeCP2 and in the presence of 

MecP2 suggested the epigenetic changes leading HIV-1 to latency could be MeCP2-

dependent and independent and that a threshold level of Ezh2 expression would be required 

for Tat- and HIV-induced H3K27me3 expression. All these results would support the notion 

that MeCP2 play a fundamental role in HIV latency.

Increased expression of miR-132, a brain-enriched microRNA specifically targeting MecP2 

(Rahimian and He, 2016), was Tat expression dose-dependent. More interestingly, we 

showed that Tat transactivated MeCP2 promoter activity. There is a possibility that MiR-132 

and MeCP2 are mutually regulated to maintain their proper function. The other alternative 

could be that Tat regulation of MeCP2 expression involves other mechanisms. MeCP2 is 

known for its gene repression function. MeCP2 has been shown to be a positive regulator of 

Ezh2 expression (Mann et al, 2010). Almost all cell types in adult mammalian tissues 

express MeCP2 (Song et al, 2014). However, it is for sure that Tat and RGH were not 

capable of increasing H3K27me3 expression without MeCP2 expression.

DNA methylation and histone modifications including histone methylation and deacetylation 

are two major epigenetic mechanisms involved in regulation and maintenance of HIV 

latency. Inhibitors of histone deacetylases (HDACi), inhibitors of DNA methylation, or 

combination of histone methyltransferase inhibitors and HADCi are often used to re-activate 

proviruses (Blazkova et al, 2009; Bullen et al, 2014; Colin and Van Lint, 2009). H3K27 tri-

methylation (H3K27me3) and H2A ubiquitylation via PRC should be involved in HIV-1 

latency and contribute to epigenetic gene silencing (Kim et al, 2011). Ezh2 is a core member 

of PRC2 and directly mediates H3K27me3 of the chromatin (Simon and Lange, 2008) and is 

required for the maintenance of HIV-1 latency in Jurkat (Friedman et al, 2011); it also 

directly serve as a recruitment platform to regulate DNA methylation through its association 

with and regulation of the activity of DNA methyltransferase (Kanduri et al, 2013; Vire et al, 

2006). A recent study has shown that pretreatment with the Ezh2 inhibitor and subsequent 

with HDACi is a more effective approach to activate HIV latency in a primary resting T-cell 

model (Friedman et al, 2011; Tripathy et al, 2015). The findings from our study support a 

new role of Tat being a negative regulator to suppress HIV gene expression through 

induction of H3K27me3 expression and clearly provide the direct link between Tat 

expression and HIV infection, H3K27me expression, and HIV latency and could also 

provide a new strategy to activate HIV latency in astrocytes.
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Figure 1. HIV infection and latency in astrocytes.
A. Schematic of the red green dual HIV reporter virus genome (RGH). GFP was inserted in-

frame between MA and NC gene, while a CMV-driven mCherry cassette was inserted in 

place of Nef gene. Env gene was disrupted by Kpn I digestion, blunted and re-ligation 

(filled-in). Expression of GFP (G+M−), mCherry (G−M+), or both (G+M+) was used to 

represent unintegrated infection, latent infection, and active replicating infection, 

respectively. B. U373.MG and U373.MG.Tat were infected with VSVG-pseudotyped RGH 

viruses and analyzed every 3-5 days by flow cytometry for active replicating cells (G+M+). 

C. U373.MG and U373.MG.Tat were infected with VSVG-pseudotyped RGH viruses and 

analyzed every 3-5 days by flow cytometry for latently infected cells (G−M+).
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Figure 2. HIV activation in astrocytes.
The same number of HIV latent (G−M+) U373.MG and U373.MG.Tat at day 30 post 

infection of VSVG-RGH were treated with PMA (7.5 nM), LPS (10 ng/ml), TNF-α (10 ng/

ml), 5’-Aza (5 μM), or GSK126 (7.5 μM) for 4 days and analyzed by flow cytometry for 

active replicating cells (G+M+). Untreated cells were included as a control (Ctrl). The data 

were Mean ± SD of triplicates and representative of three independent experiments.
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Figure 3. Ezh2, H3K27me3, MeCP2, and Tat expression in relation to HIV infection and latency 
in astrocytes.
U373.MG and U373.MG.Tat were infected with VSVG-pseudotyped RGH viruses and 

analyzed every 3-5 days by Western blotting (A), followed by densitometry quantitation for 

Ezh2 (B), H3K27me3 (C), and MeCP2 (D), or by qRT-PCR for Tat mRNA expression from 

RGH (E) or in U373.MG.Tat (F) using RGH Tat mRNA-specific, or Tat.myc mRNA-

specific primers. PCNA was included as a loading control and used as a quantitation 

reference for Western blotting. β-actin was used an internal control and used as used as a 

quantitation reference for qRT-PCR. All were expressed as relative levels (Rel.). The data 

were Mean ± SD of triplicates and representative of three independent experiments.
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Figure 4. Direct effects of Tat expression on H3K27me3 level.
U373.MG (A), Jurkat (B), and 293T (C) were transfected with cDNA3 or Tat.His expression 

plasmids, cultured for 48 hr, and analyzed by Western blotting for H3k27me3 expression. 

PCNA was included as a loading control and used as a quantitation reference. D. U373.MG 

and U373.MG.Tat at day 30 post-infection of RGH were treated with GSK126 (7.5 μM) for 

4 days and analyzed by Western blotting for H3k27me3 and MeCP2 expression. β-actin was 

included as a loading control and used as a quantitation reference. The data were Mean ± SD 

of triplicates and representative of three independent experiments.
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Figure 5. Effects of MeCP2 knockout on the relationship among Tat, EZH2, and H3K27me3 
expression.
Hap-1 and MeCP2-knockout Hap-1 (Hap1-MeCP2−) were transfected with Tat expression 

plasmid, a doubled amount of Tat expression plasmid (Tat*), RGH plasmid, or RGH plasmid 

plus Tat plasmid (RGH+Tat), cultured for 48 hr, and analyzed by Western blotting for 

MeCP2, Ezh2, and H3k27me3 expression. cDNA3 was used to normalize the total amount 

of DNA transfected, while untreated cells were included as a control (Mock). β-actin was 

included as a loading control and used as a quantitation reference. Protein expressions were 

normalized to β-actin and calculated as folds of change over Mock, which was set at 1.0. 

The data were Mean ± SD of triplicates and representative of three independent experiments.
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Figure 6. Effects of Tat expression on MeCP2 promoter activity and miR-132 expression.
A-C. 293T were transfected with an increasing amount of Tat expression plasmid, cultured 

for 48 hr, and harvested for RNA isolation, followed by qRT-PCR for Tat (A) miR132 

expression (B), or harvested for cell lysates, followed by Western blotting for H3K27me3 

and MecP2 expression (C). cDNA3 was used to normalize the total amount of DNA 

transfected. β-actin was included as a loading control and used as a quantitation reference. 

D. 293T were co-transfected with MecP2 promoter-driven luciferase reporter plasmid and an 

increasing amount of Tat expression plasmid, cultured for 48 hr, and harvested for the 

luciferase reporter gene assay. cDNA3 was used to normalize the total amount of DNA 

transfected. pCMV-β-gal was used to normalize the transfection efficiency variations among 

all transfections. E. 293T were transfected with increasing amounts of Tat expression 

plasmids, cultured for 48 hr, and harvested for nuclear lysates, followed by histone 

methyltransferase (HMT) activity assay. cDNA3 was used to normalize the total amount of 

DNA transfected. The data were Mean ± SD of triplicates and representative of three 

independent experiments.
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