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Abstract

Objective: Electroencephalogram (EEG) reactivity is a robust predictor of neurological recovery 

after cardiac arrest, however interrater-agreement among electroencephalographers is limited. We 

sought to evaluate the performance of machine learning methods using EEG reactivity data to 

predict good long-term outcomes in hypoxic-ischemic brain injury.

Methods: We retrospectively reviewed clinical and EEG data of comatose cardiac arrest subjects. 

Electroencephalogram reactivity was tested within 72 hours from cardiac arrest using sound and 

pain stimuli. A Quantitative EEG (QEEG) reactivity method evaluated changes in QEEG features 

(EEG spectra, entropy, and frequency features) during the 10 seconds before and after each 

stimulation. Good outcome was defined as Cerebral Performance Category of 1-2 at six months. 

Performance of a random forest classifier was compared against a penalized general linear model 

(GLM) and expert electroencephalographer review.
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Results: Fifty subjects were included and sixteen (32%) had good outcome. Both QEEG 

reactivity methods had comparable performance to expert EEG reactivity assessment for good 

outcome prediction (mean AUC 0.8 for random forest vs. 0.69 for GLM vs. 0.69 for expert review, 

respectively; p non-significant).

Conclusions: Machine-learning models utilizing quantitative EEG reactivity data can predict 

long-term outcome after cardiac arrest.

Significance: A quantitative approach to EEG reactivity assessment may support 

prognostication in cardiac arrest.
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Introduction

Most patients resuscitated from a cardiac arrest who undergo targeted temperature 

management are initially comatose.(Nielsen et al., 2013) Lack of early clinical exam 

improvement following resuscitation may influence providers’ perceptions of neurological 

prognosis and lead to inappropriately premature withdrawal of life-sustaining therapies.

(Perman et al., 2012) Identification of early predictors of neurological recovery has the 

potential to promote continuation of intensive life support measures and prevent self-

fulfilling prophecies due to premature withdrawal of life-sustaining therapies in cardiac 

arrest patients with unfavorable prognostic features identified on multimodal prognostication 

but who may have the potential for good outcomes if enough time for neurological recovery 

is provided.

Electroencephalogram (EEG) reactivity is defined as a “change in cerebral activity to 

external stimulation”.(Hirsch et al., 2013) This phenomenon has been well-studied in the 

clinical neurophysiology and coma literature, but only recently has been systematically 

investigated in large cohorts of patients with acute hypoxic-ischemic brain injury after 

cardiac arrest.(Amorim et al., 2016a, Amorim et al., 2015, Amorim et al., 2016b, Rossetti et 

al., 2010, Rossetti et al., 2017, Westhall et al., 2016) In these studies, EEG reactivity was 

one of the most compelling predictors of long-term neurological outcome, being often 

observed within the first 24 hours from return of spontaneous circulation despite the 

presence of hypothermia, sedation, and a clinical exam consistent with coma.(Amorim et al., 

2016a, Rossetti et al., 2017)

Despite strong evidence supporting the use of EEG reactivity in cardiac arrest 

prognostication, its clinical usability is limited by poor expert interrater agreement and high 

variability in visual assessment of EEG reactivity practices.(Amorim et al., 2018, 

Fantaneanu et al., 2016, Hermans et al., 2016, Westhall et al., 2016) Advancements in 

computational analysis of EEG data have shown that quantitative approaches can begin to 

overcome these challenges and set the stage for bedside technologies that can deliver 

objective and real-time quantification of EEG reactivity that is comparable or even superior 
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to human expert performance.(Bricolo et al., 1978, Duez et al., 2018, Hermans et al., 2016, 

Liu et al., 2016, Noirhomme et al., 2014)

In this study, our primary aim was evaluate whether a machine-learning algorithm designed 

to assess QEEG reactivity could predict good long-term outcomes in comatose cardiac arrest 

subjects undergoing targeted temperature management. We devised a method with flexibility 

to allow stimulus specific (sound or pain) and stimulus agnostic (sound and pain) 

assessments of QEEG reactivity, and also with the added capability of providing 

individualized long-term outcome predictions for each subject tested using a QEEG 

reactivity-based risk score. We compare our machine learning QEEG reactivity method 

performance predicting long-term outcomes to expert visual assessment of EEG reactivity.

Methods

Subjects, EEG acquisition, and medical management

Adult subjects who had return of spontaneous circulation (determined by a healthcare 

provider and recorded in the electronic medical records) and remained comatose following 

an in-hospital or out-of-hospital cardiac arrest from December 2011 to April 2016 in two 

university-affiliated hospitals were screened. Continuous digital EEG monitoring according 

to the international 10-20 system is routinely started as early as possible during targeted 

temperature management and continued for 24-72 hours. Monitoring with EEG may be 

discontinued prior to 72 hours in case of return of consciousness, withdrawal of life-

sustaining therapies, or death. At the time of this study, the targeted temperature 

management protocol at participating hospitals utilized external cooling pads and had a goal 

temperature of 32-34°C for 24 hours followed by slow rewarming at 0.25-0.5°C per hour to 

a goal temperature of 37°C. Neuromuscular blockade was maintained during the entirety of 

the hypothermia phase in one of the hospitals and utilized as needed for shivering 

management in the other. Propofol, midazolam, or fentanyl infusions were utilized for 

sedation and analgesia per local institution protocol and were titrated according to the 

treating clinicians’ discretion.

Data collection and analysis was approved by the Partners Healthcare Institutional Review 

Board, which deemed this retrospective analysis of demographic, clinical, and EEG data 

exempt from requirements for informed consent.

EEG reactivity testing battery and expert visual review

As part of standard clinical care and per local institutional protocol, EEG reactivity is tested 

by the clinical neurology team during hypothermia and normothermia when possible. The 

EEG reactivity testing procedure included sound, tactile, or pain. All subjects had EEG 

reactivity scored as “present”, “absent”, or “indeterminate” by a board-certified expert 

electroencephalographer during clinical care. The EEG was scored as having reactivity 

present if a change in EEG signal amplitude or frequency was observed. An epoch with 

duration of 10 seconds was used as most EEG reactivity responses evaluated by 

electroencephalographers are observed within this time frame in our experience. If EEG 

reactivity was present in any of the first three days of recording, the expert final score used 
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in our analysis was “EEG reactivity present”. Activation procedures such as calling the 

subject’s name or clapping were categorized as “sound stimuli”; tactile stimulation at the 

torso, trapezius pressure, nail bed pressure, sternal rub, nose stimulation with a swab, or 

tracheal suction were categorized as “pain stimuli”.

Data collection and functional outcome assessment

Electronic medical records were reviewed retrospectively and information regarding age, 

gender, time to return of spontaneous circulation (ROSC), initial cardiac rhythm – 

dichotomized as shockable (ventricular fibrillation or ventricular tachycardia) or non-

shockable (asystole, pulseless electrical activity, and unknown) – admission Glasgow Coma 

Score, pupillary and corneal exam, admission computerized tomography of the head (CTH) 

reports, presence of malignant EEG patterns within the first 72 hours from ROSC (burst-

suppression, seizure, status epilepticus, myoclonic status epilepticus, or periodic discharges), 

reason for withdrawal of life-sustaining therapies (WLST), and best neurological exam prior 

to discharge was retrieved. A CTH radiology report describing acute loss of cortical or 

subcortical gray-white matter differentiation were categorized as unfavorable. Subjects in 

which WLST was motivated by predicted poor neurologic outcome were categorized as 

“WLST due to Poor Neurological Prognosis”. Other causes of WLST due to “non-

neurological” reasons such as multi-organ failure or refractory hemodynamic instability, or 

other causes of death such as brain death were not categorized as WLST due to Poor 

Neurological Prognosis. Arousal recovery was defined as at least recovery to minimal 

conscious state with command following or visual tracking.(Giacino et al., 2002)

Functional outcome was defined as the best neurological function achieved up to 6-months 

after initial cardiac arrest utilizing the Glasgow-Pittsburgh Cerebral Performance Categories 

Scale (CPC).(Safar, 1981) “Good” functional outcome was defined as a CPC score of 1 or 2 

and “poor” functional outcome was defined as a CPC of 3 to 5. The CPC score was 

determined based on electronic medical record review of patients who had not already 

achieved a good functional outcome or died by the time of discharge, i.e. subjects discharged 

with CPC 3 or 4.

EEG data pre-processing

The EEG was re-referenced to a bipolar montage and baseline drift was removed. All EEG 

data was filtered (0.5-50Hz) and channels with the following types of artifact: were 

excluded: amplitude >500 μV or low variance using a custom made algorithm. (Figure 1A, 

preprocessing) Twenty-second long EEG clips were obtained for each clinical stimulation 

documented done during EEG reactivity testing. Each 20-second long EEG clip was 

separated in two 10-second long epochs centered on the time of external stimulation (Figure 

1A, pre and post-stimulation epochs). Epochs used for EEG reactivity assessment that had 

burst suppression, epileptiform discharges, or prominent artifacts were excluded from 

analysis. This visual screening was performed by a fellowship-trained 

electroencephalographer (E.A.) using MATLAB v2017a (Natick, MA).
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Quantitative EEG feature extraction and post-processing

Sixty-two quantitative EEG (QEEG) features assessing frequency, signal complexity, and 

entropy were utilized to evaluate the EEG clips (Table 1). Quantitative EEG features were 

extracted for each epoch and each channel independently. The QEEG features were averaged 

all channels for each feature and across all 10-second pre and post-stimulus epochs 

separately. The power spectrum of the EEG clips was estimated with Thomson’s multi-taper 

method using the Chronux toolbox.(Bokil et al., 2010, Thomson, 1982) Subsequently, for 

each individual patient, EEG clips were separated in two categories based on the type of 

activation procedure performed (sound or pain stimuli). Subsequently, all QEEG data for 

each of the activation procedure categories were averaged (for each feature separately), 

creating a unique mean QEEG feature value for the before and after stimulation epochs for 

each feature (Figure 1A, average QEEG Features per Stimulus Category). The absolute 

difference between pre and post-stimulation mean QEEG feature values was used as the 

measure of QEEG reactivity response for each feature for each individual patient. The 

QEEG features were normalized for each cross-validation fold in the training set, i.e. 

subtracting the mean QEEG feature value across patients and dividing it by the standard 

deviation. The QEEG features in the testing set were normalized based on the mean and 

standard deviation of the training set. The same procedure was done for the stimulus 

agnostic, but QEEG data from both sound and pain stimuli were averaged together. For 

univariate analyses, we averaged the QEEG feature values from all activation procedure 

categories, i.e. sound and pain. In case subjects had EEG reactivity assessment in 

consecutive days, QEEG features were only obtained from the first EEG reactivity 

assessment. Data from additional days of EEG reactivity assessment were discarded. This 

procedure aims to generate a more uniform outcome prediction procedure, as including data 

from several days could bias EEG reactivity assessment as individual responses may change 

over time.

Statistical analysis

Univariate analysis for good outcome prediction was performed using Spearman’s rank 

coefficient for all individual QEEG reactivity features, Pearson X2 for categorical variables, 

and independent t-Student tests for continuous variables. We evaluated the multivariate 

model performance for good outcome prediction using the area under the receiver operator 

curve (AUC).

Two multivariate models were utilized to evaluate good outcome prediction using all QEEG 

reactivity features (random forest classifier and penalized multinomial logistic regression 

with parameter optimization). The random forest classifier is a method known to provide 

highly accurate classifications, and it is especially useful when features may be correlated. 

This method also provides estimates of what variables are more relevant in the classification. 

Binary logistic regression is a commonly used classifier method that provide probability 

scores for observations, in this study, the odds of good outcome given a set of predictors. A 

penalized logistic regression with parameter optimization improves prediction accuracy and 

interpretability and also avoids overfitting by performing feature selection and 

regularization. It penalizes features with large regression coefficients, leading to a simpler 

model composed of the subset of features with best prediction performance. The EEG data 

Amorim et al. Page 5

Clin Neurophysiol. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was divided based on the activation procedure category (sound and pain) for the stimulus 
specific analysis, and data from each activation procedure group was analyzed separately. 

The stimulus agnostic analysis combined the EEG data recorded during both sound and 

pain activation procedures. Clinical information included in the prediction model in addition 

to the QEEG reactivity features were: age, gender, time to ROSC, non-shockable cardiac 

rhythm, neurological exam on admission (presence of pupillary or corneal reflex and motor 

Glasgow Coma Score less than three), presence of an unfavorable CTH on admission, 

presence of malignant EEG patterns on EEG within the first 72 hours, By including clinical, 

qualitative EEG review, and radiology data in the prediction model, we provide multimodal 

features to our outcome prediction model. The EEG reactivity expert scores from visual 

review were used as baseline and were considered “present” if there was an EEG response to 

either sound or pain stimuli.

First, we utilized a random forest classification model. We created 1,000 rounds of bootstrap 

samples with replacement for training and testing sets, ensuring that subjects in the testing 

set were not included in the training set and vice-versa. Classification model training was 

performed using 5-fold cross-validation with 80% of subjects included in training and 20% 

in testing sets, i.e. the k-fold for random forest used five rounds of cross-validation for 

training and testing. In summary, the QEEG model was tested 5,000 times using 1,000 

bootstrap rounds in five cross-validation folds. The training set was balanced using a 

randomized class equalization strategy to ensure that each fold had an equal number of 

subjects with good and poor outcomes (Figure 1B, step “balance outcomes”). For example, 

if eighteen out of 40 subjects supposed to be included in a bootstrap round had good 

outcome, only 18 subjects with poor outcome would be included for training in that round, 

which would have a total of 36 subjects. This was done to ensure that the model voting 

strategy in the random forest would not be biased to always vote for the more frequent 

outcome instead of using the most relevant QEEG features. The MATLAB function 

TreeBagger was utilized to implement bootstrap-aggregated, i.e. bagged, decision trees. This 

method allows resampling with replacement of the training set on each round of the 

bootstrap. The number of decision trees was fixed to 1,000. We fixed the number of selected 

features to the 10 features with highest outcome prediction weights for each bootstrap round 

in the training set. These features would be included in the model used for testing. Second, 

we utilized a general linear model, i.e. penalized multinomial logistic regression with 

parameter optimization as a baseline prediction model.(Tibshirani, 1996) This type of 

regression model utilizes variable selection and regularization in order to select a minimal 

set of features needed to optimize prediction accuracy. The penalized multinomial logistic 

regression used the same procedure described for the random forest model in regard to 

number of bootstrap rounds and training-testing set division. We report the mean AUC and 

Bayesian 95% credible interval (CI) for stimulus specific (sound and pain) and stimulus 

agnostic analyses (combined sound and pain) using 100 rounds of bootstrapping for both 

random forest and penalized logistic regression models. The visual EEG reactivity expert 

assessment was used as a baseline comparison method to the logistic regression and random 

forest model. We evaluated the performance of a visual EEG reactivity scored as “present” 

as a predictor of good outcome. The model sensitivity at a specificity threshold of 100% for 
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good outcome prediction is reported for both random forest and penalized logistic regression 

models, i.e. no false-positive prediction.

Statistical calibration assesses how closely predicted probabilities of good outcome by a 

given model agree with the observed, i.e. actual, proportion of good outcomes.(Osborne, 

1991) The mean squared error of the prediction, i.e. Brier’s score, indicates the difference 

from the predicted to observed outcomes. In this analysis, we report the mean Brier’s score 

across the 1,000 bootstrap iterations.

The random forest model outcome prediction output provides a probability of outcome at the 

subject level, and therefore can be used as a neurological recovery risk score. The 

probability is based on the proportion of trees in the ensemble that vote for a certain class. 

We report the cross-validated random forest classifier probability output scores obtained 

without resampling from the bootstrapping procedure. Difference in QEEG reactivity scores 

among good and bad outcome groups was evaluated using a t-student test. We also report the 

sensitivity at 100% specificity of both prediction methods to determine how frequently we 

can identify subjects with good outcome without having false-positive predictions. All 

statistical analyses were performed using MATLAB 2017a.

Results

Clinical and EEG data were available for 75 subjects. Twenty-five subjects were excluded 

through visual review due to presence of epileptiform discharges, burst-suppression, or 

major artifacts on EEG recordings at the time of the EEG reactivity testing battery. Fifty 

subjects were included in the final analysis, and 22 (44%) had arousal recovery prior to 

discharge, with 16 (76%) of them having a good outcome at six months (Table 2). Six 

subjects with poor outcome had arousal recovery and five were able to follow commands 

prior to discharge. A total of one-hundred and eighty-six stimulations were performed 

during EEG reactivity testing for all 50 subjects – 50 (26.8%) sound and 136 (73.2%) pain. 

Twenty-one (42%) subjects had EEG reactivity testing documented in more than one day 

(only information from first assessment analyzed). Electroencephalogram reactivity was 

considered present in 18 (36%) subjects (10 with good outcome and 8 with poor outcome) 

based on expert visual EEG review (Table 2). Malignant EEG patterns were present within 

the first 72 hours of EEG monitoring in 37.5% of subjects with good outcome and 41.2% of 

subjects with poor outcome.

Outcome prediction using QEEG reactivity

In our initial analysis, we included as part of the random forest model several clinical, 

imaging, and EEG information by expert visual review other than QEEG reactivity features, 

i.e. admission clinical information (age, gender, OHCA, shockable rhythm, motor Glasgow 

Coma Score less than three, presence of pupillary or corneal reflexes), unfavorable 

admission head computerized tomography results, and presence of malignant EEG patterns. 

These features were not selected as the most predictive of outcome in the random forest 

model, therefore we only report results from models that exclusively included QEEG 

reactivity features.
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The univariate AUC for outcome prediction using individual QEEG features for combined 

sound and pain stimuli is summarized in Figure S1. Outcome prediction performance was 

equivalent between the random forest classification model compared to the baseline 

penalized logistic regression and expert review model for the stimulus agnostic analysis 

(mAUC = 0.8 vs. mAUC = 0.69 vs, mAUC=0.69; differences were not statistically 

significant) (Figure 2 and Supplementary Figure S2). Sensitivity at the 100% specificity 

threshold for good outcome prediction in the stimulus agnostic analysis was 23% for random 

forest model and 8% for penalized logistic regression. The random forest model’s 

calibration was equivalent to the penalized logistic regression model for stimulus agnostic 

and stimulus specific analysis for sound and pain stimuli (Supplementary Figure S2; 

differences were not statistically significant).

QEEG reactivity features selected by the random forest model

The QEEG features selected for testing for the random forest model and penalized logistic 

regression models are summarized in Figure S3. Quantitative EEG reactivity in the delta, 

theta, alpha, and spindle bands, i.e. change in power at these frequency bands, and entropy 

measures (non-linear energy operator, spectral entropy, and state entropy) were the most 

frequently included features for both stimulus specific and stimulus agnostic analysis.

QEEG reactivity as a neurological recovery probability risk score

We used a probabilistic approach to explore the performance of our random forest model in 

predicting good long-term outcomes at the subject level for each stimulus category 

separately (Figure 3). Subjects in the good outcome group had higher neurological recovery 

probability scores for stimulus agnostic and the pain stimulus specific categories (p < 0.01 

and p = 0.01, respectively). Neurological recovery probability scores generated using sound 

stimuli exclusively were not different between groups (p = 0.06). No specific cutoff value 

could separate subjects with good and poor outcome with 100% specificity in any of the 

stimulus category groups. Figure 4 illustrates the probability of good outcome obtained 

using quantitative EEG reactivity as a neurological recovery risk score along with the 

corresponding raw EEG signal and spectrogram during stimulation for four exemplary 

scenarios. In Figure 4A, we illustrate the case of a subject with a low neurological recovery 

score to pain stimuli and bad outcome and in Figure 4B a high neurological recovery score 

to pain and good outcome. The EEG reactivity response might be stimulus specific for some 

subjects. In Figure 4C and 4D we show an example of a subject with good outcome who had 

diffuse attenuation of the background for three seconds after sound stimulation (Figure 4C; 

neurological recovery score 0.7) and a much less prominent EEG response after pain 

stimulation (Figure 4D; neurological recovery score 0.4).

Discussion

In this study, we demonstrate that machine learning models can analyze QEEG reactivity 

data to predict long-term neurological outcome in subjects with hypoxic-ischemic brain 

injury. Both the random forest model and the penalized logistic regression methods 

performed comparably to EEG reactivity assessments performed by an expert 

electroencephalographer. In addition, this data-driven approach can provide individualized 
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estimates of good outcome using a neurological recovery risk score, allowing not just 

identifying a binary “change vs. no change” in the EEG signal to stimulation, but 

additionally providing the probability of neurological recovery as a continuous score. The 

neurological recovery score could be monitored over time during repeated reactivity 

assessments in parallel with the neurological exam.

We found that a combination of QEEG features assessing both spectral and entropy changes 

achieved best outcome prediction performance. Electroencephalogram reactivity by expert 

visual review is determined primarily by changes in frequency or amplitude. Quantitative 

features that discriminate changes in power spectra have also been used by other groups for 

QEEG reactivity determination or for outcome prediction – for both cardiac arrest and other 

types of neurological injury.(Duez et al., 2018, Hermans et al., 2016, Johnsen et al., 2017, 

Liu et al., 2016, Noirhomme et al., 2014) Entropy changes are not as easily translatable to 

standard EEG reactivity identified by expert visual review, and objective assessment of 

changes in signal complexity is not routinely pursued during standard EEG interpretation by 

experts. Assessment of entropy changes have only been utilized in QEEG reactivity testing 

on a previous study from our group using a mixed critical care population that included 

cardiac arrest subjects.(Hermans et al., 2016) In that study, assessment of changes of relative 

entropy did not improve the EEG reactivity determination performance. In the present study, 

we focus on outcome prediction and not on prediction of agreement between expert EEG 

readers assessing EEG reactivity. We used an expanded QEEG feature set and pursued 

analysis using several types of entropy measures beyond relative entropy and utilized a more 

robust prediction model (random forest model). The random forest method has the 

advantage of avoiding overfitting despite inputting several variables and it also permits 

various approaches to feature selection. This semi-automated quantitative method can 

generate unbiased estimates of QEEG reactivity probability at both individual and group 

level, which could be used as a neurological recovery risk score.

Our methodological approach has several strengths. The use of machine-learning for 

outcome prediction using QEEG reactivity is novel and prevents known limitations in 

prognostication studies related to overfitting and correlated features. The algorithm design 

allowed for more interpretable results with individual-level outcome predictions despite a 

high dimensional dataset. The development of an algorithm that can evaluate stimulus-

specific EEG responses is innovative. In addition, our statistical model was rigorous, and 

utilized five-fold cross-validation for training with an inner cross-validation split and 1,000 

round bootstrapping, generating more consistent results. The training sets were balanced 

according to neurological outcomes to avoid biasing the model to favor poor outcome 

predictions just because this was the most frequent outcome. The algorithm design in 

association with the heterogeneity of a data set originated from two different hospitals make 

our method more robust.

We were able to demonstrate that QEEG reactivity outcome prediction performance varied 

between QEEG feature classes and activation procedure categories. Electroencephalogram 

reactivity response is thought to represent the synchronization or desynchronization of 

cortical neuronal ensembles mediated by thalamocortical feedback loops.(Hirsch et al., 

2013, Pfurtscheller and Lopes da Silva, 1999) Therefore, it is not surprising that injury to 
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different networks might generate distinct QEEG signatures. The QEEG reactivity features 

with best predictive performance in the univariate, random forest, and logistic regression 

model involved spectral power (delta, theta, alpha, and spindle bands) and entropy features 

(non-linear energy operator, spectral entropy, state entropy, permutation entropy, and 

spectral entropy) (Figure S1 and S3). In addition, while prediction performance for sound or 

pain stimuli as a group was equivalent (AUC 0.8 vs 0.69), at the individual level, we 

observed that some subjects might only have a more discernible EEG reactivity response, 

quantitative or by expert visual review, to one type of stimuli (Figure 4). These differences 

could be related to dysfunction of specific neural circuits as sound and pain networks may 

have distinct patterns of cortical activation captured on scalp EEG or different degrees of 

resilience to hypoxic-injury. In this context, different types of EEG reactivity signatures 

might be markers of arousal system integrity, which might be sufficient to allow command 

following or eye tracking, i.e. arousal recovery, but not translatable into good outcome as 

measured by the CPC scale.

EEG reactivity determination is often derived from a single assessment a day and its scoring 

frequently does not follow a systematic stimulation protocol using a structured clinical exam 

with sound and graded noxious stimulation.(Amorim et al., 2018) In our study, predictions 

had good performance despite the fact that those were made with information from only the 

first EEG reactivity assessment. This finding reinforces previous literature indicating that 

EEG reactivity can be observed early and is a robust indicator of neurological recovery.(Juan 

et al., 2015) However, patients who recover EEG reactivity during normothermia despite an 

unreactive EEG on hypothermia tend to have a favorable outcome.(Juan et al., 2015) 

Therefore, performing serial EEG reactivity assessments when possible is recommended to 

increase the likelihood of identifying patients with potential for good outcomes.

Subjects with more severe brain injury often have malignant EEG and other clinical or 

radiological findings associated with poor outcome, including lack of EEG reactivity. In this 

study, we only included subjects without burst suppression and epileptiform discharges 

during the time of EEG reactivity assessment as fluctuation on bursts or epileptiform 

discharges frequency within the short 20-second windows used for QEEG reactivity analysis 

could lead to EEGs being considered reactive by chance. In clinical practice, there is no 

consensus about change in burst or epileptiform discharge patterns to stimulation being a 

predictor of poor outcome after cardiac arrest.(Alvarez et al., 2013, Braksick et al., 2016) 

Additionally, several subjects with good outcome in our study had unfavorable clinical 

exam, qualitative EEG, and CTH findings. This might have contributed to the random forest 

model selection of QEEG reactivity features instead of clinical exam, qualitative EEG, and 

radiological features. This model only includes features that are most discriminative between 

groups with poor and good outcome. This finding highlights the importance of EEG 

reactivity assessment during multimodal prognostication in a population that might have 

contradicting outcome predictors.

This study has several limitations and future work is needed to advance QEEG reactivity 

assessments. First, the lack of statistical significance between the three methods evaluated 

(random forest model, penalized logistic regression, expert visual EEG review) might be due 

to a small sample size. Second, expert assessments were not blinded to other clinical data 
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and prognostication is prone to self-fulfilling prophecies of withdrawal of life-sustaining 

therapies. Assessments employing multiple blinded raters’ consensus could reduce bias from 

other prognostication sources that might have been available to the electroencephalographer. 

Third, our prediction model included clinical, imaging and EEG data routinely used in 

prognostication, however those features were not selected among the most predictive of 

long-term outcome. This could also have been due to the small sample size of the present 

study, which limits the number of factors the machine learning models can reliably learn to 

use. Fourth, we only evaluated the EEG data obtained during the first EEG reactivity 

assessment as not all subject underwent daily serial assessments. EEG reactivity may re-

emerge over time and we might have missed relevant information for outcome prediction 

that might have been biased by sedation and neuromuscular blockade use, targeted 

temperature management, and delayed recovery or worsening.(Juan et al., 2015) Fifth, the 

EEG data was averaged across all scalp electrodes and different stimulations within an 

activation procedure category to reduce data dimensionality and allow a single EEG 

reactivity measure per QEEG feature. This loss of spatial and stimulus type information 

might have decreased performance as reactivity responses may be more pronounced in 

specific brain regions or change depending on the type of activation procedure used. 

(Fantaneanu et al., 2016, Hermans et al., 2016, Tsetsou et al., 2015) Sixth, the performance 

of this method needs to be evaluated in subjects who had malignant EEG patterns such as 

burst-suppression, periodic epileptiform discharges, and seizures as determination of EEG 

reactivity in these cases might have major repercussions in care and decisions about 

withdrawal of life-sustaining therapies. Future studies in cardiac arrest prognostication 

should pursue integration of all data relevant to prognostication in a synchronized way in 

order to allow the identification of confounders (e.g. sedation, neuromuscular blockade) and 

EEG and imaging signatures associated with recovery in neurological function at the 

bedside.

Conclusion

A machine-learning method using QEEG reactivity data can predict long-term neurological 

outcome in hypoxic-ischemic brain injury early. Analysis of individual cases suggests that 

these EEG reactivity signatures can be stimulus-specific for some subjects, reinforcing the 

need of utilizing different activation procedures and serial exams. Early and accurate 

assessment of neurological recovery biomarkers such as EEG reactivity are important steps 

to avoid misperceptions of prognostic expectations that can influence decision-making about 

withdrawal of life-sustaining therapies and potentially guide patient selection to 

interventional trials.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Machine-learning methods using QEEG reactivity data can predict outcomes 

after cardiac arrest.

2. A QEEG reactivity detector can provide individual-level predictions of 

neurological recovery.

3. A quantitative approach to prognostication may improve objectivity of EEG 

reactivity interpretation.
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Figure 1: 
1A: Architecture data processing and evaluation: preprocessing, feature acquisition, 

separation by stimulus type; 1B: Classification steps for random forest model and penalized 

logistic regression
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Figure 2: 
2A: Random forest model and expert visual review performance for good outcome 

prediction for different type of stimuli; 2B: Calibration plot of predicted vs. observed good 

outcome using a random forest model (mean score and standard deviation)
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Figure 3: 
Reactivity probability distribution for subjects with good and bad outcome for pain and 

sound (3A, p < 0.01), pain (3B, p = 0.01), and sound (3C; p = 0.06) stimuli
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Figure 4: 
Compressed spectral array display and raw EEG signal with corresponding probability of 

good outcome using QEEG reactivity as a risk score. 4A: subject had poor outcome and a 

low neurological recovery score; 4B: subject with good outcome and high neurological 

recovery score; 4C and 4D: subject with good outcome who had a higher neurological 

recovery score for sound vs. pain stimuli. There is a diffuse decrease in amplitude for three 

seconds after sound stimulation (4C). No definite change on EEG is observable after 

noxious stimulation by visual inspection of the EEG recording (4D).
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