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Effects of light on human
circadian rhythms, sleep and
mood

Anatomical architecture of the
circadian system

The central master-clock in mam-
malian species, including humans, is the
suprachiasmatic nuclei (SCN), a paired
structure in the hypothalamuswith a vol-
ume just about 0.25mm3pernucleus (e.g.
[45, 57, 84]). Within the mammalian
SCN, a molecular oscillator keeps the
clock oscillating at its normal pace. The
basis of this oscillator is two intercon-
nectedmolecular feedback loops of clock
gene expression, a detailed description
of which is beyond the scope of this
review though (see [12] for a detailed
explanation).

Successful interaction between body
and environment however needs more
than just a central clock; it also requires
input pathways relaying information
about the environment and the body
to the SCN to achieve adequate en-
trainment as well as output pathways
communicating timing information to
the body to synchronise bodily processes
with the circadian phase (. Fig. 1).

The most important zeitgeber (from
German, something that “gives time”)
reaching the SCN is ambient light in the
environment. In addition to process-
ing visual stimuli in the environment,
allowing us to see, the retina carries
this photic information via the retinohy-
pothalamic tract (RHT) to the SCN.The
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SCNalso receivenon-photic information
fromwithin the body. Here, the involved
pathways comprise the geniculohypotha-
lamic tract (GHT), which communicates
both non-photic and photic information
(via the intergeniculate leaflet; IGL), and
the raphe-hypothalamic tract (raphe-
HT). Additionally, SCN activity is also
modulated by non-photic information
via neurotransmitters and hormones
such as serotonin [54] and melatonin
[23], and from peripheral clocks in other
tissues (see [55] for an overview).

SCN neurons adjust their circadian
phase (of neural activity) according to
the input of ambient light levels and its
spectral composition and communicate
this information via humoral and auto-
nomic nervous system signals to the rest
of the body. These output pathways are
also reciprocal and thus feed informa-
tion back to the SCN: The SCN-sero-
tonin-producing raphe nuclei(RN)-SCN
loop as well as the SCN-melatonin-pro-
ducing pineal gland-SCN loop (. Fig. 1).
More specifically, the RN can alter vigi-
lance levels in accordance with circadian
phase via serotonergic wakefulness-pro-
moting projections to the hypothalamus
and the cortex [30, 56].

The SCN also projects to the pineal
gland, where the sleep-facilitating hor-
mone melatonin is produced during the
biological night, thereby modulating the
diurnal variations between wakefulness
and sleep [23]. In addition to the path-
way between retina and SCN, there is re-
cent evidence from animal studies show-
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Fig. 18 Input andoutput pathways to/from the suprachiasmatic nuclei (SCN). The photic inputpath-
ways that relay information about the intensity and spectral composition of ambient light are the
retinohypothalamic tract (RHT) and the geniculohypothalamic tract (GHT), which connects retina and
SCN via the intergeniculate leaflet (IGL) in the thalamus.Additionally, the SCN also receive non-photic
information from the raphe nuclei (RN) via the raphe-hypothalamic tract (raphe-HT) and from the
pinealgland. Themainoutput is fromtheSCNtotheserotonergic raphenuclei (RN, receive information
about the phase of the circadian clock and regulate vigilance state of the body) and the pineal gland,
wheremelatonin is produced. Input and output pathways form reciprocal loops

Fig. 28 Spectral power distributions of common light sources in our environment.a Spectral power
distributions of daylights at different correlated colour temperatures (CCT; 4000K; 6500K; 10,000K).
Spectra are normalised to 555nm.b Spectral power distributions of awhite LED (top), a fluorescent
source at 3000K (middle), and an incandescent source (tungsten-filament; 2856K, bottom).All three
artificial sources have the same luminous flux (normalised to 100 lm), and approximately the same
colour temperature (2700–3000K), but the spectra are very different in shape and scale (see y axis)

ing that also the habenula in the thala-
mus is innervated by retinal projections
[38, 110] which may specifically mediate
mood-related non-visual effects of light.

Fundamentals of light

To understand the effects of light on the
human physiology, it is important to un-
derstand light. Briefly, light is radiation
in a specific range of the electromag-
netic spectrum. It is best and most com-
pletely described by its spectral distri-
bution, which quantifies the amount of
energy (or the number of photons) as
a function of wavelength (with visible
light in the wavelength range between
380 and 780nm).

During the day, light intensities
outside can reach illuminances up to
100,000 lx in direct sunlight and 25,000 lx
in full daylight. Light intensities in closed
rooms are considerably lower and stan-
dard office lighting is only ~500 lx, often
lower [37, 81]. The spectrumof daylight,
which is light from the sun filtered by the
atmosphere is relatively broadband in its
distribution (. Fig. 2a). The availability
of daylight depends on geographical
location and season. In the timeframe
of human evolution, it is a rather recent
development that light can be available
during all times of day through artificial
light. Artificial light allows for illuminat-
ing indoor and outdoor spaces. It comes
in many forms, e.g. incandescent, fluo-
rescent, or light-emitting diode (LED)
lighting. While light generated by these
technologies may all appear “white”, the
underlying spectra are rather different
(. Fig. 2b). The reason why many differ-
ent types of spectra might have the same
appearance lies in the retina. Critically,
different spectra, even if they create the
same visual impression, may vary in their
chronobiological effects on the circadian
clock.

It is important to keep in mind that
there aremultipleways how light is quan-
tified and reported in the literature in
particular when focussing on its reper-
cussions on human physiology. For ex-
ample, while the absolute spectral dis-
tribution of a light is the most com-
plete description, many investigators re-
port the illuminance (in lux [lx]), or the
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correlated colour temperature, which is
the temperature of a hypothetical black-
body radiatorwith the same colour as the
light source in question. Unfortunately,
until recently, there have been no stan-
dard quantities that experimenters were
askedtoreport, andtherefore, summaris-
ing the chronobiological and somnolog-
ical literature on the effects of light re-
mainsa challenge. Recently, theCommis-
sion International de l’Eclairage (CIE), the
international standard body for quanti-
ties related to light, issued a new stan-
dard containing a reference framework
forquantifying the effects of light onnon-
visual functions [31]. In practice, exper-
imenters employing light as an interven-
tion should report, at a minimum, the
spectral power distribution of the light,
as seen from the participant’s point of
view. Detailed minimum guidelines are
given in [83].

Photoreceptors in the retina

In humans, the known effects of light on
circadian rhythms and sleep are all, with-
out exception, mediated by the retina.
The retina is a fine layer of nerve tissue
at the back of our eyes, containing spe-
cialised photoreceptors (. Fig. 3a). The
so-called cones exist in the highest den-
sity in the centre of the retina—the fovea.
There are three types of cones, differing
in their preference for light at spe-
cific wavelengths (. Fig. 3b): The long-
wavelength-sensitive cones (L cones),
the medium-wavelength-sensitive cone
(M cones) and the short-wavelength-
sensitive cones (S cones). Cones allow
us to see colour, spatial detail andmotion
at light levels typical for daytime. Rods,
by contrast, are suppressed at daytime
light levels and only signal at light levels
typical for twilight and darker. Rods are
absent in the fovea, cannot distinguish
between different colours and only allow
for rudimentary vision.

Cones and rods are not the only pho-
toreceptors in the retina. A small fraction
of secondary neurons in the retina—the
retinal ganglioncells (RGCs), which inte-
grate information and send it to the brain
via the optic nerve—express the pho-
topigment melanopsin [62]. Melanopsin
is a short-wavelength-sensitive pigment
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Abstract
Humans live in a 24-hour environment, in
which light and darkness follow a diurnal
pattern. Our circadian pacemaker, the
suprachiasmatic nuclei (SCN) in the
hypothalamus, is entrained to the 24-hour
solar day via a pathway from the retina and
synchronises our internal biological rhythms.
Rhythmic variations in ambient illumination
impact behaviours such as rest during sleep
and activity during wakefulness as well
as their underlying biological processes.
Rather recently, the availability of artificial
light has substantially changed the light
environment, especially during evening and
night hours. This may increase the risk of
developing circadian rhythm sleep–wake
disorders (CRSWD), which are often caused

by a misalignment of endogenous circadian
rhythms and external light–dark cycles.
While the exact relationship between the
availability of artificial light and CRSWD
remains to be established, nocturnal light has
been shown to alter circadian rhythms and
sleep in humans. On the other hand, light can
also be used as an effective and noninvasive
therapeutic option with little to no side
effects, to improve sleep, mood and general
well-being. This article reviews our current
state of knowledge regarding the effects of
light on circadian rhythms, sleep, and mood.

Keywords
Circadian rhythms · Natural light · Artificial
light · Depression · Light therapy

Auswirkungen von Licht auf zirkadiane Rhythmen, Schlaf und die
Stimmung bei Menschen

Zusammenfassung
Der Mensch lebt in einer 24-Stunden-
Umgebung, in der sich Licht und Dunkelheit
abwechseln. Unser zirkadianer Schrittmacher
in den suprachiasmatischenNuclei (SCN)
des Hypothalamus synchronisiert unsere
inneren biologischen Rhythmen mit
dem Tagesverlauf des Sonnenlichts über
Leitungsbahnen, die von der Netzhaut zu den
SCN ziehen. Rhythmische Schwankungen in
der Umgebungsbeleuchtung beeinflussen
unser Verhalten, etwa den Wechsel zwischen
Ruhe im Schlaf und Aktivität imWachzustand,
und dessen zugrunde liegenden biologischen
Prozesse. In jüngster Zeit hat die Verfügbarkeit
von künstlichem Licht die Lichtumgebung
erheblich verändert, insbesondere während
der Abend- und Nachtstunden. Dies kann das
Risiko für die Entstehung von circadianen
Schlaf-Wach-Rhythmusstörungen („circadian
rhythm sleep-wake disorders“, CRSWD)
erhöhen, die oft durch eine Fehlausrichtung
bzw. einen Versatz zwischen endogenen

tageszeitlichen Rhythmen und dem externen
Hell-Dunkel-Zyklus verursacht werden. Zwar
ist der genaue Zusammenhang zwischen
der Verfügbarkeit von künstlichem Licht
und CRSWD noch nicht geklärt, doch es
hat sich gezeigt, dass nächtliches Licht
den zirkadianen Rhythmus und den Schlaf
beim Menschen verändert. Andererseits
kann Licht auch als effektive, nichtinvasive
Therapieoption mit geringen bis keinen
Nebenwirkungen eingesetzt werden, um
Schlaf, Stimmung und Allgemeinbefinden
zu verbessern. Der vorliegende Beitrag
gibt einen Überblick über den aktuellen
Wissensstand hinsichtlich der Auswirkungen
von Licht auf zirkadiane Rhythmen, Schlaf
und Stimmung.

Schlüsselwörter
Zirkadiane Rhythmen · Natürliches Licht ·
Künstliches Licht · Depression · Lichttherapie

with a peak spectral sensitivity near
around 480nm [4], rendering some
RGCs intrinsically photosensitive [79].
These intrinsically photosensitive retinal
ganglion cells (ipRGCs) are thought to
mediate most effects of light on the
circadian clock. However, ipRGCs are
not independent of rod and cone input.

Rather, they also receive information
from these receptors, suggesting that
ipRGCs indeed act as “integrators of in-
formation” regarding the light environ-
ment across a wide range of wavelengths
and light levels. Surprisingly, the input
from the S cones into the ipRGCs has
a negative sign [32]. In humans, this
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Fig. 38 Overviewof the retinaphotoreceptors.aSchematicviewof theeyewiththe retinaattheback
of the eye (the fundus), containing cones, rods and the intrinsically photosensitive retinal ganglion
cells (ipRGCs) expressing thephotopigmentmelanopsin.bSpectral sensitivitiesof thephotoreceptors
in the human eye

has the paradoxical consequence that
increases in S cone activation lead to
a dilation of the pupil [80, 100], which
is also controlled by the ipRGCs.

It has long been thought that cones
androdsmediatewhat is typicallyconsid-
ered “vision” (seeing colour, motion, spa-
tial detail), and thatmelanopsinmediates
the “other”, non-visual effects of light, i.e.
melatonin suppression, circadian phase
shifting, and alertness. However, at sec-
ond sight, this dichotomy breaks down.
There is now converging evidence that
melanopsin signals reach the primary vi-
sual cortex (V1) [82], where they may
contribute to and modulate our visual
perception [20, 25, 109].

It is important to keep in mind that
the retinal photoreceptors experience an
altered version of the light relative to the
cornea, the front surface of the eye. This
is because the eye itself contains filters.
In the centre of the retina, this includes
the macular pigment, which is present in
the fovea but drops off in the peripheral
retina. More importantly for ipRGCs,
the crystalline lens and ocular media fil-
ter out short-wavelength light. This nat-
ural “blue-blocking” filter increases den-
sity with increasing age, with less and
less short-wavelength light reaching the
retina.

While the field of vision science has
a long history (>150 years) in examin-
ing how different types of light stimuli
are encoded, processed and perceived,
we still remain largely in the dark about
many aspects of the effects of light on the
circadian clock. The discovery that the
production of melatonin is suppressed in
humans in response to light dates back to
only1980 [51]. Teasingaparthowthedif-
ferent elements in the retina contribute to
the effects of light on circadian rhythms,
sleep and mood remains an important
challenge.

Effects of light on the circadian
clock

Two effects of light have been interro-
gated extensively in human circadian and
sleep research: (1) the acute suppression
of melatonin in response to light expo-
sure and (2) the ability of light exposure
to shift circadian phase. However, these
two effects are not arising from a uni-
tary pathway resulting in a direct rela-
tionship between melatonin suppression
and phase shifts. There is now accruing
evidence that they may be indeed sepa-
rable [63]. As a consequence, one should
not be used as a proxy for the other [106].

The systemmediating melatonin sup-
pression has a spectral sensitivity that
is broadly consistent with the spectral
sensitivity of melanopsin [17, 60, 88].
Similarly, the spectral sensitivity of cir-
cadian phase shifting shows its maximal
effect near the peak spectral sensitivity
of melanopsin [101]. However, this does
not imply that cones and rods may not
participate in these non-visual effects of
light. Indeed, there is evidence that cones
do contribute, though at a different time
scale than the ipRGCs [42].

The effects of light on the phase of
the circadian clock depend on the tim-
ing of light exposure. This is formally
summarised in the phase response curve
(PRC), which describes the amount
of phase shift (in minutes and hours)
achieved by exposure of light at a given
circadian phase. Roughly speaking, the
effect of morning light is that it advances
the clock, while evening and night light
delays the clock. The human circadian
system integrates across multiple light
exposures as short as five minutes [48],
even intermittent bright light exposure
can shift the circadian phase [43, 66]. It
has been shown that under certain cir-
cumstances, a train of very brief flashes
light flashes on the millisecond scale can
cause circadian phase shifts which are
larger than those caused by continuous
light [59, 108].

Both melatonin suppression and cir-
cadian phase shifts are modulated by the
“photic history”, i.e. the amount of light
seenduringtheday[27, 44, 77]. Thelong-
term adaptive influences of the “spectral
diet” in the real world remain an impor-
tant area of investigation [93].

Effects of light on sleep

The human sleep–wake cycle, that is pe-
riods of sleep during the night and wake-
fulness during the day, is one of the most
prominent examples of a circadian be-
havioural pattern. It results from the in-
teraction between two factors: the circa-
diandrive forwakefulness and the home-
ostatic sleeppressure. The interactionbe-
tween this circadian “process C” and the
homeostatic “process S” has been con-
ceptualised in the widely known “two-
process model of sleep” [13, 15], which
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Table 1 Relative contraindications to light therapy. (Modified from [22])

Ophthalmological
examination
recommended in the
following conditions

– Pre-existing diseases of the retina or the eye, e.g. retinal detachment,
retinitis pigmentosa, glaucoma

– Systematic diseases affecting the retina, e.g. diabetesmellitus
– Previous cataract surgery or lens removal
– Elderly people (increased risk of age-relatedmacular degeneration;

AMD)

Caution needed
by patients taking
following
photosensitizing
drugs

– Neuroleptics (phenothiazines)
– Antidepressants (imipramine)
– Mood stabilizers (lithium)
– Diuretics (hydrochlorothiazide)
– 8-methoxypsoralen
– Cardiac medications (propranolol, amiodarone)
– Chloroquine
– Antibiotics (tetracycline)
– “Natural medicines” (melatonin, St. John’s Wort)

accounts for the timing and intensity of
sleep in many experimental settings. In-
deed, inwell-controlled studies the circa-
dian pacemaker in the SCN and the sleep
homeostat have been shown to interact
in a fashion designed to allow for consol-
idated periods of wakefulness and sleep
during day and night, respectively (e.g.
[35]). Specifically, the activity of the cir-
cadian pacemaker is aligned to counter-
act the increasing sleep pressure resulting
from sustained wakefulness during day-
time. Likewise, the nocturnal increase
in circadian sleep tendency counteracts
the decrease in sleep propensity result-
ing from accumulated sleep thereby sup-
portingaconsolidatedphaseofnocturnal
sleep.

As outlined above, light is the key zeit-
geber in the circadian system and inter-
acts with the master clock in the SCN via
non-image-forming pathways connect-
ing retina and SCN.Unsurprisingly, light
therefore also affects sleep. Natural day-
light at high intensities as experienced
outside buildings has previously been
shown to (1) advance the timing of sleep
to earlier hours, (2) affect the duration of
sleep, and(3) improvesleepquality. More
precisely, the phase-advancing effects of
daylight have for example been reported
by Roenneberg and colleagues [67] who,
using questionnaire data, found that each
additional hour spent outdoors advanced
sleep by ~30min. Despite light being
the strongest zeitgeber, this phase-ad-
vance could also result from physical ex-
ercise during daytime [102, 105], which
is often confounded with time spent out-
doors. The relative contributions of light

and physical activity remain to be deter-
mined. Moreover, light exposure during
thedayhasalsobeenshowntoaffect sleep
duration. Here, shorter daylight expo-
sure and longernights are associatedwith
a longer biological night as indexed by
the duration of melatonin secretion, and
thus longer sleep duration [85, 94, 95],
which may also reflect a seasonality ef-
fect [104]. Likewise, exposure to daylight
has been shown to increase sleep dura-
tion, possibly by advancing sleep timing
[16]. Beyond this, sleep quality is also
related to light exposure during the day.
Several studies report that daytime ex-
posure to white light enriched in short-
wavelength content was associated with
increased evening fatigue [91], and sleep
quality [16, 39, 91], decreased sleep-on-
set latency [39], and increased slow-wave
sleep accumulation [92], which is related
to thedissipationof thehomeostatic sleep
pressure [1, 14, 34]. However, also the
timing of light exposure seems to matter
for sleep. In this context, Wams and col-
leagues [92] report that participants with
later exposure to light >10 lx had more
nocturnalawakeningsand less slow-wave
sleep. In sum, research seems to agree
that daylight (at high intensities) is ben-
eficial for sleep.

Exposure to artificial lighting,
smartphones and visual display
units

In addition to natural daylight, humans
are nowadays also exposed to a consid-
erable amount of artificial light. This
is particularly the case in the evening

hours, i.e. when the circadian system
is most sensitive to light-induced phase
delays. Thereby, artificial light can de-
lay the timing of the circadian clock and
thus sleep [102]. Indeed, light from LED
screens has repeatedly been suggested to
interfere with sleep and the physiological
processes involved (e.g., melatonin secre-
tion [24]). Chang and colleagues [26] for
example found that reading a book from
an e-reader for four hours before sleep
increased sleep onset latency, reduced
evening sleepiness, melatonin secretion
aswell asnext-morningalertness, andde-
layed the timing of the biological clock,
which is also in line with other findings
[72, 107]. It should be noted though that
exposure to the “circadian-active” light
source was very long in these studies
(4–6.5h) and it is unclear whether the
same results can be expected for shorter
exposures.

Evaluating sleep objectively with elec-
troencephalography (EEG), Münch and
colleagues [58] found that exposure to
short-wavelength light for two hours
starting 3h before habitual bedtime
first lead to decreased slow wave ac-
tivity (SWA) and thus shallower sleep.
From this, the authors concluded that
the alerting effects of short-wavelength
light persist into sleep, which is in line
with findings by Chellappa and col-
leagues [28], who reported a decrease
in homeostatic sleep pressure following
short-wavelength light exposure in the
evening. However, short-wavelength
light exposure in the evening was also
associated with increased SWA later
during the night, suggesting a possible
compensatory mechanism [58].

Also, the effects of evening light ex-
posure do not seem to be independent
from exposure during the preceding
day. More specifically, Rångtell and
colleagues [64] examined the effects of
reading a novel on a tablet computer
(~102± 41 lx, 7718K) vs. in a physical
book (~67± 50 lx, 2674K) for two hours
following prolonged (6.5h) exposure to
bright light (~569 lx, 3149K) between
2:30 pm and 9 pm. Contrasting other
findings, the light from the tablet did not
suppress melatonin or alter subjective
and objective sleep parameters. Note
though that also exposure was shorter
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Infobox 1 Smartphones and
sleep

Smartphone use may delay sleep onset. One
factor is the light emitted by their screens,
but another may also be its entertaining
character or related psychological effects, or
both. Using the “night shift” mode of modern
smartphones, the colour balance of the screen
can be shifted to “warmer” and orangeish
colours depleted in short-wavelength light.
On a recent iPhone 7, this amounts to
a reduction of melanopsin activation by 67%
at full display brightness. This might seem like
a large reduction at first, though by simply
dimming the smartphone to its minimum
level, the melanopsin activation can be
reduced to less than 1% of the activation at
maximumdisplay brightness. Whether or not
the “night shift mode” has an appreciable
effect on the circadian system and how it
interactswith other properties of smartphone
use is currently not known. Recent research
using so-called metameric displays, which do
not differ in their appearancebut only differ in
the amount that they stimulatemelanopsin,
show that the non-visual properties of light
can be modulated independently of visual
appearance [3, 78].

than in studies that reported significant
effects [26, 72, 107].

Several studies have reported that
smartphone ownership and use before
bedtime may be associated with more
self-reported sleeping problems [74],
decreased sleep efficiency, longer sleep
onset latency and poor sleep quality [29],
and delays sleep thereby also shortening
sleep duration [29, 50, 74]. Modern
smartphones contain a “night shift” fea-
ture changing the colour balance in the
evening hours (. Infobox 1 for details).
How much of the reported detrimental
effect of smartphone use on sleep is
due to light per se, or to some other
feature (e.g. psychological engagement),
is currently not known.

Effects of light onmood

Mood variations have been shown to be
influenced by a complex and non-addi-
tive interaction between circadian phase
and the duration of prior wakefulness.
Specifically, relatively moderate changes
in the timing of the sleep–wake cycle can
significantly modulate mood [11].

Light can affect mood in several ways:
by directly modulating the availability
of neurotransmitters such as serotonin,
which is involved in mood regulation,
and by entraining and stabilising circa-
dian rhythms, thereby addressing circa-
dian desynchronisation and sleep disor-
ders, which are rather common in people
suffering from mental disorders. There-
fore, in the last decades, light as an in-
tervention—light therapy—has found an
increasingly widespread use for treating
mood and other psychiatric disorders
[73, 97].

The precise mechanisms by which
light exerts a positive influence on mood
are currently not known though. In
addition to the circadian effects of light
mediated via the SCN, a pathway from
the retina to the habenula has recently
been found to be involved in mediat-
ing effects of light on mood in animal
models [38, 110]. This pathway, con-
necting some ipRGCs with the habenula
and bypassing the SCN altogether, has
been suggested to specifically mediate
light-induced alterations in mood [38].
Although it is unclear to what extent
these findings can be applied to humans,
imaging studies at least suggest that
the human habenula is also sensitive
to modulations of ambient light [46].
More research is needed to identify the
mechanisms underlying light therapy.

In the following, we will provide an
overview of the major clinical applica-
tions of light therapy and a brief guide
to its use in daily clinical practice.

Light therapy as an intervention
in psychiatric conditions

Bright light therapy (BLT) for mood
disorders was first introduced for the
treatment of Seasonal Affective Disorder
(SAD) in 1984 [68]. SAD is a subtype of
depression characterised by strong sea-
sonal variations in mood states. BLT is
nowadays established as first-line treat-
ment for SAD [61, 75] leading to an
amelioration of symptoms after a few
days of treatment. Light therapy is also
effective as second-line treatment for
non-seasonal depression, although it
usually takes longer (2–5 weeks) than in
SAD to achieve a therapeutic effect [2, 75,

87]. BLT, especially in combination with
selective serotonin reuptake inhibitors
(SSRIs), can accelerate the clinical im-
provement and lead to significantly fewer
residual symptoms [7, 53]. In patients
with chronic depression, BLT has been
shown to lead to remarkable remission
rates compared to placebo [41] and rep-
resents a valid therapeutic option also
in gender-related mood disorders, such
as premenstrual dysphoric disorder and
perinatal depression [47, 96].

BLT can be delivered by special, com-
mercially available therapy lamps, which
operate at illuminance levels between
7000 and 10,000 lx, but natural daylight
during a regular one-hour morning walk
has been shown to be similarly effective
[99]. In populations who suffer from
depressive mood resulting from of a lack
of exposure to natural daylight due to, for
example, working duties in shift work-
ers, patients with altered sleep–wake
rhythms (e.g. delayed sleep–wake phase
disorder), or social withdrawal (patients
with psychiatric disorders, elderly peo-
ple), BLT provides an effective treatment
and valid alternative to pharmacological
approaches [98].

Not only “active” chronotherapeutic
approaches, but also an adequate archi-
tectural design of the light environment
may have relevant clinical implications
for psychiatric patients. The availability
of light in hospital roomshas been shown
todecrease the lengthof stayofdepressed
patients in a clinic [6]. Moreover, ret-
rospective analyses revealed a three-
day shorter hospitalisation in bipolar
depressed inpatients exposed to natural
light in sunny hospital rooms compared
to those in darker rooms [8].

Light therapy as an intervention
in other medical conditions

In recent years, light therapy has been in-
creasingly implemented as an adjunctive
therapy for several other medical condi-
tions. In patients with anorexia or bu-
limia nervosa, light not only improves
moodbut also helps to better control spe-
cific disease-related symptoms (for a re-
view see [5, 49]). Well-controlled longi-
tudinal studies have demonstrated that
lightnotonlyhasantidepressant effects in
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age-related depression, but can also slow
down the progressive cognitive decline in
dementia [52, 65]. More generally, due to
its rhythm-synchronising properties and
its enhancing effects on sleep quality and
wakefulness, BLT is becoming an impor-
tant tool in geriatric care, to treat sleep–
wake disturbances and reduce general
listlessness [76]. The stabilising effects of
light also make BLT a useful additional
treatment inadult attentiondeficithyper-
activity disorder (ADHD) [69], border-
line personality disorder [19], and other
conditions characterised by sleep–wake
disruption, such as schizophrenia [18] or
neurodegenerative diseases [103]. New
applications are also emerging in inter-
nal medicine, e.g. in intensive care units,
where day and night differences in light-
ing are often severely attenuated, which
may result in patients developing a frag-
mented sleep–wake cycle with a negative
impact on their recovery [36]. Studies
have also demonstrated beneficial effects
ofBLTinpatientswithsleep–wakeabnor-
malities after renal transplantation [21]

Hier steht eine Anzeige.
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or in cirrhotic patients [33], as well as in
severely brain-injured patients in post-
comatose states [9, 10], and Parkinson’s
disease [90]. Finally, one of the most
common applications of light, often in
combination with exogenous melatonin,
is found in sleepmedicine [70, 71] for the
treatment of specific circadian rhythm
sleep–wake disorders (CRSWD), includ-
ing advanced and delayed sleep–wake
phase disorder, jet lag, shiftwork, sighted
non-24 and irregular sleep–wake phase
disorder (for diagnostic criteria see [89]).

Light therapy in practice

Timing, frequency and duration of
light therapy sessions

The antidepressant effect of light is most
pronounced when it is administered in
the early morning hours [86, 97]. For
CRSWD, the timing of therapeutic light
exposuredependsonthetypeofcircadian
disturbance and the direction of phase
shift (advance or delay) to be pursued

in order to achieve circadian resynchro-
nisation. Therefore, a reliable marker of
circadian phase should be first assessed
to identify the phase position and then
determine the timing of light treatment.
The gold standard for measuring circa-
dian phase is obtained by quantifying
the so-called dim light melatonin onset
(DLMO), i.e. the timeatwhichmelatonin
levels rise above baseline, indicating that
melatonin secretion has started. How-
ever, implementing DLMO assessment
in the clinical practice remains difficult
due to the limited availability of equipped
centres that perform melatonin analyses
and the costs of this diagnostic proce-
dure, which are currently not reimbursed
by health insurances in most European
countries.

BLT is particularly effective when
exposure to light occurs regularly, i.e.
on a daily basis, for at least 30–60min.
Therefore, it is commonly performed in
a domestic setting, which facilitates the
required compliance, especially regard-
ing timing, frequency, and duration of
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the treatment sessions. Disease relapses
due to lacking therapeutic adherence
depend on the underlying pathological
condition: while SAD may rapidly reap-
pear after a short therapy break, isolated
days without light therapy are unlikely
to have any negative consequences on
circadian rhythm stabilisation in CR-
SWD, if regular sleep-wake schedules
are maintained.

Light therapy devices

Most light therapy devices on the market
are suitable for clinical use. They reach
a corneal illuminance of 7000–10,000 lx
at a viewing distance of 20–35cm and are
equipped with a protective screen with
almost complete UV filtering. Ideally
designed devices illuminate the patient
diagonally from above with an irradi-
ation angle of ~15°. A bevelled light
surface prevents annoying glare and al-
lows simultaneous reading, thus being
better tolerated. To obtain a therapeu-
tic effect, it is not necessary to look di-
rectly into the light source, but the eyes
must be open. Available light therapy
glasses, which even allow mobility dur-
ing the sessions, also partially meet the
required criteria of sufficient light illumi-
nance. However, most of them have not
yet been evaluated in large, randomised
clinical trials. Another alternative to re-
ceive light in the early morning hours is
through dawn simulators. These devices
start providing a relatively weak light sig-
nal about 90min before wake-up time,
which, covering the patients’ final sleep
cycle, then gradually increases in inten-
sity from about 0.001 lx to about 300 lx.
However, also for these devices, the de-
sign plays an important role, as a diffuse,
wide lighting area is necessary to reach
the sleeper in the different lying posi-
tions. For the same reason, other types
of availableminiature lightingdevices are
not recommended because of their small
luminous field [98].

Adverse reactions

Adverse reactions to light therapy include
eye irritation, blurry vision, grumpiness,
headache or nausea after light exposure.
However, theseeffectsareusuallyrareand

lessen after a few days of treatment or un-
der reduced dosage [98]. Isolated cases
of increased excitability following light
therapy have been reported in patients
with bipolar disorder [98]. Occurring
sleep problems such as problems related
to initiating sleep when light is admin-
istered in the evening, or early morning
awakeningswhen light is administered in
themorning, aremostly related to an un-
appropriated time of light exposure and
can be quickly resolved bymodifying the
timing of light therapy sessions.

Contraindications

Some relative contraindications should
be taken into account when considering
light therapy in patients with ophthal-
mological diseases or taking photosen-
sitising drugs. These are summarised in
. Table 1; [22, 40].

Summary

Lightnot only enables us to see finedetail,
colour and motion, but also exerts non-
visual effects on circadian rhythms, sleep
and mood. Light at the wrong time may
disrupt circadian rhythms and sleep, but
in the form of light therapy, light expo-
sure can be used as an intervention for
psychiatric andothermedical conditions.
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