
GFAKluge: A C++ library and command line utilities for the 
Graphical Fragment Assembly formats

Eric T. Dawson1,2,*, Richard Durbin1

1Human Genetics, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK

2Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, 
20850, USA

Abstract

Summary—GFA has emerged as a standard format for the exchange of genome assemblies and 

sequence graphs. To encourage further adoption in high-performance software we have developed 

an open-source C++ library for GFA and a set of utilities for summarizing and manipulating the 

format.

Availability—The gfakluge source code is freely available under the MIT license at https://

github.com/edawson/gfakluge. It has been tested on both Mac OS X and Linux.

Introduction

FASTA has remained the dominant file format for representing genome assemblies for 

several decades. While it is a standard for representing sets of sequences, FASTA provides 

little information beyond the contig sequences themselves. Almost all modern assembly 

software generates assemblies using some form of sequence graph (which we take as 

including de Bruijn and overlap graphs) [Zerbino and Birney (2008); Simpson et al. (2009); 

Simpson and Durbin (2010)], but conversion to FASTA loses information contained in the 

graph about possible joins between contigs, and other potentially useful information 

available to the assembler. Proposed graph-friendly formats such as ASQG [ref] and FASTG 

[ref] have seen limited adoption. Sequence graphs have also shown promise for read 

mapping [(Erik Garrison et al., vg: The variation graph toolkit)] and programs have emerged 

for visualizing graph structures for biological purposes [Wick et al. (2015)].

The GFA format was proposed to bring simple interoperability between programs for 

assembly, modification, and visualization while preserving the information in the assembly 

graph (Shaun Jackman et al. 2015, https://github.com/GFA-spec/GFA-spec). Parsers and 

format manipulators are available in ruby Gonnella and Kurtz (2016) and python (https://

github.com/AlgoLab/pygfa), Diego Lobba, 2017), but the majority of assemblers are written 

in languages such as C or C++. Therefore where these programs read or write GFA they rely 

on hard-coded translators incorporated into their source code. This creates a substantial 

burden to supporting GFA, reducing the ease of modularising assembly code, and leads to 

*To whom correspondence should be addressed. Contact: eric.t.dawson@gmail.com. 

Europe PMC Funders Group
Author Manuscript
J Open Source Softw. Author manuscript; available in PMC 2019 September 18.

Published in final edited form as:
J Open Source Softw. ; 4(33): . doi:10.21105/joss.01083.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/edawson/gfakluge
https://github.com/edawson/gfakluge
https://github.com/GFA-spec/GFA-spec
https://github.com/AlgoLab/pygfa
https://github.com/AlgoLab/pygfa


many small incompatibilities between output files that can be difficult to debug. We 

developed gfakluge as a freely-available, open-source C++ library for reading, writing and 

manipulating GFA with the aim that it will encourage community uptake of the GFA format 

in high-performance software, and the development of interoperable suites of assembly 

software.

1 Features and methods

1.1 Requirements

gfakluge requires a C++-11 compatible compiler (e.g. gcc4.8 or newer). It does not have 

any external dependencies.

1.2 Parsing GFA files

gfakluge parses text from the original GFA proposal ("version 0.1") and both the GFA1 

and GFA2 specifications. The parser generates a set of C++ map containers using string keys 

and struct values. Structs are defined for each of the line types defined in the GFA spec. The 

parser supports both SAM-style and JSON tags and can easily be extended to include new or 

custom lines.

1.3 Converting between formats

gfakluge provides a high-level interface for conversion between GFA versions. A header 

containing the VZ tag is encouraged when parsing if the input file is not GFA 1.0. Setting the 

GFAKluge object’s version before output is sufficient for converting formats if no 

modifications to the object’s structures are necessary. The internal structures of the graph 

can be converted to be compatible with GFA 1.0 / 2.0 using the gfa_1_ize() and 

gfa_2_ize() methods in the GFAKluge class. Conversion between the various formats is 

currently useful, as many programs are using disparate versions of GFA. As uptake of 

flexible parsers like GFAKluge becomes more common the importance of being able to 

convert between the GFA versions will wane, as more tools will begin to operate on the most 

up-to-date specification.

1.4 Integrating GFA parsing into a larger program

We used gfakluge to implement GFA parsing in the variation graph toolkit vg [Garrison et 
al. (2016)]. Reading a GFA file of any version requires two lines of code. Converting from 

vg’s internal representation to valid GFA requires 39 lines of code, the majority of which is 

spent filling in individual struct fields with members from vg’s graph class.

1.5 Command line utilities

gfakluge provides a number of useful utilities for modifying GFA files as they pass 

between programs. A gfa_stats program computes basic assembly and graph statistics 

such as the number of nodes and edges, the N50/N90/L50/L90, and total sequence length. 

The gfa_subset utility can extract a subset of a GFA graph between two nodes. There are 

also utilities for sorting a GFA file by source node or by grouping lines of the same type 

Dawson and Durbin Page 2

J Open Source Softw. Author manuscript; available in PMC 2019 September 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



together and for modifying the identifiers of multiple graphs and merging them into one ID 

space.

Acknowledgements

We would like to thank Shaun Jackman, Gene Myers, Jason Chin, Giorgio Gonnella and Heng Li for discussions 
about the GFA 1.0 and 2.0 formats.

Funding

ETD is supported by a Cambridge Trust - NIH Fellowship as part of the NIH Oxford Cambridge Scholars Program.

References

Garrison E, et al. vg : the variation graph toolkit. 2016:1–31.

Gonnella G, Kurtz S. RGFA : powerful and convenient handling of assembly graphs. 2016:1–9.

Simpson JT, Durbin R. Efficient construction of an assembly string graph using the FM-index. 
Bioinformatics. 2010; 26(12):367–373.

Simpson JT, et al. ABySS : A parallel assembler for short read sequence data ABySS : A parallel 
assembler for short read sequence data. 2009:1117–1123.

Wick RR, et al. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics. 
2015; 31(20):3350–3352. [PubMed: 26099265] 

Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. 
Genome Research. 2008; 18(5):821–829. [PubMed: 18349386] 

Dawson and Durbin Page 3

J Open Source Softw. Author manuscript; available in PMC 2019 September 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 1. 
A basic C++ program for converting a GFA1.0 or 2.0 file to GFA2.0, which shows the high-

level interface for format conversion.

Dawson and Durbin Page 4

J Open Source Softw. Author manuscript; available in PMC 2019 September 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Features and methods
	Requirements
	Parsing GFA files
	Converting between formats
	Integrating GFA parsing into a larger program
	Command line utilities

	References
	Fig. 1

