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Perfect proton selectivity in ion transport through
two-dimensional crystals
L. Mogg1,2, S. Zhang 2,3, G.-P. Hao 2,4, K. Gopinadhan2,5, D. Barry 2, B.L. Liu6, H.M. Cheng 6,

A.K. Geim 1,2 & M. Lozada-Hidalgo 1,2

Defect-free monolayers of graphene and hexagonal boron nitride are surprisingly permeable

to thermal protons, despite being completely impenetrable to all gases. It remains untested

whether small ions can permeate through the two-dimensional crystals. Here we show that

mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selec-

tivity such that only protons can permeate through, with no detectable flow of counterions. In

the experiments, we use suspended monolayers that have few, if any, atomic-scale defects,

as shown by gas permeation tests, and place them to separate reservoirs filled with

hydrochloric acid solutions. Protons account for all the electrical current and chloride ions are

blocked. This result corroborates the previous conclusion that thermal protons can pierce

defect-free two-dimensional crystals. Besides the importance for theoretical developments,

our results are also of interest for research on various separation technologies based on two-

dimensional materials.
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Proton transport through two-dimensional (2D) crystals has
recently been studied, both experimentally and theoreti-
cally1–9. As for the experiment, it was found that proton

permeation through mechanically exfoliated crystals is thermally
activated with energy barriers of ≈0.8 eV for graphene and ≈0.3
eV for monolayer hexagonal boron nitride (hBN)1. Further
measurements using deuterons, nuclei of the hydrogen isotope
deuterium, show that quantum oscillations raise the energy of
incoming protons by 0.2 eV2. This correction yielded the total
barriers of ≈0.5 eV for monolayer hBN and ≈1 eV for graphene.
From a theoretical perspective, the latter value is notably lower
(by at least 30% but typically a factor of 2) than that found in
density-functional calculations for graphene3–7. To account for
the difference, a recent theory suggests that graphene can be
partially hydrogenated during the measurements, which makes its
lattice slightly sparser; thus, making it more permeable to
protons8,9. An alternative explanation put forward attributes the
observed proton currents to atomic-scale lattice defects, including
vacancies10,11. This was argued on the basis of ion-selectivity
measurements using chemical-vapor-deposited (CVD) gra-
phene11. Indeed, CVD graphene is known to possess a large
density of atomic-scale defects that appear during growth12–14.
Such defects are generally absent in mechanically exfoliated 2D
crystals, which was proven conclusively in gas-leak experiments
using the so-called nanoballoons15–17. Even a single angstrom-
sized vacancy per micrometer-size area could be detected in those
experiments16,17. Whereas it is plausible that vacancies and
similar defects played a dominant role in experiments using CVD
graphene10,11, extrapolation of those results to mechanically
exfoliated 2D crystals is unjustifiable. To resolve the controversy,
it is crucial to carry out similar ion-selectivity studies using
mechanically exfoliated crystals with little or no defects1,2,15.

Here we report ion-selectivity measurements using
mechanically exfoliated graphene and hBN monolayers. The
crystals are found to be perfectly selective with respect to
protons. The latter can permeate through the 2D membranes,
whereas even such small ions as chlorine are blocked. The
results support the previous conclusion1 that transport of
thermal protons through high-quality graphene and hBN
occurs through their bulk and does not involve vacancies and
other atomic-scale defects.

Results
Device fabrication and characterization. The investigated devi-
ces were fabricated using monolayer graphene and mono- and bi-
layer hBN crystals that were isolated by micromechanical clea-
vage18 (see Methods and Supplementary Fig. 1). The crystals were
suspended over microfabricated apertures (2 μm in diameter)
etched in free-standing silicon-nitride (SiN) membranes1 (Sup-
plementary Fig. 2). A prefabricated polymer washer with a 10 μm-
diameter hole was then transferred on top of the crystal so that
the hole was aligned with the aperture in the SiN membrane
(Supplementary Fig. 2). The assembly was baked at ∼150 °C, to
ensure that the washer firmly clamped the 2D crystal to SiN and
sealed the crystal edges, to prevent any possible leak along the
substrate. In a series of control experiments, we checked that
there were no microscopic defects in our exfoliated 2D crystals by
employing the approach described in refs. 15,16 and previously
also used in our experiments1. To this end, we made hBN and
graphene membranes to cover micrometer-sized cavities etched
in an oxidized Si wafer and tested the enclosures for possible gas
leaks (see inset Fig. 1b and Supplementary Section ‘Leak tests
using nanoballoons’). Even a single vacancy would be detectable
in these measurements16,17, but neither of the dozens of tested 2D
crystals showed such leakage (Supplementary Fig. 3). In contrast,

similar devices made from CVD graphene normally exhibited
notable gas permeation.

Ion conductivity measurements. The chips containing the
individual 2D membranes (Supplementary Fig. 2) were then used
to separate two compartments filled with hydrochloric acid (HCl)
at chosen concentrations19. Electrical conductance through the
membranes was probed using Ag/AgCl electrodes placed inside
the compartments. Figure 1a shows the current density I as a
function of applied voltage V for representative devices made
from graphene and hBN. The I–V response was linear, which
allowed us to determine the areal conductivity σ= I/V. We found
monolayer hBN to be the most conductive of the studied crystals,
followed by bilayer hBN and monolayer graphene. For example,
using 1M HCl we found σ ≈ 1,000 mS cm−2 for monolayer hBN,
≈ 40 mS cm−2 for bilayer hBN and ≈ 12 mS cm−2 for monolayer
graphene. The relative conductivities agree well with those found
in the previous studies using Nafion (rather than HCl) as the
proton-conducting medium1. Thicker crystals (e.g., bilayer gra-
phene) exhibited no discernable conductance, again in agreement
with the previous report1.

As monolayer hBN exhibited the highest conductivity, we focus
our discussion below on this particular 2D material, as it allowed
the most accurate ion-selectivity measurements (results for
graphene are presented in Supplementary Information). Figure 1b
shows σ found for hBN at various HCl concentrations (the same
concentration was used in both compartments). For concentra-
tions above 1 mM, σ increased linearly with HCl concentration.
At lower concentrations, the measured current was below our
detection limit. The latter was determined by electrical leakage
along surfaces of the liquid cell and was of the order of 1 pA as
found using control devices with no holes in the SiN
membranes19. In another control experiment, we used devices
with the same SiN aperture but without a 2D crystal. They
exhibited conductance at least ~1000 times larger than that for
the devices with graphene or hBN crystals covering the aperture
(Supplementary Fig. 4). This demonstrates that the reported
values of σ were limited by the relatively low ion permeation
through 2D crystals and the series resistance due to the electrolyte
itself could be neglected.

Proton selectivity. The measured conductivity could be due to
either H+ or Cl−, or both ions permeating through 2D crystals.
For the purpose described in the introduction, it is necessary to
determine the fraction of I carried by each of these species.
Such fractions are usually referred to as transport numbers20

(tH and tCl for protons and chloride, respectively) and, by
definition, they satisfy tH+ tCl ≡ 1 and the inequality: 0 ≤ both
tH and tCl ≤ 1. To find their values for our 2D membranes, we
used the same setup as in the measurements discussed in Fig. 1
but with different HCl concentrations in the two compartments
(inset of Fig. 2b). The concentration gradient drives both H+

and Cl− ions towards equilibrium, from the high concentration
(Ch) compartment to the low concentration (Cl) one. Therefore,
the sign of the total ionic current at zero V indicates whether
the majority carriers are protons (positive I) or chloride ions
(negative). Figure 2a shows typical I–V characteristics for
monolayer hBN devices and concentration ratio ΔC ≡ Ch/Cl=
10. Independently of the absolute values of HCl concentrations,
the zero V current was always positive, proving that the protons
dominate ion transport through our membranes. The same
behavior was found for graphene devices (Supplementary
Fig. 5).

The force pushing ions across the membrane, due to the
concentration gradient, can be counteracted by applying voltage
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V. The value V0 at which the current becomes zero is known as
the membrane or reversal potential and is given by the Nernst
equation21

V0 ¼ tCl � tHð Þ kBT=eð Þln ΔCð Þ ¼ � 2tH � 1ð Þ kBT=eð Þln ΔCð Þ ð1Þ
where kB is the Boltzmann constant, T is the temperature and e is
the elementary charge. If one of the transport numbers is unity,
the other must be zero and, then, it is said that a membrane
displays perfect Nernst selectivity. Figure 2a shows that for ΔC=
10, the I–V curves intersected the x -axis at the same V, which
means that our membranes exhibited V0 ≈− 58mV, regardless of
the absolute values of the HCl concentrations. This value is equal
to −(kBT/e)ln(ΔC= 10) ≈− 58 meV at our measurement tem-
perature of ∼20 °C and, therefore, the observation implies tH ≈ 1

or, equivalently, that all the ionic current through the membrane
is due to proton transport. Within our experimental accuracy, the
same perfect selectivity was also found for graphene (Supple-
mentary Fig. 5).

To corroborate the above result and obtain better statistics
for the ion selectivity, we carried out similar measurements
using different devices and several concentration ratios ranging
from ΔC= 1 to 30 (Fig. 2b). For all of them, we found
membrane potentials consistent with the perfect proton
selectivity in Eq. (1). The best fit to the data in Fig. 2b yields
tH= 0.99 ± 0.02, or tH ≈ 1. In control experiments, we verified
our experimental approach using porous glass membranes.
They allow large concentration gradients but provide no ion
selectivity because of large pore sizes. The latter experiments
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Fig. 1 Proton transport through 2D crystals studied using aqueous solutions. a Examples of I–V characteristics for 1 M HCl. Bottom inset: zoom-in. Top
inset: electron micrograph of a suspended hBN membrane (aperture diameter, 2 µm). b Concentration dependence of the areal conductivity σ for
monolayer hBN. Gray area indicates our detection limit given by parasitic leakage currents. Error bars: SD from different measurements. Dashed line: best
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yielded tH= 0.81 ± 0.04 (Supplementary Fig. 6), in agreement
with the transport numbers known for bulk hydrochloric acid
(tH ≈ 0.83, tCl ≈ 0.17)20.

Discussion
Finally, it is instructive to compare our results with those
obtained previously in conceptually similar experiments but using
CVD graphene11. The latter was reported to have σ ≈ 4 S cm−2 at
1 M HCl, in clear disagreement with our experiments for
mechanically exfoliated graphene, where σ was nearly three
orders of magnitude smaller. Furthermore, no current could be
detected for 1 mM HCl concentration in our experiments; how-
ever, large current densities of ~10 mA cm−2 were reported in
ref. 11 for CVD graphene membranes of the same area. The
membrane potential reported for CVD graphene was also dif-
ferent, reaching only ∼8 mV for ΔC= 10, or ~7 times smaller
than what we found for our devices. All this shows that the ion
transport properties of exfoliated 2D crystals are radically dif-
ferent from those of CVD films where atomic-scale defects and,
possibly, even macroscopic ones11 dominate ion transport. This
conclusion is consistent with all the other evidence for intrinsic
proton transport through 2D crystals, which was reported
previously1,2.

In conclusion, our experiments clearly demonstrate that
mechanically exfoliated, defect-free 2D crystals allow only proton
transport and block even small ions such as chlorine that has one
of the smallest hydrated diameters19. This provides further sup-
port to the view that the activation barriers found for proton
transport through high-quality graphene and hBN do not involve
vacancies and other atomic-scale defects1, a conclusion important
for further theory developments (e.g., for the hydrogenation
model proposed in refs. 8,9). Our results also have implications for
the widely discussed use of atomically thin crystals as a novel
platform for various separation technologies. In such technolo-
gies, selectivity is typically achieved by either perforating nano-
pores22–25 or exploiting those naturally occurring in CVD
films26,27. The fast permeation of H+ through the 2D bulk is
usually ignored but can be important for designing and opti-
mizing the membranes’ properties.

Methods
Fabrication of 2D membranes. Device fabrication started by isolating atomically
thin layers of graphene and hBN from bulk crystals. We used hBN crystals
commercially supplied by HQ Graphene. The flake was first identified optically
and then characterized using atomic force microscopy and Raman spectroscopy.
Supplementary Fig. 1 shows typical characterization data for one of the used
hBN crystals. Similar characterization procedures were performed for graphene.

Supplementary Fig. 2 illustrates the device fabrication process. Several
lithography, reactive ion etching, and wet-etching steps were performed to obtain a
fully suspended SiN membrane with a 2 μm-diameter aperture in the center. The
exfoliated 2D crystals were then suspended over the apertures. The crystals were
also clamped down to the SiN substrate with a polymer washer. To this end, an SU-
8 photo-curable epoxy washer was prefabricated with a 10 μm-diameter hole in the
middle and transferred over the devices with the hole and aperture aligned
(Supplementary Fig. 2). After the transfer, the seal was hard baked at 150 °C to
ensure good adhesion to the SiN substrate.

Electrical measurements. Devices were clamped with O-rings to separate two
reservoirs filled with HCl solutions and Ag/AgCl electrodes were placed inside each
reservoir. The I–V characteristics were measured, applying voltages between
typically ±200 mV at sweep rates < 0.1 Vmin−1.

Data availability
The data that support the findings of this study are available from the corresponding
author upon request.
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