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Epigenome editing strategies for the functional
annotation of CTCF insulators
Daniel R. Tarjan1,2, William A. Flavahan1,2 & Bradley E. Bernstein 1,2

The human genome is folded into regulatory units termed ‘topologically-associated domains’

(TADs). Genome-wide studies support a global role for the insulator protein CTCF in

mediating chromosomal looping and the topological constraint of TAD boundaries. However,

the impact of individual insulators on enhancer-gene interactions and transcription remains

poorly understood. Here, we investigate epigenome editing strategies for perturbing indivi-

dual CTCF insulators and evaluating consequent effects on genome topology and tran-

scription. We show that fusions of catalytically-inactive Cas9 (dCas9) to transcriptional

repressors (dCas9-KRAB) and DNA methyltransferases (dCas9-DNMT3A, dCas9-

DNMT3A3L) can selectively displace CTCF from specific insulators, but only when precisely

targeted to the cognate motif. We further demonstrate that stable, partially-heritable insu-

lator disruption can be achieved through combinatorial hit-and-run epigenome editing.

Finally, we apply these strategies to simulate an insulator loss mechanism implicated in brain

tumorigenesis. Our study provides strategies for stably modifying genome organization and

gene activity without altering the underlying DNA sequence.
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TAD structure is conserved across mammalian cell types
and tissues1,2, and forms the foundational structure within
which cell type-specific enhancers control cell state3,4.

Indeed, the majority of gene-enhancer interactions appear to
occur within TADS. Within these conserved topological struc-
tures, dynamic interactions between enhancers and promoters
modulate lineage-specific gene expression. The DNA binding
insulator protein CTCF plays important roles in controlling
enhancer-promoter interactions, and directing TAD boundary
formation4–8. In certain cancers, CTCF motifs are frequently
compromised by DNA mutations or methylation events that
prevent binding9,10. Despite broad relevance to development and
disease, CTCF insulators and TAD boundaries remain poorly
understood.

The complexity of genome topology, gene-enhancer con-
nectivity and cell type-specific enhancer activity suggests that the
functional significance of individual CTCF-bound insulators are
likely to be highly context-specific5,6,11,12. In particular, the
consequence of CTCF loss in a given cell type will depend on the
ensuing topological alteration, as well as the state of nearby genes,
enhancers and sequence elements. Adding to this complexity,
TAD boundaries often contain multiple CTCF binding sites1.
Accordingly, we need better strategies to test the context-specific
functions of individual CTCF sites, and ultimately to predict the
consequences of disease-associated insulator disruptions. While
genome and epigenome editing tools have been used to disrupt a
small number of CTCF sites9,13, generalizable strategies for spe-
cific, and stable (mitotically heritable) epigenetic disruption of
insulators are needed.

Here, we systematically test different combinations of CRISPR-
based epigenome editors for their ability to disrupt individual
topological insulators in their endogenous context, with specifi-
city and stability, and without the limitations associated with
DNA editing14 (Fig. 1a). We show that fusions of dCas9 to
transcriptional repressors (dCas9-KRAB) and DNA methyl-
transferases (dCas9-DNMT3A, dCas9-DNMT3A3L) can be used
to selectively displace CTCF from specific insulators, but only
when precisely targeted to the cognate motif. We further
demonstrate that stable, partially heritable insulator disruption
can be achieved through combinatorial hit-and-run epigenome
editing with dCas9-KRAB and dCas9-DNMT3A3L. Finally, we
apply these strategies to activate PDGFRA expression in glio-
blastoma stem cells, thus simulating an insulator loss mechanism
implicated in brain tumorigenesis.

Results
Epigenome editing can disrupt CTCF at topological insulators.
Fusions of catalytically dead Cas9 (dCas9) to the Krüppel-
associated box (KRAB) repressor (dCas9-KRAB) can be targeted
to specific loci by gRNAs, where they catalyze histone H3 lysine 9
methylation (H3K9me3) and can repress target gene expression
and enhancer function12,15–20. We therefore tested the capacity of
dCas9-KRAB to displace CTCF from its binding motif. We
initially focused on CTCF-bound insulators that demarcate a
TAD boundary upstream of a known glioma oncogene, PDGFRA
(Fig. 1b). This locus shows the hallmarks of a TAD boundary by
Hi–C and contains two CTCF sites ~20 kb apart, both of which
are strongly bound in HEK293 cells (Fig. 1b, Supplementary
Fig. 1A). We designed a guide RNA (gRNA) targeting the CTCF
motif closer to the TAD interior (annotated as site P1 in Fig. 1c),
and also incorporated 8 bases of proximal genomic sequence to
ensure specificity (Fig. 2a). We expressed dCas9-KRAB and the
CTCF targeting gRNA in HEK293 cells by lentiviral transduction
and mapped CTCF binding and H3K9me3 enrichment by
genome-wide chromatin immunoprecipitation and sequencing

(ChIP-seq). Targeting dCas9-KRAB to this single CTCF site
achieved an 83% reduction in CTCF binding, with concomitant
enrichment of H3K9me3 across a 3 kb region around the targeted
site (Fig. 1c, Supplementary Fig. 1G). The observed 3 kb
spreading of the histone modification is consistent with previous
studies that have localized dCas9-KRAB to other regulatory ele-
ments (Supplementary Fig. 1I, 1J)15. Importantly, CTCF binding
at the non-targeted proximal CTCF site within the TAD
boundary region was unchanged (Supplementary Fig. 1E).

We next benchmarked dCas9-KRAB-mediated disruption of
CTCF binding against Cas9-mediated genome editing of the
underlying motif sequence. We targeted Cas9 to the P1 CTCF site
in the PDGFRA TAD boundary using the same gRNA as the
experiments above. The reduction in CTCF binding at the Cas9
genome edited CTCF site was comparable to the dCas9-KRAB
epigenome edited cells (81% vs. 83%, respectively) (Fig. 1c,
Supplementary Fig. 1F). We conclude that epigenome editing
using dCas9-KRAB can disrupt CTCF binding with similar
efficacy to genome editing.

To evaluate the specificity of epigenome editing systematically,
we used ChIP-seq to map H3K9me3 and CTCF genome-wide in
HEK293 cells after CTCF disruption by dCas9-KRAB (Fig. 1d, e).
The P1 CTCF site (on-target) showed significant reduction in
CTCF binding compared to non-targeted controls. We also
observed concomitant H3K9me3 enrichment at the target site.
Remarkably, we did not detect significant alteration at any of the
other ~60,000 CTCF binding sites. These data demonstrate that
this epigenome editing strategy can effectively disrupt this CTCF
insulator with exquisite specificity.

We next expanded our study to test dCas9-KRAB-mediated
disruption of CTCF binding at ten individual CTCF binding sites.
This set included TAD boundaries known to insulate the
oncogenes OLIG2, TAL1, and LMO2, in addition to PDGFRA9,10.
As with the PDGFRA-proximal TAD boundary, the selected loci
also show features of TAD boundaries by Hi–C and CTCF
binding (Supplementary Fig. 1B-D). In order to target a
biologically representative set, we selected TAD boundaries with
between one and three CTCF binding sites (Fig. 1f, Supplemen-
tary Fig. 1G, 1H). We transiently expressed dCas9-KRAB in
separate experiments with gRNAs targeting 10 different CTCF
motifs. These experiments succeeded in significantly reducing
CTCF binding at 8 out of 10 sites tested (Fig. 1f). We also tested
integrated expression constructs encoding dCas9-KRAB and
gRNA targeting a subset of these loci. These stable expression
constructs reduced CTCF binding at all tested loci, including the
GIRK4 proximal TAD boundary that was refractory to the
transient expression strategy (Supplementary Fig. 1H). These
collective results demonstrate that the epigenome editor dCas9-
KRAB can selectively disrupt individual CTCF binding sites,
despite the high genomic prevalence of the binding motif.

Locus-specific DNA methylation confers stable disruption. We
next considered the mechanistic basis of CTCF displacement by
dCas9-KRAB. We specifically sought to evaluate the relative
contributions of binding site occlusion by dCas9 versus the
repressive chromatin state mediated by the KRAB domain. To
decouple these effects, we targeted dCas9 lacking the KRAB
domain to CTCF motifs in two of the TAD boundaries evaluated
above. We found that transient expression of dCas9 alone with
gRNA reduced CTCF binding at both sites, although to a lesser
degree than the fusion (Fig. 2a, b). We also tested whether CTCF
displacement required gRNAs that directly target the CTCF
motif, or whether this could also be achieved by targeting nearby
sequences. We designed gRNAs to target dCas9-KRAB to
sequences adjacent to CTCF motifs in the PDGFRA and OLIG2
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TAD boundaries (Fig. 2a, b). Although these experiments
increased H3K9me3 levels at the target loci (Supplementary
Fig. 2A), their impact on CTCF binding was minimal (Fig. 2b).
These data suggest that this epigenome editing fusion acts pri-
marily through binding site occlusion and secondarily through
chromatin repression to displace CTCF from TAD boundaries.

A distinguishing feature of epigenome editing is its potential
to induce changes that are transient or, alternatively, are stably
maintained through cell division. We therefore investigated the
temporal stability of H3K9me3 enrichment and CTCF deple-
tion incurred by dCas9-KRAB. We transiently expressed
dCas9-KRAB targeted to the PDGFRA or OLIG2 insulators in
HEK293 cells. We then serially passaged the cells for 12 days, at
which point dCas9-KRAB protein could not be detected
(Fig. 2c). At early time points, H3K9me3 enrichment and
reduced CTCF binding were readily detected (Fig. 2d). How-
ever, as dCas9-KRAB expression was lost, histone methylation
was also lost and CTCF binding largely restored to control
levels (Fig. 2d). Our results indicate that CTCF displacement

requires continuous dCas9-KRAB expression, as is consistent
with prior studies that have used this fusion to repress
chromatin and enhancer activity12,15–19.

We therefore explored whether other epigenome editing
strategies could confer stable, mitotically heritable (or at least
partially heritable) displacement of CTCF insulators. Fusions of
dCas9 to DNA methyltransferase 3A (dCas9-DNMT3A) and
optimized derivatives (e.g., dCas9-DNMT3A3L) have been used
to direct DNA methylation to specific loci and silence promoters,
with varying degrees of stability13,21–25. CTCF binding is sensitive
to DNA methylation status7,8, and can be disrupted by targeted
dCas9-DNMT3A13. We tested the ability of dCas9-DNMT3A
and dCas9-DNMT3A3L to disrupt CTCF binding at the PDGFRA
insulator in HEK293 cells. We transiently expressed dCas9-
DNMT3A or dCas9-DNMT3A3L for 3 days, and measured DNA
methylation by bisulfite sequencing. We detected methylation
over the targeted CTCF motif on 20 to 40% of alleles, with
DNMT3A3L more effective than DNMT3A (Supplementary
Fig. 2B). Importantly, DNA methylation over the CTCF motif
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Fig. 1 Epigenome editors can specifically disrupt CTCF binding at topological insulators. a Schematic depicts potential epigenome editing strategies for
displacing CTCF from a theoretical insulator separating two TADs. b Genomic view of the PDGFRA locus on chromosome 4 shows genes (gray), two TADs
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across all conditions. CTCF occupancy is reduced and H3K9me3 is increased specifically over the targeted P1 CTCF site. f Bar plots show change in CTCF
occupancy measured by ChIP-qPCR over indicated CTCF sites following transient transfection with dCas9-KRAB and indicated gRNA (see also Fig S1).
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persisted after the epigenome edited cells were serially passaged.
We observed ~20% DNA methylation and a congruent ~20%
reduction in CTCF binding 12 days after the transient
transfection, even though the dCas9 fusions were no longer
detected (Fig. 2e, Supplementary Fig. 2F).

Although the DNA methyltransferase fusions induce more
stable changes, they were relatively less effective at displacing
CTCF. We therefore tested whether the combination of dCas9-

targeted H3K9me3 and DNA methylation, used previously for
‘hit-and-run’ epigenetic gene silencing26,27, could disrupt CTCF
insulators with greater efficacy and stability. We transiently co-
expressed dCas9-KRAB with either dCas9-DNMT3A or dCas9-
DNMT3A3L, along with gRNA targeting the CTCF motif in the
PDGFRA insulator. We found in particular that the dCas9-
KRAB/dCas9-DNMT3A3L combination markedly increased
DNA methylation and reduced CTCF binding. Remarkably,
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robust CTCF disruption was still evident 12 days after transient
expression of this fusion, despite lack of continued protein
expression (Fig. 2e, f, Supplementary Fig. 2F). To confirm that the
altered insulator state induced by dCas9-KRAB/dCas9-
DNMT3A3L is epigenetically maintained through mitosis, we
continued the time course out to 27 days (Fig. 2g, h,
Supplementary Fig. 2C). Methylation at the target locus peaked
at 12 days, but was still maintained at 27 days (Fig. 2g, h). At this
extended time point, the CpG within the CTCF motif (CpG ‘356)
retained >20% DNA methylation while a nearby CpG (CpG ‘388,
32 bases from the motif) retained >50% methylation, near its peak
level of ~64% (Fig. 2g, h). This rate of decline is considerably
slower than expected from passive demethylation associated with
cell divisions (Supplementary Fig. 2D), supporting that the DNA
methylated state is epigenetically maintained through mitosis. To
evaluate specificity of editing, we performed ChIP-seq on
HEK293 cells 12 days after transient transfection with the
dCas9-KRAB/dCas9-DNMT3A3L combination. This confirmed
robust H3K9me3 enrichment and CTCF depletion at the target
insulator, with few significant alterations at other CTCF binding
sites in the genome (Fig. 2f, Supplementary Fig. 2E). We conclude
that the dCas9-KRAB/dCas9-DNMT3A3L combination can
potently disrupt CTCF insulators and initiate a DNA methylated
state that is stably maintained after withdrawal of the epigenome
editors.

Dissecting topological mechanisms of gene control. We next
sought to use this epigenome editing strategy to model a disease-
associated insulator loss event. We previously reported that dis-
ruption of an insulator in the PDGFRA locus by aberrant DNA
methylation is associated with increased expression of the onco-
gene in IDH-mutant gliomas. We showed that disruption of the
CTCF motif by genome editing increased PDGFRA expression in
patient-derived gliomasphere models9. This prompted us to
explore whether epigenome editing could alter PDGFRA locus
topology and expression without changing underlying DNA
sequence. We used the GSC6 gliomasphere model for this pur-
pose, which retains an intact PDGFRA insulator and expresses the
oncogene at low levels. We used lentiviral transduction to achieve
consistent expression of dCas9-KRAB and gRNA in GSC6 cells.
We then mapped CTCF, H3K9me3, and the enhancer-associated
marker H3K27 acetylation (H3K27ac) by ChIP-seq. We detected

a 95% reduction in CTCF binding at the PDGFRA insulator,
while adjacent CTCF sites were unchanged (Fig. 3a, Supple-
mentary Fig. 3A, 3B).

In IDH-mutant gliomas, PDGFRA insulator loss is associated
with an altered locus topology that allows the PDGFRA promoter
to interact with an enhancer in an adjacent TAD9. We therefore
investigated how PDGFRA promoter interactions were altered by
epigenome editing, using 4C-seq. We found that CTCF displace-
ment by epigenome editing markedly reduced the interaction
between the promoter and insulator, which reside at opposite
sides of the TAD, consistent with loss of a long-range
chromosomal loop that normally connects these loci (Fig. 3b).
Displacement of the insulator also caused a qualitative increase in
long-range interactions between the PGDFRA promoter and
several sites in the adjacent TADs. These changes were less
striking than the loss of interactions with the target insulator, but
were also consistent with TAD boundary loss. Putative sites of
interaction include the LNX1 proximal CTCF site, and the
previously described FIP1L1-proximal enhancer9 (Fig. 3a, b,
Supplementary Fig. 3C, 3D). We conclude that epigenome editing
can disrupt this TAD boundary, alter locus topology and allow
aberrant cross-boundary enhancer-promoter interactions.

We next investigated how PDGFRA insulator disruption
altered gene expression in GSC6 cells using RNA-seq. Insulator
disruption increased expression of PDGFRA and several down-
stream PDGFR pathway genes (Fig. 3c). We did not detect
significant changes in the expression of other genes in the
PDGFRA TAD or the adjacent TAD, although several genes in a
more distal upstream TAD were modestly induced (Supplemen-
tary Fig. 3E). Overall, PDGFRA scored as the most significant
differentially expressed gene in this locus (Supplementary
Fig. 3F).

Finally, we investigated how insulator disruption might alter
intra-TAD interactions of an inactive promoter. We designed a
4C viewpoint to the promoter of GSX2, which is neither expressed
in GSC6 gliomaspheres nor activated by insulator disruption
(Supplementary Fig. 4A, 4B). We found that the interaction
between the GSX2 promoter and the PDGFRA insulator was
reduced by disruption of the latter, albeit to a lesser extent than
that observed for the PDGFRA promoter viewpoint. We found
that insulator disruption also impacted long-range interactions
made by the GSX2 promoter, particularly with H3K27ac-marked
sites in the adjacent TAD. This suggests that CTCF displacement

Fig. 2 Locus-specific DNA methylation confers stable CTCF disruption. a Schematic depicts CTCF sites in the PDGFRA and OLIG2 insulators. CTCF ChIP-
seq signal is shown for HEK293 cells (top, black). Expanded view below shows underlying DNA sequence. gRNAs were designed to directly target the
CTCF motifs or proximal sequence. CTCF motifs (gray), gRNA PAMs (orange) and gRNA spacers (yellow) are highlighted. White boxes indicate distance
of each gRNA to CTCF motif. b Bar plots show change in CTCF occupancy at the PDGFRA (left) or OLIG2 (right) insulators in HEK293 cells transfected
with indicated epigenome editing construct and gRNA, as measured by ChIP-qPCR. Only gRNAs targeted directly to the CTCF motif significantly reduced
CTCF binding. White boxes indicate distance of each gRNA to CTCF motif. Error bars, mean ± s.e.m. n≥ 3. *P < 0.05, **P < 0.01, ***P < 0.001 by Student’s t-
test. (See also Fig S2). c Schematic depicts the experimental time course in panels d–g. Cells were transiently transfected with epigenome editing reagents
plus either a single targeting gRNA or a non-targeting control, and passaged as indicated until expression of the construct was no longer detectable (see
also Fig. S2F). d Bar plots show change in H3K9me3 (top, pink) or CTCF occupancy (bottom, black) measured by ChIP-qPCR at the PDGFRA or OLIG2
insulators at days 3 and 12 post transfection with dCas9-KRAB plus single targeting gRNAs or a non-targeting control. CTCF occupancy normalized to
mock transfected controls. Error bars, mean ± s.e.m. n≥ 2. e Bar plots show change in DNA methylation measured by methylation sensitive restriction
followed by qPCR (top/gray), and change in CTCF occupancy measured by ChIP-qPCR (bottom, black), at the P1 CTCF site in the PDGFRA insulator at
12 days post transfection with the indicated combination of epigenome editing reagents. CTCF reduction normalized to mock transfected controls. Data
analyzed by two-way ANOVA. Error bars are mean ± s.e.m. n≥ 2. f ChIP-seq tracks for CTCF (black) and H3K9me3 (pink) at the P1 insulator site at 12 days
post transfection with the indicated epigenome editing reagents, plus a single gRNA targeted to the P1 site or a non-targeting control. g–h Plots show
changes in DNA methylation of two CpGs in the PDGFRA P1 site following transient transfection with dCas9-DNMT3A3L+ dCas9-KRAB plus a single
gRNA targeted upstream of the CTCF motif (See also Supplementary Table 1). Cells were harvested at the days indicated (x-axis). DNA methylation was
assessed by bisulfite sequencing. Error bars are mean ± s.e.m. n= 2. Insulator methylation is maintained in dividing cells after initiation by transient
epigenome editing reagents. Source data for 2b, 2d, 2e, 2g are provided as a Source Data file. ChIP-seq and RNA-seq data can be found via GEO accession
GSE121998
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by epigenome editing alters the overall folding of this region, with
context-specific and promoter-specific effects. Taken together,
our results demonstrate the potential of epigenome editing to
model insulator loss events and evaluate consequential changes in
genome topology and gene expression (Fig. 3d).

Discussion
In summary, we present epigenome editing strategies for potent,
specific, and stable disruption of CTCF insulators (Fig. 1a). We
demonstrate the applicability of a combinatorial ‘hit-and-run’
strategy to robustly disrupt insulators and establish a DNA
methylated state that is epigenetically maintained after with-
drawal of the epigenome editors. Alternate strategies may be

employed to achieve either transient or stable insulator disrup-
tion. Another advantageous feature of epigenome editing, relative
to genome editing, is the remarkable specificity with which an
insulator can be disrupted, as evidenced by lack of detectable off-
target effects in genome-wide analyses. Our data also provide
mechanistic insight into an insulator loss event associated with
oncogene activation by simulating the disease-associated lesion
without altering the underlying genetic sequence. Our data
faithfully simulate a cancer-associated insulator loss and confirm
that it allows the PDGFRA oncogene to engage in multiple long-
range interactions with a neighboring TAD, including with a
super-enhancer element that likely drives its expression (Fig. 3d).
Looking forward, these strategies can provide powerful and
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4 shows genes in gray (top). The region shown is divided into three TADs (black bars, middle), per HiC data. ChIP-seq signal tracks for CTCF (black) are
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Data are available via GEO accession GSE121998
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general means for dissecting the roles of insulators in endogenous
contexts, for simulating and evaluating causality of disease asso-
ciated lesions, and for precisely controlled modulation of genome
topology in experimental, and ultimately, therapeutic settings.

Methods
Cell culture and transfection. HEK293 culture and passaging: The human
embryonic kidney cell line HEK293 (ATCC, CRL-1573) was cultured in DMEM
with 10% FBS, 1% Pen/Strep antibiotic mix (Gibco).

HEK293 transient transfection: For transfections, 10 cm plates were seeded 48 h
in advance with 2 × 106 cells per plate. To make transfection mix 8 µg of dCas9
effector plasmid DNA and 1 µg of guide RNA expression plasmid were re-
suspended in Opti-MEM media (Thermo). For combinations of effectors, total
transfected DNA was kept constant at 8 µg. Fugene HD (Promega) was added to
transfection mix according to the manufacturer protocol using a 3:1 ratio to DNA.
Cells were harvested 72 h after transfection for ChIP, DNA, or RNA extraction.

HEK293 serial passaging: For serial passaging experiments, 90% of cells were
harvested and remaining cells were passaged into fresh media in a new 10 cm dish.
Cells were passaged every 72 h until final harvest.

GSC6 culture and passaging: GSC6 gliomasphere lines were derived from IDH
wild-type tumors resected at Massachusetts General Hospital28. These cell lines
were established under Protocol # 2005P001609, which was approved by The
Partners Human Research Committee (PHRC), and complies with all relevant
ethical regulations. Gliomaspheres were maintained in culture as described9,29,30.
Neurosphere cultures contain Neurobasal media supplemented with 20 ng ml−1

recombinant EGF (R and D Systems), 20 ng ml−1 FGF2 (R and D Systems), 1 ×
B27 supplement (Invitrogen), 0.5 × N2 supplement (Invitrogen), 3 mM L-
glutamine, and penicillin/streptomycin. Cultures were confirmed to be
mycoplasma-free via PCR methods.

Plasmids. Plasmids were purchased from Addgene including dCas9-KRAB,
dCas9-KRAB-T2a-Puro, pdCas9-DNMT3A-EGFP (Catalog numbers 50919,
71236, 71666, respectively). Expression vector for dCas9 (JDS286) was a gift from J.
Keith Joung. Human codon optimized sequence for dCas9–Dnmt3a3l24 was syn-
thesized (Genscript) and cloned into pcDNA3.1 including an in-frame P2A-eGFP
fusion. All plasmids are available from Addgene: pcDNA3.1-dCas9-Dnmt3a-
Dnmt3l-P2A-eGFP: ID 128424. Expression vectors including dCas9-Dnmt3a-
Dnmt3l and the gRNA expression cassette are also available from Addgene:
pDT304 (PuroR): ID 128800, and pDT305 (eGFP): ID 128801. SpCas9 and guide
RNA expression vectors lentiCRISPR and lentiGuide were gifts from the Broad
Genomic Perturbation Platform.

Guide RNA target selection and expression vector cloning. Insulator loci were
identified in previous studies and by selecting CTCF binding sites near conserved
Hi–C derived TAD boundaries that were co-bound by cohesin complex compo-
nents (derived from GSE44267)31. CTCF motif positions were identified within
ENCODE ChIP-seq peaks at target sites using JASPAR. Approximately 200–300 bp
of motif flanking genomic sequence were used to identify candidate guide RNA
sequences. Guide RNA sequences were scored using previously described rules32.
The highest scoring gRNA sequences overlapping the CTCF motif were identified
and synthesized with vector compatible overhangs (IDT).

Chromatin Immunoprecipitation (ChIP) assays. ChIP was performed as pre-
viously described33. Briefly, cells were crosslinked in 1% formaldehyde at 37 °C for
10 min, quenched with glycine, lysed on ice in buffer containing 1% SDS, diluted to
a final concentration of 0.3% SDS and sonicated for 5 min total time at ~10W
power. Sonicated chromatin was incubated with the relevant antibody overnight at
4 °C with rotation after dilution to 0.1% SDS. Antibody-bound chromatin was
isolated using Protein G magnetic beads (Thermo). Bound complex was washed
several times and eluted from beads at 65 °C for 1 h with shaking. Eluted complex
was treated with RNase (Roche) for 30 min at 37 °C and proteinase K (Thermo) for
3 h at 63 °C while crosslinks were reversed concurrently. Eluted DNA was isolated
using 2× Ampure XP magnetic beads (Beckman) and quantitated using Qubit
dsDNA HS (Invitrogen). Antibodies used: CTCF (D31H2), diluted 1:240 (Cell
Signaling Technologies, catalog #3418), H3K9me3, diluted 1:750 (abcam, catalog
#ab8898).

ChIP-qPCR: Real-time PCR was performed to quantitate ChIP DNA using
SYBR Select Master Mix (Applied Biosystems). Primers to quantitate IP DNA in
CTCF peaks were generated using the Geneious software program (Biomatters).
Each sample was internally normalized using a positive control locus that is
constitutively enriched across samples. Enrichments relative to this positive control
were compared between experimental and control samples to obtain relative
quantitations for each epitope.

Sequencing library preparation: Library preparation was performed as
previously described[9] using 5 ng (CTCF and H3K27ac), or 20 ng (H3K9me3) of
ChIP DNA input. Paired-end 38 bp reads were generated on a NextSeq500
(Illumina). H3K27ac sequencing reads for HEK293 were obtained from GEO

under accession GSM2439222. Reads were uniquely aligned to hg19 using BWA
and peak calling was performed using HOMER.

DNA methylation. Genomic DNA was isolated from 1 × 106 cells using Quick-
gDNA (Zymo) following manufacturer’s instructions. Methylation sensitive
digestion: Genomic DNA was mass normalized to 100 ng and completely digested
using the methylation-sensitive restriction enzyme Hin6I (Thermo) according to
manufacturer’s instructions. Mock digested genomic DNA prepared from the same
dilution was processed in parallel without addition of enzyme. Quantitation of
digested DNA: Digested and mock digested samples were quantitated at target sites
by real-time PCR as described above. DNA methylation percentage was calculated
as the fraction of undigested genomic DNA retained in the digested samples.

Chromosome conformation analysis (4C-seq). 4C sample preparation was
performed as previously described by Splinter et al. using NlaIII (NEB) and Csp6I
(Thermo)34. Viewpoint primers were selected from a previously reported
database35.

Primers sequences were concatenated with Illumina compatible adapter
sequences and unique barcodes and synthesized as Ultramer oligos (IDT). Final
library amplification was set up on ice using 3.2 µg of purified 4C sample DNA,
2.5 µM primers, and Ultra II Q5 Master Mix (NEB) split into 16 × 50 µl PCR
reactions with extension at 65 °C. Amplification products were purified using 1.5×
Ampure XP (Beckman) bead purification. Size distributions were established using
a Bioanalyzer DNA 12000 Assay (Agilent).

Paired-end sequencing reads were generated as above and analyzed with the
4C-ker pipeline as previously described to identify genomic loci with differential
chromosome contacts between conditions36.

Gene expression analysis. RNA extraction: RNA was extracted from 1–2 × 106

cells using the RNeasy kit (Qiagen) following manufacturer’s instructions.
RNA-seq: Sequencing libraries were generated using NEBNext Ultra II RNA

Library Prep Kit (NEB) after poly(A) mRNA isolation following manufacturer’s
instructions. A minimum of 30 × 106 Paired-end reads were generated on a
NextSeq500 (Illumina). Sequencing reads were aligned to hg19 using STAR,
transcripts counts were derived using RSEM, followed by analysis with DESeq2 to
identify differentially expressed genes. Gene Ontology enrichments of differentially
expressed genes was performed using PANTHER37.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data is available in GEO, accession number GSE121998. All other relevant data
supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request. The source data underlying Figs. 1f, 2b, 2d, 2e, 2g and Supplementary Figs. 1e-h,
2a-b, 3a-f are provided as a Source Data file. This study also utilized publicly available
datasets GSE44267 and GSM2439222. A reporting summary for this Article is available
as a Supplementary Information file.
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