Skip to main content
. 2019 Sep 12;10:2089. doi: 10.3389/fpsyg.2019.02089

TABLE 3.

Multilevel multinomial logistic regression predicting to achieve offensive penetration vs no penetration (Reference category).

Dimension Offensive penetration vs. penetration (univariate analysis)
Offensive penetration vs. penetration (multivariate analysis)
β SE OR (95% CI) β SE OR (95% CI)
Initial penetration
No penetration (Ref)
Penetration 0.526 0.104 1.690 (1.378–2.073)∗∗∗ 0.429 0.145 1.536 (1.155–2.041)∗∗
Initial pressure
Initial Pressure (Ref)
Non-initial pressure 1.036 0.141 2.818 (2.139–3.713)∗∗∗ 1.044 0.164 2.839 (2.056–3.920)∗∗∗
Duration of the attack
0–10 s (Ref)
11–20 s 1.181 0.128 3.259 (2.538–4.180)∗∗∗ 1.375 0.162 3.954 (2.878–5.433)∗∗∗
21–30 s 1.495 0.168 4.463 (3.213–6.200)∗∗∗ 2.098 0.229 8.148 (5.19612.777)∗∗∗
31 + s 1.836 0.213 6.240 (4.106–9.481)∗∗∗ 2.454 0.276 11.639 (6.769–20.215)∗∗∗
Type of attack
Combinative (Ref)
Direct attack –1.189 0.152 0.305 (0.226−0.411)∗∗∗ –0.065 0.198 0.937 (0.635−1.381)
Fast attack –0.066 0.133 0.935 (0.721−1.213) 1.049 0.195 2.854 (1.945−4.187)∗∗∗
Counterattack 0.087 0.208 1.089 (0.724−1.638) 1.480 0.284 4.395 (2.519−7.669)∗∗∗
Match location
Away (Ref)
Home 0.412 0.122 1.487 (1.170–1.891)∗∗ 0.387 0.165 1.472 (1.065–2.035)
Quality of opposition
Low-ranked (Ref)
Medium-ranked 0.057 0.143 1.059 (0.799–1.403) 0.136 0.178 1.145 (0.808–1.623)
High-ranked 0.507 0.169 1.660 (1.191–2.314)∗∗ 0.424 0.198 1.527 (1.035–2.254)
Match status
Losing (Ref)
Drawing –0.246 0.150 0.783 (0.583–1.051) –0.108 0.179 0.897 (0.631−1.275)
Winning –0.405 0.184 0.663 (0.462–0.952) –0.349 0.229 0.706 (0.451−1.105)
Intercept –1.597 0.315 0.203 (0.109–0.376)∗∗∗

β, Coefficient; SE, Standard error; OR, Odds Ratio; CI, Confidence interval for odds ratio; p < 0.05, ∗∗p < 0.01, ∗∗∗P < 0.001.