Skip to main content
. 2019 Sep 12;10:2089. doi: 10.3389/fpsyg.2019.02089

TABLE 5.

Multilevel multinomial logistic regressing predicting to achieve scoring opportunity vs. penetration (Reference category).

Dimension Scoring opportunity vs. offensive penetration (univariate analysis)
Scoring opportunity vs. offensive penetration (multivariate analysis)
β SE OR (95% CI) β SE OR (95% CI)
Initial penetration
No penetration (Ref)
Penetration 0.636 0.167 1.889 (1.360–2.622)∗∗∗ 0.312 0.197 1.367 (0.929–2.011)
Initial pressure
Initial pressure (Ref)
Non-initial pressure –0.094 0.185 0.910 (0.633-1.309)
Duration of the attack
0–10 s (Ref)
11–20 s –0.128 0.188 0.880 (0.609–1272) 0.278 1.299 1.321 (0.868–2.011)
21–30 s –0.651 0.262 0.521 (0.312–0.872) 0.272 0.788 1.313 (0.667–2.584)
31 + s –2.296 0.273 0.744 (0.435–1.272) 0.866 0.229 2.376 (1.109–5.090)
Type of attack
Combinative (Ref)
Direct attack 0.996 0.448 0.369 (0.153–0.889) –0.702 0.470 0.495 (0.197–1.245)
Fast attack 0.688 0.201 1.991 (1.342–2.952)∗∗ 0.932 0.365 2.540 (1.430–4.513)∗∗
Counterattack 1.212 0.250 3.359 (2.056–5.488)∗∗∗ 1.478 0.293 4.383 (2.144–8.961)∗∗∗
Match location
Away (Ref)
Home 0.057 0.179 1.058 (0.745–1.503)
Quality of opposition
Low-ranked (Ref)
Medium-ranked –1.149 0.215 0.862(0.565–1.314)
High-ranked –0.085 0.245 0.918 (0.568–1.484)
Match status
Losing (Ref) 0.063 0.225 1.065 (0.684–1.657) 0.087 0.242 1.091 (0.679–1.753)
Drawing winning 0.493 0.264 1.638 (0.976–2.747) 0.491 0.282 1.633 (0.940–2.839)
Losing (Ref)
Drawing 0.063 0.225 1.065 (0.684–1.657) 0.087 0.242 1.091 (0.679–1.753)
Winning 0.493 0.264 1.638 (0.976–2.747) 0.491 0.282 1.633 (0.940–2.839)
Intercept 1.003 0.270 2.727 (1.605–4.632)∗∗∗

β, Coefficient; SE, Standard error; OR, Odds Ratio; CI, Confidence interval for odds ratio; p < 0.05, ∗∗p < 0.01, ∗∗∗P < 0.001.