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Anorexia nervosa (AN) occurs nine times more often in females than in males. Although environ-

mental factors likely play a role, the reasons for this imbalanced sex ratio remain unresolved. AN

displays high genetic correlations with anthropometric and metabolic traits. Given sex differ-

ences in body composition, we investigated the possible metabolic underpinnings of female pro-

pensity for AN. We conducted sex-specific GWAS in a healthy and medication-free subsample

of the UK Biobank (n = 155,961), identifying 77 genome-wide significant loci associated with

body fat percentage (BF%) and 174 with fat-free mass (FFM). Partitioned heritability analysis

showed an enrichment for central nervous tissue-associated genes for BF%, which was more

prominent in females than males. Genetic correlations of BF% and FFM with the largest GWAS

of AN by the Psychiatric Genomics Consortium were estimated to explore shared genomics. The

genetic correlations of BF%male and BF%female with AN differed significantly from each other

(p < .0001, δ = −0.17), suggesting that the female preponderance in AN may, in part, be explained

by sex-specific anthropometric and metabolic genetic factors increasing liability to AN.
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1 | INTRODUCTION

Anorexia nervosa (AN) is one of the most lethal psychiatric disorders

and has established environmental and genetic risk factors (Chesney,

Goodwin, & Fazel, 2014; Keshaviah et al., 2014). Female sex is the

most robust and replicated risk factor, with nine females affected

for each male case observed (Bulik et al., 2006; Micali, Hagberg,

Petersen, & Treasure, 2013; Steinhausen & Jensen, 2015). Although

historic diagnostic criteria for AN may have favored detection in

females (e.g., presence of the amenorrhea criterion), most schemata

did allow for the diagnosis of AN in males (American Psychiatric

Association, 2013; World Health Organization, 1992). The focus of

most work on gender differences in AN has been on sociocultural fac-

tors, such as personal evaluation of physical appearance and social

pressures to be thin (Bakalar, Shank, Vannucci, Radin, & Tanofsky-

Kraff, 2015) although models based on biological and hormonal fac-

tors, such as growth, sex, and appetite-regulating hormone abnormali-

ties have also been posited (Culbert, Racine, & Klump, 2016; Schorr &

Miller, 2017). However, collectively findings to date are not yet able

to account for the widely disparate prevalences by sex.

The marked alterations in body composition, including fat mass

(FM), fat-free mass (FFM), and bone mineral density observed in AN

are clinical characteristics of the illness, but have generally been consid-

ered to be sequelae of starvation (Westmoreland, Krantz, & Mehler,

2016). Females with AN show significantly greater FM deficits than

affected males (Nagata et al., 2017) and, even after recovery, some

individuals do not restore healthy body fat percentages (BF%; El

Ghoch, Calugi, Lamburghini, & Dalle Grave, 2014). Moreover, lower BF

% is a major risk factor for relapse (Bodell & Mayer, 2011). The causes

of these particular sex differences have not yet been fully investigated.

Both AN and body composition as measured by bioelectrical imped-

ance analysis are heritable (Schousboe et al., 2004; Tarnoki et al., 2014;

Table S1). Significant negative single nucleotide polymorphism-based

autosomal genetic correlations (SNP-rg) between AN and body mass

index (BMI) and BF% were observed by the largest GWAS of AN con-

ducted by the Eating Disorders Working Group of the Psychiatric Geno-

mics Consortium (PGC-ED; Duncan et al., 2017; Watson et al., 2018).

This suggests shared etiology between those anthropometric traits and

AN. Furthermore, AN shares common genetic variation with metabolic

traits, such as insulin sensitivity and cholesterol. This revealed, for the

first time, that a component of the genetic risk for AN is related to body

composition and metabolism (Duncan et al., 2017; Hinney et al., 2017).

Phenotypic sex differences in body composition are also present in

the general population; discernible as early as adolescence, females

have on average higher BF% (Flegal et al., 2009), and less visceral adi-

pose tissue and FFM than males (Paus, Wong, Syme, & Pausova, 2017),

partially due to differences in adipocyte metabolism (Cheung & Cheng,

2016; Karastergiou & Fried, 2017; Link & Reue, 2017). Moreover, epi-

demiological findings indicate a female predominance at both tails of

BMI, in extreme obesity (Kelly, Yang, Chen, Reynolds, & He, 2008;

Lovre & Mauvais-Jarvis, 2015) and in AN (Steinhausen & Jensen, 2015).

Recent evidence shows clear biological sex differences in metabolism in

rodent models (Arnold, 2017) and in humans (Mauvais-Jarvis, 2015).

The observed phenotypic sex differences in body composition

across the lifespan are partially due to genetic factors (Table S1 and

Figure S1; Silventoinen et al., 2016, 2017). Heritability estimates from

twin studies (twin-h2) of these epidemiological sex differences unveiled

that twin-h2 estimates of BMI—a proxy of BF%—vary across the life-

span and show sex-specific patterns, most apparent at the age of

13 years, from 20 to 30, and between ages 70 and 80 (Table S1 and

Figure S1; Silventoinen et al., 2016, 2017). Although the twin-h2 varies

somewhat, the specific genetic factors influencing BMI remain stable

from decade to decade postadolescence, whereas environmental

effects appear to change across time, especially in females (Haberstick

et al., 2010). Additionally, several GWAS of proxy measures of BF%

(Heid et al., 2010; Lindgren et al., 2009; Pulit et al., 2018; Randall et al.,

2013; Winkler et al., 2017) and of BF% itself (Kilpeläinen et al., 2011;

Lu et al., 2016) show clear sex differences in genome-wide significant

genomic loci and documented female-specific heterogeneity in the

genomic architecture extensively (for review, see Link & Reue, 2017;

Pulit, Karaderi, & Lindgren, 2017; Small et al., 2018). Furthermore,

studies have shown that BMI GWAS show tissue-specific enrichment

for the central nervous system (CNS; Finucane et al., 2015, 2018),

whereas waist-to-hip ratio adjusted for BMI GWAS showed enrich-

ment for adipose tissue (Finucane et al., 2018).

Convergent epidemiological and genetic findings show that the

regulation of body composition varies between the sexes and is sub-

stantially influenced by both genetic and environmental factors.

The primary goal of this study is to investigate whether a sex-specific

analysis of genetic determinants of body composition may partially

explain the observed female preponderance in AN. We utilize new

GWAS summary statistics from the PGC-ED with about 16,000 cases,

capitalizing on the availability of detailed and highly standardized body

composition measurements and genetic data of 155,961 healthy and

medication-free individuals in the UK Biobank. Together, these

provide a unique opportunity for a powerful investigation of the sex

specificity of the genetic underpinnings of body composition and

psychiatric traits and their relationship with AN.

2 | METHODS

2.1 | Genome-wide association study of AN by the
Eating Disorders Working Group of the Psychiatric
Genomics Consortium

The meta-analysis of GWAS on AN was a combined effort by the AN

Genetics Initiative (Kirk et al., 2017; Thornton et al., 2018) and the
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PGC-ED (www.med.unc.edu/pgc) and comprised 33 cohorts from

17 countries (Table S3) with 16,992 AN cases and 55,525 controls

(Watson et al., 2018). The GWAS included 72,358 females (16,531 of

whom are cases) and 24,454 males (460 of whom are cases;

Table S2). The analysis includes additional samples from the Genetic

Consortium for AN, the Wellcome Trust Case Control Consortium

3 (Boraska et al., 2014), and the UK Biobank (Sudlow et al., 2015).

Case definitions established a lifetime diagnosis of AN via hospital or

register records, structured clinical interviews, or online questionnaires

based on standardized criteria—DSM-III-R, DSM-IV, ICD-8, ICD-9, or

ICD-10—(American Psychiatric Association, 2013; World Health

Organization, 1992), whereas in the UK Biobank cases self-reported a

diagnosis of AN (Davis et al., 2018). Quality control, imputation, GWAS,

and meta-analysis followed the standardized pipeline of the PGC, Rapid

Imputation Consortium Pipeline (Ricopili; https://github.com/Nealelab/

ricopili/tree/master/rp_bin). SNPs were excluded if they had a minor

allele frequency (MAF) smaller than 1%, if no call was made in more

than 2% of samples following imputation, if they were imputed with

low confidence (INFO<0.7), or if they deviated substantially from

Hardy–Weinberg equilibrium (controls p < 10−6, cases p < 10−10).

Individuals were excluded if they showed inbreeding coefficients >0.2,

or evidence of DNA contamination. Ancestry outliers were removed

based on plotting of the first two principal components (PCs). The anal-

ysis was performed using imputed variant dosages and an additive

model. The SNP-based heritability (SNP-h2) of AN calculated using

these data was 17% (SE = 1%), suggesting that a substantial fraction of

the heritability of AN stems from common genetic variation across all

autosomes (Watson et al., 2018).

2.2 | GWASs of body composition: Study design and
participants

Our study includes a cross-sectional analysis of the baseline data from

the epidemiological resource UK Biobank (www.ukbiobank.ac.uk; Allen,

Sudlow, Peakman, Collins, & UK Biobank, 2014; Sudlow et al., 2015).

To identify genetic variation associations with BF% and FFM that are

not confounded by illnesses and their downstream effects or

metabolism-changing medication, we applied stringent exclusion cri-

teria (Table S2). Due to this trait-specific medication and illness filter-

ing, the final analysis included 155,961 (45% female) healthy and drug-

free European ancestry participants comprising 32% of the genotyped

UK Biobank participants. European ancestry was defined by 4-means

clustering of the first two PCs from the genetic data (Warren et al.,

2017). Phenotypic characteristics separated by sex are presented in

Table 1. All statistics were calculated in R 3.4.1 if not otherwise stated.

2.3 | Body composition assessment in healthy
participants

Body composition was assessed with a rigorous and highly standardized

protocol by UK Biobank using the same Tanita BC-418 MA machines

(Tanita Corporation, Arlington Heights, IL) for every participant. This

body composition analyzer calculates FFM and FM from raw bioelectri-

cal impedance data, using standard formulas including sex, age, height,

and athleticism. Individuals whose hydration status might be

compromised (e.g., suffering from diabetes mellitus or other endocrine

diseases) were excluded (Table S3). Bioelectrical impedance technology

has been extensively validated (Genton et al., 2003; Kyle et al., 2004; Lu

et al., 2016), and results in more reliable estimates of body adiposity

than BMI for healthy individuals (Mazzoccoli, 2016; Tanamas et al.,

2016). Therefore, bioelectrical impedance analysis is the most feasible

method in very large epidemiological samples, such as the UK Biobank,

compared with proxy measures of adiposity, and does not expose par-

ticipants to radiation unlike dual-energy X-ray absorptiometry.

2.4 | GWASs on body composition

We calculated sex-specific GWAS on residualized BF% and FFM, using

BGENIE v1.2 (Bycroft et al., 2018). Our final analyses included

7,794,483 SNPs and insertion–deletion variants with an MAF >1%,

imputation quality scores >0.8, and that were genotyped, or present in

the Haplotype Reference Consortium (HRC) reference panel used for

imputation by UK Biobank (McCarthy et al., 2016). We used an addi-

tive model on the imputed dosage data provided by UK Biobank, and

residualized phenotypes prior to GWAS for factors related to assess-

ment center, genotyping batch, smoking status, alcohol consumption,

menopause, and for continuous measures of age, and socioeconomic

status (SES) measured by the Townsend deprivation index (Townsend,

1987) as independent variables. We accounted for underlying popula-

tion stratification by also including the first six PCs, calculated on the

genotypes of the European subsample. We then meta-analyzed these

sex-specific GWAS using METAL (http://csg.sph.umich.edu/abecasis/

metal/; Willer, Li, & Abecasis, 2010) using an inverse variance weighted

model with a fixed effect, to obtain sex-combined results. Significantly

associated SNPs (p < 5 × 10−8) were considered as potential index

SNPs. SNPs in LD (r2 > 0.2) with a more strongly associated SNP

within 3,000 kb were assigned to the same locus using Functional

Mapping and Annotation (FUMA; Watanabe, Taskesen, van Bocho-

ven, & Posthuma, 2017). Overlapping clumps additionally were merged

with a second clumping procedure in FUMA merging all lead SNPs with

r2 = 1 to genomic loci. After clumping, independent genome-wide sig-

nificant loci (5 × 10−8) were compared with entries in the NHGRI-EBI

TABLE 1 Phenotypic characteristics of individuals in the analyses

Meta-analyzed Female Male

Number (%) 155,961 70,700 (45%) 85,261 (55%)

Age (years) 54.9 � 8.1 54.8 � 8.0 55.0 � 8.2

Height (cm) 170.4 � 9.3 163.0 � 6.2 176.4 � 6.7

Weight (kg) 78.1 � 15.1 69.6 � 12.6 85.1 � 13.2

BMI (kg/m2) 27.0 � 4.2 26.2 � 4.6 27.4 � 3.8

Waist circumference (cm) 89.4 � 12.6 82.3 � 11.3 95.3 � 10.3

Hip circumference (cm) 102.5 � 8.1 102.0 � 9.3 103.0 � 6.9

Waist-to-hip ratio 0.9 � 0.1 0.8 � 0.1 0.9 � 0.1

Body fat (%) 29.3 � 8.2 35.3 � 6.7 24.4 � 5.5

Fat mass (kg) 23.0 � 8.5 25.3 � 9.1 21.2 � 7.5

FFM (kg) 55.1 � 11.6 44.4 � 4.6 63.9 � 7.4

SES, Townsend
deprivation index

−1.6 � 2.9 −1.7 � 2.8 −1.7 � 2.9

BMI = body mass index; FFM = fat-free mass; SES = socioeconomic
status.
Data are n (%), or mean (SD).
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GWAS catalog (MacArthur et al., 2017) using FUMA (Watanabe et al.,

2017). Sex-specific loci are defined as reaching genome-wide signifi-

cance (5 × 10−8) in either females or males while not showing at least

suggestive significance in the opposite sex (5 × 10−6) with differences

in beta estimates that remain significant after Bonferroni correction for

the total number of significant genomic loci.

2.5 | Genome-wide SNP-based heritability and
partitioned heritability

Using BOLT-LMM (Loh et al., 2015) on genotyped, genome-wide, com-

mon genetic variants and linkage disequilibrium score regression

(LDSC) implemented in LDSC v.1.0.0 (Bulik-Sullivan et al., 2015) on

genome-wide summary statistics, we calculated the total phenotypic

variance explained by common autosomal SNPs, SNP-based heritability

(SNP-h2). We included all genotyped and imputed autosomal variants

for BF% and FFM and used the LD score reference files provided with

the software. We tested for differences between the heritabilities by

calculating SE using a block jackknife method implemented into the

software. To identify tissue types associated with BF% and FFM, we

performed a partitioned heritability analysis in LDSC v.1.0.0, ranking

10 cell type groups based on contribution to heritability after control-

ling for the effects of 53 functional annotations (Finucane et al., 2015).

2.6 | Genetic correlations

Using an analytic extension of LDSC (Bulik-Sullivan et al., 2015), we

calculated SNP-based bivariate genetic correlations (SNP-rg) across

the autosomes to examine the genetic overlap between AN and meta-

bolic and psychiatric GWAS summary statistics. First, we calculated

SNP-rgs between anthropometric traits, namely our BF% and FFM

GWASs with GWASs of childhood BMI (~8 years; Felix et al., 2016),

childhood obesity (Bradfield et al., 2012), childhood FFM (Medina-

Gomez et al., 2017), adult FFM (Zillikens et al., 2017), and adolescence

and young adulthood BMI (~15–25 years; Graff et al., 2013), to esti-

mate the genomic overlap of body composition between different

periods of life. Second, we calculated SNP-rgs of these anthropometric

traits across the lifespan with AN.

Additionally, we computed SNP-rgs of AN (Supporting Informa-

tion) with glycemic traits, such as insulin sensitivity assessed by the

insulin resistance homeostatic model assessment (HOMA-IR), fasting

glucose, and insulin concentrations (Lagou, Mägi, & Hottenga, 2018;

Manning et al., 2012; Scott et al., 2012), to investigate potential medi-

ation of the relationship between body fat and AN. Physical activity is

reported to be increased in AN patients (Achamrah, Coëffier, &

Déchelotte, 2016; Shroff et al., 2006); therefore, we estimated the

genetic overlap between physical activity (Hanscombe, 2018, Unpub-

lished, Supporting Information) and AN. We explored the genomic

contribution to the comorbidity of AN with psychiatric disorders and

traits, including major depressive disorder (MDD; Major Depressive

Disorder Working Group of the Psychiatric GWAS Consortium et al.,

2013), anxiety (Purves et al., 2017), schizophrenia (Schizophrenia

Working Group of the Psychiatric Genomics Consortium et al., 2014),

obsessive–compulsive disorder (OCD; International Obsessive Com-

pulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and

OCD Collaborative Genetics Association Studies (OCGAS), 2018), and

neuroticism (Coleman, 2017, Unpublished, Supporting Information),

as well as educational attainment (Okbay et al., 2016) by calculating

SNP-rgs. Information on all GWAS is presented in Table S4.

2.7 | Sex-specific analyses of genomic determinants

We investigated differences between sexes in heritability and genetic

architecture to identify sex-specific liability driven by genomic factors.

We examined differences (δ) in the SNP-h2 estimates between males

and females using a block jackknife approach (Supporting Information)

and tested whether the SNP-rgs between females and males were dif-

ferent from 1 to identify potential genetic differences related to sex.

We calculated the SNP-rg of the female and male GWASs with AN

separately to investigate the differences in the relationship of these

sex differences with the risk for AN. To test the statistical significance

of all estimates, we calculated their SE and corresponding p value by

applying a block jackknife method, as described and implemented in

LDSC v1.0.0 by Bulik-Sullivan et al. (2015) and in our Supporting

Information.

As a sensitivity analysis, we repeated all SNP-rg analysis with a

female-only GWAS of AN. However, due to the small number of male

AN cases, it was impossible to perform a male-only analysis. All

methods are described in more detail in the Supporting Information.

Stringent multiple testing correction was performed on each analysis,

using matrix decomposition to detect the effective number of tests

and subsequent Bonferroni correction of the p value thresholds.

3 | RESULTS

3.1 | GWAS of AN

The AN GWAS resulted in eight genome-wide significant loci and

showed enrichment for CNS cell types. It genetically correlated with a

broad range of metabolic and psychiatric phenotypes, mirroring clini-

cally observed comorbidity (for details, see Duncan et al., 2017 ; Wat-

son et al., 2018).

3.2 | GWAS of body composition measures in the
UK Biobank

After quality control, we performed sex-stratified association analyses

on the continuous outcomes of BF% and FFM. Minimal inflation due to

population stratification or other systematic biases was indicated by

LDSC intercepts between 1.02 and 1.10 and lambda median statistic

inflation values (λmedian) between 1.18 and 1.59 (Table S4 and

Figure S3a,b). We identified 34 independent loci associated with meta-

analyzed BF% that are not reported to be associated with anthropomet-

ric traits in the GWAS catalog (MacArthur et al., 2017) and replicated

42 independent genome-wide significant results (p < 5 × 10−8) after

LD-based and distance-based clumping (Figure 1, Figure S4a,

Table S5a,b). We identified one male-specific locus in BF% (Table S5a).

The meta-analyzed GWAS of FFM yielded 83 novel loci and replicated

78 genomic risk loci previously associated with anthropometric traits

(Figure 2, Figure S3b, Table S6a,b). We identified 13 male-specific
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genomic loci in FFM (Table S6a). All genomic regions, region plots

thereof, their annotations, including nearby protein coding genes (within

100 kb), and previous entries in the GWAS catalog are published on

FUMA (http://fuma.ctglab.nl/browse) entries 20–25. Summary statistics

are available for download www.topherhuebel.com/GWAS.

3.3 | Genome-wide SNP-based and partitioned
heritability

The SNP-h2 for BF% ranged between 29 and 33%, and for FFM

between 43 and 51% (Figure 3), while that for AN is about 17–20%

with an assumed population prevalence of 0.9% (Duncan et al., 2017;

Watson et al., 2018). The SNP-h2 of FFMmale measured by LDSC

was significantly higher than the SNP-h2 of FFMmeta (p < .001,

δSNP-h2 = 5.6%). However, neither the SNP-h2 estimates for BF% nor

for FFM measured by LDSC differed significantly between the sexes.

Partitioned heritabilities can estimate the proportion of the over-

all SNP-h2 that can be attributed to different cell type groups.

BF%female showed an significant enrichment for the CNS cell type

group with 14% of SNPs explaining an estimated 40% of the SNP-h2

(p = .004), whereas BF%male was significantly enriched for the “other”

cell type group that contains adipose tissue with 20% of SNPs explain-

ing an estimated 57% of the SNP-h2 (p = .004; Figure S4a,b). The

FFMfemale and FFMmale were enriched for connective and bone tissue

with 11% of SNPs explaining an estimated 47% of SNP-h2 in both

sexes (pfemale = 6.65 × 10−6; pmale = 2.29 × 10−7; Figure S5a,b). The

meta-analyzed FFMboth was also enriched for skeletal muscle with

10% of SNPs explaining an estimated 37% of SNP-h2 (p = .004,

Figure S5c).

3.4 | Genetic correlations of anthropometric traits
across the lifespan

The significant SNP-rg between BF%meta and BMIchildhood was

0.46 (SE = 0.04; p = 6.11 × 10−32) and between BF%meta and

BMIadolescence/young adulthood was 0.48 (SE = 0.05; p = 9.24 × 10−25).

Similarly, FFMchildhood and FFMadulthood showed a significant SNP-rg of

0.69 (SE = 0.10; p = 2.70 × 10−12) and FFMchildhood also correlated

genetically with FFMmeta in our UK Biobank sample (SNP-rg = 0.30;

SE = 0.04; p = 3.24 × 10−12).

BF%meta and FFMmeta correlated genetically (SNP-rg = 0.26; SE =

0.02; p = 3.95 × 10−26). The SNP-rg between BF%female and BF%male

was significantly less than 1 (SNP-rg = 0.89, SE = 0.03; p=1 = .0005),

indicating heterogeneity in the genomic architecture between females

and males (Figure 4).

3.5 | Sex-specific genetic correlations with AN

We calculated SNP-rg between the sex-specific and sex-combined

GWAS with AN to investigate sex differences. The genetic correlation

FIGURE 1 Miami plot for female (red), male (blue), and meta-analyzed (yellow) genome-wide body fat percentage (BF%) associations. Significant

loci from the sex-combined analyses are highlighted in yellow if they also reached genome-wide significance in the sex-specific genome-wide
association studies (GWASs). The genome-wide significance threshold p < 5 × 10−8 is represented by the red horizontal lines.
Chr = chromosome
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between BF%female and AN was −0.44 (SE = 0.04; p = 8.28 × 10−27),

whereas that between BF%male and AN was −0.26 (SE = 0.04;

p = 1.04 × 10−13). These SNP-rg were significantly different from each

other (δSNP-rg = −0.17; SE = 0.04; p = 4.23 × 10−5). AN showed a

significant genetic correlation with FFMmeta (SNP-rg = −0.14; SE =

0.03; p = 5.79 × 10−6) Physical activityfemale showed a significant

SNP-rg with AN (SNP-rg = 0.25; SE = 0.06; p = 1.10 × 10−5), but phys-

ical activitymales did not (SNP-rg = 0.10; SE = 0.06; p = .07). However,

this difference was not statistically significant (δSNP-rg = −0.13; SE =

0.07; p = .05; Figure 4) after multiple testing correction.

BMI-adjusted fasting insulin concentrations and AN were geneti-

cally correlated (SNP-rg = −0.24; SE = 0.06; p = 2.31 × 10−5). Fasting

insulinfemale was genetically correlated with AN (SNP-rg = −0.36; SE =

0.07; p = 5.29 × 10−7), but not fasting insulinmale (SNP-rg = −0.16;

SE = 0.05; p = .003). However, this difference in SNP-rg between sexes

did not reach significance (δSNP-rg = −0.19; SE = 0.08; p = .02) after

multiple testing correction. Sex- and age-adjusted insulin resistance

(HOMA-IR) correlated significantly with AN (SNP-rg = −0.29, SE = 0.07;

p = 2.83 × 10−5; Figure 5), but no sex differences were observed.

AN was significantly correlated with MDDfemale (SNP-rg = 0.26;

SE = 0.07; p = 4.00 × 10−4) and anxietymeta (SNP-rg = 0.25; SE = 0.05;

p = 8.90 × 10−8). However, the difference between the male and

female SNP-rg with AN was not significant in MDD (δSNP-rg = −0.004;

FIGURE 2 Miami plot for female (red), male (blue), and meta-analyzed (yellow) genome-wide fat-free mass (FFM) associations. Significant loci

from the sex-combined analyses are highlighted in yellow if they also reached genome-wide significance in the sex-specific genome-wide
association studies (GWASs). The genome-wide significance threshold p < 5 × 10−8 is represented by the red horizontal lines.
Chr = chromosome

FIGURE 3 Sex-specific single nucleotide polymorphism-based

heritability estimates (SNP-h2) for body fat percentage and fat-free
mass calculated by BOLT-LMM (Loh et al., 2015) and linkage
disequilibrium score regression (LDSC; Bulik-Sullivan et al., 2015).
Error bars represent SE. All estimated SNP-h2 were statistically
significant
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FIGURE 4 Heatmap of sex-specific bivariate single nucleotide polymorphism-based genetic correlations (SNP-r2g) of body fat percentage, BMI,

fat-free mass, physical activity, and obesity with AN. The strength of the correlation is reflected in the hue. Blue colors are negative SNP-rgs,
meaning that the same genetic variants influence both traits in opposite directions, and red are positive SNP-rgs meaning that the same genetic
variants influence traits in the same direction. Colored squares are significant after correction for multiple comparisons by matrix decomposition
and Bonferroni correction (pBonferroni = .05/10). The SNP-rgs were calculated by linkage disequilibrium score regression (LDSC). AN = anorexia
nervosa; BF% = body fat percentage; BMI = body mass index; FFM = fat-free mass; PA = physical activity; PGC2 = 2nd freeze psychiatric
genomics consortium; UKB = UK Biobank

FIGURE 5 Sex-specific bivariate single nucleotide polymorphism-based genetic correlations (SNP-rg) of fasting glucose, fasting insulin, and insulin

resistance assessed by the HOMA-IR with AN. The SNP-rgs were calculated by linkage disequilibrium score regression (LDSC). Significant SNP-rgs
are marked with an asterisk (*) after correction for multiple comparisons by matrix decomposition and Bonferroni correction (pBonferroni = .05/28).
The error bars depict the SE. Summary statistics for BMI-adjusted HOMA-IR were not available. AN = anorexia nervosa; BMI = body mass index;
HOMA-IR = insulin resistance by homeostatic model assessment
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SE = 0.16; p = .98). While the SNP-rg between education years in

females and males was significantly different from 1 (SNP-rg = 0.91,

SE = 0.02; p = 7.99 × 10−5), indicating sex differences, the SNP-rg of

education years with AN did not differ between females and males

(δSNP-rg = −0.02; SE = 0.03; p = .59; Figure 6). As sensitivity analysis,

all SNP-rgs were also calculated with a female only AN GWAS showing

no meaningful differences (Table S8a).

4 | DISCUSSION

The latest GWAS on AN by the PGC-ED presented evidence for a

reconceptualization of AN as a metabo-psychiatric disorder by identi-

fying significant SNP-rgs of AN with a variety of metabolic pheno-

types, including body composition, lipid metabolism, and glycemic

traits (Duncan et al., 2017; Watson et al., 2018). We extended the

findings on the relationship between BF% and AN by replicating that

genomic effects on BF% differ by sex (Heid et al., 2010; Lindgren

et al., 2009; Pulit et al., 2018; Randall et al., 2013; Winkler et al.,

2017) and showing that female-specific effects on BF% have a signifi-

cantly greater genetic correlation with AN (SNP-rg = −0.44; SE = 0.04;

p = 8.28 × 10−27) than male-specific effects on BF% (SNP-rg = −0.26;

SE = 0.04; p = 1.04 × 10−13). This suggests that a specific set of

genomic variation may be differentially active in females and may

increase the liability for AN. The partitioned heritability analyses of

SNP-h2 showed that BF%female was significantly enriched for CNS tis-

sue while BF%male was enriched for adipose tissue, recapitulating prior

findings in sex-combined samples (Finucane et al., 2015, 2018; Willer

et al., 2009). This indicates a sex-specific enrichment for BF% and that

BF% has associated genetic variation underlying its biology thereby

validating the use of bioelectrical impedance analysis to measure body

compartments. Moreover, our findings suggest that different tissues

may be implicated in the regulation of BF% in females and males.

In our analysis of body composition across the lifespan,

BF%childhood, BF%adolescence and young adulthood, and FFMchildhood were not

genetically correlated with AN, whereas BF%adult and FFMadult was.

However, GWASs of BF% and BMI as well as FFM were well correlated

across the lifespan with SNP-rgs of about ~0.60 across childhood, ado-

lescence, young adulthood, and adulthood (Figure 4). This suggests that

a proportion of BF%-associated genomic variation may become opera-

tive at a later age and that this component may be correlated with risk

for AN. This seems to overlap with the period—between 20 and

30 years of age—in which females and males show a significant differ-

ence in the twin-h2 of BMI (Figure S1; Silventoinen et al., 2016, 2017).

Additionally, we estimated SNP-rg of AN with sex-specific GWASs

of physical activity and glycemic traits to investigate potential

moderators and mediators of the relationship between body fat and

AN. Only physical activityfemale and fasting insulinfemale were signifi-

cantly genetically associated with AN. However, the differences

between female and male SNP-rgs were only nominally significant for

both traits and did not survive correction for multiple testing empha-

sizing the need for larger sample sizes to examine sex differences.

In our sex-specific investigation of the contribution of psychiatric

disorders and behavioral traits to AN, genomic variation associated

with MDD in females and OCD in males suggested a possible sex

effect in their SNP-rg with AN, but statistical tests did not confirm this.

Power may be an issue; in particular, the current sample size of the

OCD GWAS is relatively small. Consequently, some of our findings

need to be interpreted cautiously, and this analysis should be repeated

after much larger GWASs are available preferably with >10,000 cases

of each sex. Some GWASs, however, are well powered and although

the SNP-rg of education years between males and females was signifi-

cantly lower than 1—similar to BF%—we did not observe sex differ-

ences in the SNP-rg of education years with AN, suggesting that

metabolic traits may be more likely to contribute to the sex-specific

liability to AN than psychiatric or behavioral phenotypes.

Our investigation was limited by the small proportion of male AN

cases in the primary AN GWAS (Table S2) not allowing for male-only

analyses. However, female-only analyses did not show meaningful dif-

ferences to the sex-combined analyses (Table S8a). We were unable

to include the X chromosome in the investigations as the genotype

or summary level data for several GWASs in the PGC AN GWAS

FIGURE 6 Sex-specific bivariate single nucleotide polymorphism-based genetic correlations (SNP-rg) of probable anxiety disorder (anxiety),

education years, MDD, neuroticism, OCD, and schizophrenia with anorexia nervosa. The SNP-rgs were calculated by linkage disequilibrium score
regression (LDSC). Significant SNP-rgs are marked with an asterisk (*) after correction for multiple comparisons by matrix decomposition and
Bonferroni correction (pBonferroni = .05/28). The error bars depict the SE. The SE of the OCDmale reaches above 1 and has been cut off.
MDD = major depressive disorder; OCD = obsessive–compulsive disorder
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meta-analysis were not available to us when the analyses were con-

ducted. However, this should be incorporated in future studies. Most

importantly, compared with prior BMI GWAS, our study benefited

from arguably more homogeneously assessed body composition phe-

notypes, allowing us to differentiate between BF% and FFM more

effectively (Kilpeläinen et al., 2011; Lu et al., 2016). Moreover, we

adjusted for smoking behavior, alcohol consumption, and menopause

and excluded participants taking weight altering medications and par-

ticipants with somatic diseases or psychiatric disorders that affect

body composition, such as cancers, diabetes, and MDD. This is a

unique and important feature of our investigation and substantially

reduced possible confounding of our GWAS.

Conclusion

Our results add further evidence that AN is both a psychiatric and

metabolic disorder and suggest that an age-dependent specific set of

genomic variation may be differentially active in females that influ-

ences body composition, which may also contribute to liability for

AN. Our work could have therapeutic implications, by considering

exploring approaches to using body composition measures or genetic

markers of body composition as predictors of clinical course or

adverse outcome, and as a component of personalized treatment that

considers an individual's propensity to lose therapeutically restored

weight. Some individuals may be at greater risk of relapse, for exam-

ple, when confronted with periods of negative energy balance, and

this could be addressed in personalized treatment and relapse preven-

tion (Bulik, 2016). Sex-specific genetic and biological factors may par-

tially underlie increased risk for AN in females which suggests that

new and focused studies of body composition and metabolism in AN

patients could increase our understanding of AN etiology and

response to treatment.
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