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Abstract

Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species
(ROS). Superoxide (O2

-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular
metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has
become evident that oxidative stress plays a critical role.
Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular
endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the
inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in
multiple aspects of cell metabolism and cell homeostasis.
Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways
that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear
stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension
of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal
transduction pathways that alter their redox state with both physiologic and pathologic consequences.
Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox
signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms
induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new
therapeutic strategies. Antioxid. Redox Signal. 31, 819–842.
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Introduction

The entire pulmonary vasculature is exposed to
biomechanical forces that can have profound physio-

logical and pathological effects. In the vasculature, biome-
chanical forces are realized via two types of hemodynamic
loads: tensile wall shear stress (WSS) caused by blood flow
on the vessel and compressive circumferential stress caused
by pressure loading. Flowing blood constantly exerts hemo-
dynamic loads on the endothelium lining the blood vessels
once the heart begins to produce a fetal circulation (75). As
blood flow passes over the vessel luminal surface, it produces

a frictional force known as shear stress (SS) or WSS, which
acts tangentially to the vessel (75) (Fig. 1A).

In vitro, many effects of physiological WSS can be re-
produced by laminar shear stress (LSS), induced by steady
laminar flow, and pulsatile shear stress, induced by periodic
flow with a positive mean flow rate, stimulating a physio-
logical response that maintains normal endothelial functions
(Fig. 1A). LSS causes the alignment of the endothelial cells
(ECs) in the direction of the flow (231). LSS globally affects
EC homeostasis via multiple cell signaling cascades, the
activation of specific transcription factors, and mechan-
osensitive gene expression. Blood vessels also contain athero-
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prone sites where wall geometry, afterload, and distal condi-
tions combine to create areas of nonuniform flow such as
turbulent or oscillatory flow as well as areas with modulated
physiological SS (Fig. 1A, B). These increases or decreases in
LSS (low and high SS) can have pathological consequences.

While SS acts tangentially to the vessel luminal surface
(75) (Fig. 1A), the concomitant blood pressure exerts a load
that acts perpendicularly to the cell surface, creating a com-
pressive stress on the pulmonary vessel (75). As the blood
pressure within the pulmonary system rises and falls de-
pending on the cardiac cycle, this results in a circumferen-
tial stress and this is transmitted circumferentially to cells in
the lung through contacts with the extracellular matrix (75)
(Fig. 1C). The alveolar-capillary unit present in the lung is
also exposed to mechanical forces as a result of the respi-
ratory cycle (20), resulting in lung capillary strain (20).

Under certain conditions (such as high tidal volume lung
mechanical ventilation or high blood pressure), excessive cir-
cumferential or compressive loading can induce pathological
changes in the challenged cells. In vitro, an excessive circum-
ferential loading can be reproduced by special devices designed
to apply physiological (5% elongation) or excessive (15%–20%
elongation) cyclic stretch (CS) to the cell monolayers. The

following sections discuss our most up-to-date understanding of
the effects of biomechanical forces on the lung and the role
played by redox pathways in transducing these signals into both
physiological and pathological cellular responses.

EC Surface Proteins as Mechanosensors

Integrins

Integrins are heterodimeric transmembrane adhesion recep-
tors responsible for cell focal adhesions (FAs) that function by
linking cytoskeletal structures to the extracellular matrix (130).
Integrins are also involved in cell signaling events via scaffolding
specific signaling macromolecules (128). Integrins can also serve
as mechanosensors, providing ‘‘outside-in’’ signaling in re-
sponse to increased blood pressure, SS, or circumferential tensile
stress (242) (Fig. 2). Low SS signaling via integrins has been
linked to the activation of multiple proinflammatory pathways
(60–62), whereas an excessive CS-dependent in vitro stimulation
of b3-subunit expression has been shown to be protective for CS-
challenged cells through cellular reorientation (257).

Immunofluorescence microscopy has identified a rapid
reorganization of FA contacts and the activation of focal
adhesion kinase, and the depletion of paxillin, an FA protein

FIG. 1. Effect of biomechanical forces on blood vessels. Blood vessels are constantly exposed to the biomechanical
forces associated with blood pressure and blood flow producing endothelial wall shear stress and circumferential wall stress,
respectively. Physiological stresses and strains (stretch) exert vasoprotective roles via NO that generates antioxidant athero-
protective signaling in the vessel wall (A). However, vessel geometry, such as that found in the aorta, can also create both
athero-protective (high, laminar) and athero-prone (low, turbulent) areas of shear stress (B). Blood flow (shear stress)
predominantly affects the endothelium, whereas changes in blood pressure cause mechanical distension (stretch) of the
vessels affecting both the endothelium and the subjacent smooth muscle layer (C). EC, endothelial cell; NO, nitric oxide;
SMC, smooth muscle cell. Color images are available online.

FIG. 2. Mechanotransduction in the
vessel wall. Direct mechanosensing oc-
curs via multiple pathways including in-
tegrin complexes, caveolae-associated
PECAM-1, VEGFR, and VE-cadherin,
and ion channels such as TRPV4 and
KCa. In indirect mechanosensing, shear
stress-released agonists such as Ang II,
ET-1, and ATP can stimulate specific
receptors. Multiple of these downstream
events can trigger ROS generation. Ang
II, angiotensin II; ET-1, endothelin-1;
GPCR, G-protein-coupled receptor; PKC,
protein kinase C; ROCK, Rho kinase;
ROS, reactive oxygen species; VCAM-1,
vascular cell adhesion molecule 1. Color
images are available online.
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scaffold, delays the cell orientation changes indicating the
importance of integrin-mediated signaling (127). Exposing
smooth muscle cells (SMCs) to an excessive CS also induces
both av- and b3-integrin expression, Src activity, talin deg-
radation, and binding and processing of prothrombin (173).

The integrin b4 has been shown to be involved in the anti-
inflammatory response in EC (56) and in mouse models of
acute lung injury (ALI) (57). Interestingly, the tyrosine phos-
phorylation in the C-terminal intracellular domain of integrin
b4 is activated by CS-mediated mechanical stress, leading
to the loss of its anti-inflammatory property in ECs (55).
Mechanical forces appear to regulate integrin(s) via phos-
phorylation and this has been shown to be critical for proin-
flammatory cytokine expression (IL-6, IL-8, MCP-1, and
RANTES) (55). Oscillatory SS- or high-pressure-dependent
release of angiotensin II (Ang II), endothelin-1 (ET-1), vas-
cular endothelial growth factor (VEGF), and other vasoactive
factors can, in turn, activate integrin functions (204, 271).

Thus, integrins are implicated in downstream cell signaling
events stimulated by other receptors including mechan-
osensors. Integrin signaling is also important in regulating re-
active oxygen species (ROS) generation and oxidative stress.
For example, superoxide release is induced in mouse neutro-
phils by a4-integrin-dependent adhesion on vascular cell ad-
hesion molecule 1 (VCAM-1) (211), whereas tumor necrosis
factor a (TNFa) has been shown to cause the redistribution of
b2-integrins and NADPH oxidase (NOX) subunits (gp91phox,
p22phox, p47phox, and p67phox) to a Triton X-100-insoluble
fraction human neutrophils (299), suggesting an integrin-
dependent activation of NOX. Ligation of b1-integrins has also
been linked to p47phox membrane redistribution and hydrogen
peroxide (H2O2) generation in human neutrophils (272). Thus,
integrin-dependent signaling is intimately involved in the
cellular response to biomechanical forces and the vascular
damage induced by excessive ROS production.

Endothelial receptors and ion channels

The membrane microdomain, caveolae, is critically involved
in mechanotransduction in EC. Caveolae serve as a platform
that allows the assembly of cell signaling complexes, including
receptors and ion channels, and components of cell–cell, and
cell–matrix, contacts. Thus, caveolae can integrate ‘‘outside-
in’’ signaling by functionally linking various mechanoreceptors
with their downstream effectors. Caveolae microdomains are
also important in assembling endothelial junctions and FAs into
mechanosensitive signaling units. Therefore, perturbing the
caveolae structure can produce an abnormal response to bio-
mechanical forces applied to the endothelium.

Depleting the major structural protein of caveolae, caveolin-
1 (cav-1) decreases the sensitivity to WSS in cav-1-/- mice that
includes an attenuated increase in [Ca2+]i (45). Caveolae also
support the ion channels involved in the EC hyperpolarization
and Ca2+-dependent cell signaling that occurs in response to
WSS. Studies in cav-1 knockout (KO) mice revealed that the
impaired Ca2+-dependent signaling is linked to a decreased
activity of the TRPV4 Ca2+ channel that normally colocalizes
with cav-1 on the plasma membrane (226).

The TRPV4-dependent [Ca2+]i increase is essential for
Ca2+-activated K+ channels (KCa), which induce endothelium-
dependent hyperpolarization (EDH) and regulate vascular tone
(109, 165). In EC, TRPV4 and KCa receptors are colocalized in

caveolae (109). In human lung microvascular EC, under static
conditions, TRPV4 colocalizes with small conductance KCa2.3
channel in caveolae, whereas SS stimulation also recruited
intermediate conductance KCa3.1 channel to the complexes in
caveolae (109), suggesting an importance of these channel
complexes for vascular cell hyperpolarization (Fig. 2). Thus,
mechanosensitive ion channels localized in caveolae are im-
portant players in the fine regulation of vascular tone and blood
pressure.

The secretion of vasoactive factors (ET-1, Ang II, VEGF,
PDGF, TNFa, etc.) is also regulated by biomechanical forces
and these can be indirectly involved in mechanosensing via
their respective endothelial or SMC receptors (Fig. 2). For
example, mechanosensitive release of ATP (27, 278) can
further stimulate P2X and P2Y purinoceptors, such as P2X4
(an ATP-dependent Ca2+ channel) (232, 297, 298) and P2Y1/
P2Y2 (G-protein-coupled receptors [GPCRs]) (37, 38), fol-
lowed by activation of respective cell signaling pathways
(Fig. 2). All have been linked to ROS generation (Fig. 2).

Regulation of Vasoactive Molecules by Biomechanical
Forces

Vasodilators

Nitric oxide (NO) is a vasorelaxant produced by NO syn-
thase isoforms converting l-arginine to citrulline.

In blood vessels, NO is synthesized in ECs and diffuses to
the adjacent SMCs, where it activates soluble guanylate cy-
clases (sGCs) (67). This leads to activation of cGMP-
dependent PKG (cGMP-dependent protein kinase) and other
effector proteins, including ion channels, ion pumps, and
phosphodiesterases (PDEs) (43). In addition, NO in SMCs
promotes the activation of cAMP-dependent protein kinase/
protein kinase A (PKA), inhibiting SMC proliferation (136).
NO is also involved in preventing platelet and leukocyte
activation and adhesion to the vessel wall (147).

SS increases NO production via endothelial nitric oxide
synthase (eNOS) phosphorylation and by stimulating EC
receptors that increase intracellular Ca2+ (269). Exposing
ECs to LSS can also suppress ROS levels (190, 289). In
contrast, exposing EC to SS using an irregular flow pattern
leads to higher levels of ROS and less available NO (166).
NO generation attenuates insulin-like growth factor 1 (IGF-
1) and the insulin-induced elevation in H2O2 levels via a
cGMP-dependent event in SMC (313). As eNOS promoter
activity and protein levels in ECs are suppressed by SMC-
derived H2O2, this suggests that a feedback mechanism exists
that may contribute to the NO signaling (287).

Derived from arachidonic acid via the action of
cyclooxygenase-2 (COX-2) and prostaglandin I synthase
(PGIS), prostacyclin (PGI2) is another vasodilator with a
broad range of effects in the vasculature (Fig. 3).

PGI2 binds to the PGI2 receptors (IP) (66) located on both
platelets and SMCs (199), inhibiting platelet aggregation
(63). Acting via Gs GPCR prostaglandin receptors, PGI2 in-
duces cAMP synthesis and the well-described PKA-
dependent pathway of the cytoskeletal reorganization and
relaxation (263). The effects of PGI2 are tightly related to NO
effects since PGI2 potentiates NO release and, in turn, NO
potentiates the effect of PGI2 on SMCs (248).

PGI2 also exerts protective effects in the vasculature by
inhibiting SMCs hypertrophy, migration, and proliferation
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(187). In patients with hypertension, production of vasoactive
prostanoids is selectively impaired and this may contribute to
the increased systemic vascular resistance and increased in-
cidence of thrombosis (188). PGI2 exerts protective cardio-
vascular effects that counterbalance the harmful effects of
thromboxane A2 (TxA2) (187). Disturbance of the balance
between PGI2 and TxA2 has been associated with vascular
disorders such as pulmonary hypertension (PH). ROS can
activate COX-2 expression, enabling the production of both
PGI2 and TxA2 (182). PGI2 has been shown to inhibit the
activity of NOX, whereas peroxynitrite induces tyrosine ni-
tration in PGIS, inactivating the enzyme (12, 314) and in-
creasing the levels of TxA2 (2).

Endothelium-derived hyperpolarizing factor (EDHF)
produced by the EC is a vasodilator of unknown nature that is
shown to be important for vascular tone in smaller arteries,
although a number of publications established its compen-
satory role for some pathological states, leading to an im-
pairment of eNOS activity (300) (Fig. 3).

Vasorelaxation can also occur after endothelial stimulation
through a non-NO nonprostanoid pathway originally as-
cribed to the actions of endothelium-derived hyperpolarizing
factor (265) (Fig. 3). EDHF involves hyperpolarization, gen-
erated in the endothelium, which spreads via myoendothelial
gap junctions to the SMCs, and it is this hyperpolarization that
results in relaxation of SMCs (65, 85, 92, 228). Flow-induced
vasodilation that is independent of endothelium-derived NO
(EDNO) and PGI2 is typically due to EDH of the underlying
SMCs (86).

EDHF initiates SMC hyperpolarization directly after its
release from the endothelium (40, 84). The endothelial hy-
perpolarization is initiated by the activation of KCa channels
(92). H2O2 is believed to be an EDHF that acts primarily on
the prearterioles and arterioles where EDH-mediated relax-
ation becomes more important than EDNO (181, 243, 244).
SS can induce the release of H2O2 from ECs that acts as
an EDHF that contributes to flow-induced vasodilation in
coronary arterioles (189). H2O2 can induce this hyperpolar-
ization by several mechanisms, including cGMP or cAMP-
meditated pathway, activation of PKA/PLA2, or the direct
activation of various K+ channels (245).

Vasoconstrictors

The opposite effect on vascular tone and blood pressure
occurs via vasoconstrictors (Fig. 3). Another arachidonic acid

derivative, TxA2, secreted by platelets, acts via Gq GPCR
thromboxane receptors (TP), inducing platelet aggregation
and blood clot formation and reducing blood flow. TxA2 is a
functional antagonist of PGI2 and their balance supports
vascular homeostasis. TxA2 promotes platelet aggregation
and expresses adhesive cofactors for platelets such as von
Willebrand factor, fibronectin and thrombospondin, and
procoagulant factors (262).

TxA2 exerts its biological activity through its cognate TP
GPCR receptor (194). TxA2 receptor also promotes cell mi-
gration and proliferation of SMCs (133, 205, 301). TxA2 is a
functional antagonist of PGI2 and their balance supports vas-
cular homeostasis. ROS have been shown to induce the release
of TxA2 in different tissues (1, 113, 114). ROS can enhance
arteriolar tone by diminishing endothelium-derived NO re-
sponses, generate a COX-2-dependent endothelial-derived
contracting factor (EDCF) that activates TP, and enhance
vascular SMCs reactivity (182). In the vasculature, O2

�- elicits
constriction through activation of TP-dependent mechanisms
(141, 266). Thus, ROS through the release of TxA2, a vaso-
constrictor prostanoid, can also mediate vascular contraction.

ET-1 is a potent peptide vasoconstrictor produced by the
EC. The product of the EDN1 gene, preproendothelin-1
(ppET-1), is proteolytically processed to an active 21-amino
acid peptide ET-1 secreted from the EC into the circulation
(72) (Fig. 3). ET-1 is a GPCR agonist inducing Ca2+ elevation
in affected cells. In the vasculature, ET-1 has pleiotropic ef-
fects producing SMC constriction via ETA receptors and in-
ducing relaxation via endothelial ETB receptors (72). ETA and
ETB receptors promote the proliferation of pulmonary artery
SMCs (PASMCs) (74). Increased ROS production caused by
ET-1 promotes vasoconstriction and vascular remodeling via
the suppression of NO activity (77). ET-1 messenger RNA
(mRNA) and peptide expression are significantly upregulated
in both PH models and patients (107, 274).

ET-1 receptor A and B antagonists have been used as pul-
monary arterial hypertension (PAH) drugs with potent anti-
proliferative, anti-inflammatory, and endothelium-protective
properties (48). Physiological levels of SS have a negative
effect on the expression of ppET-1 and ET-1-converting en-
zyme (ECE-1) in the EC (178, 191). This downregulation of the
ET-1 system depends on eNOS activation and oxidative stress
(179, 191). ET-1 promotes a vascular and interstitial re-
modeling, stimulates the proliferation of SMCs, fibroblast
activation, and proliferation (241) via increases in NOX-
derived ROS (287). SS and NO are potent inhibitors of ET-1

FIG. 3. Biomechanical forces regu-
late vessel tone. Vascular tone is regu-
lated by the opposing effects of
vasodilators and vasoconstrictors that are
predominantly produced by the vascular
endothelium. These bioactive factors are
heavily regulated by biomechanical for-
ces such that LSS stimulates factors that
enhance vasodilation, whereas OSS and
excessive circumferential CS enhance
vasoconstriction. CS, cyclic stretch; LSS,
laminar shear stress; OSS, oscillatory
shear stress. Color images are available
online.
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gene expression (217, 222, 253, 255). Recently, it has been
shown that mitochondria-targeted antioxidant, mitoTEMPO,
can inhibit ET-1-induced constriction of rat mesenteric arteries
(50), confirming a link between ET-1 and mitochondria-
derived ROS that had been shown in EC (255).

Ang II is produced from angiotensin I in the lung by
angiotensin-converting enzyme (ACE). Ang II is a potent
vasoconstrictor acting via GPCR Ang II type 1 and type 2
receptors (AT1R and AT2R) (Fig. 3). LSS (10 dyn/cm2, 24 h)
upregulates ACE expression in SMCs (111) and Ang II
promotes SMC remodeling, cell growth, fibrosis, collagen
deposition, and contractility (268, 313). AT1R is likely a
redox-coupled mechanosensor that regulates oxidative stress
as studies have demonstrated AT1R is closely associated with
ROS production (25, 163, 282) via Nox-4-dependent oxida-
tive stress pathways (312). LSS can also induce ROS levels
by an AT1R-mediated downregulation of eNOS expression
mediated via Akt1 and Erk activity (49). Ang II is also a
proinflammatory mediator that stimulates the production of
inflammatory cytokines and causes oxidative stress via
AT1Rs to promote hypertension (18, 137, 308).

Regulation of ROS Generation by Biomechanical Forces

NADPH oxidase

The NOX family consists of seven isoforms (NOX-1–5
and DUOX-1 and DUOX-2) that act as transmembrane cat-
alytic subunits and require additional proteins to assemble
large functionally active complexes. NOX complexes pro-
duce ROS (superoxide anion and H2O2) using NADPH and
molecular oxygen as substrates (152).

The regulation of NOX isoforms is diverse, including ra-
ther simple Ca2+-dependent activation of NOX-5 (267) and
complex modulation of NOX-1/NOX-2 activities via asso-
ciation with various effector proteins such as Rac-1/2,
NoxA1, p47phox, and p67phox that, in turn, can be regulated by
a number of cell signaling pathways. In addition, NOX-4 is
constitutively active and is mainly regulated by gene ex-
pression (152). NOX isoforms function in normal physio-
logical processes and in the development/progression of
vascular pathologies (261).

Owing to their complex regulation, NOX isoforms can be
stimulated by biomechanical forces. In cell culture models,
long-term LSS (30 dyn/cm2, 24 h) downregulates mRNA and
protein expression of NOX-2 and p47phox in an eNOS-
dependent manner (82). LSS also downregulates the ex-
pression of NOX-4 via antioxidant response element (ARE),
Oct-1-binding site, and NF-E2-related factor 2 (Nrf2) (110),
whereas oscillatory SS can stimulate expression/activity of
NOX isoforms, p47phox-dependent superoxide generation,
and monocyte adhesion (129).

More detailed studies of LSS and oscillatory SS have
identified different roles of activated NOXs with LSS activat-
ing an NOX-2–p47phox complex that stimulates eNOS phos-
phorylation and NO production, and oscillatory SS leading to
eNOS uncoupling via an NOX-1–NOXO1 complex (247).
Disturbed flow (low and oscillatory SS) studied in vivo using a
model of partial ligation of the mouse carotid artery identified a
p47phox-dependent endothelial dysfunction, leucocyte recruit-
ment, and infiltration (185), leading to the development of
atherosclerosis (196. 197). In EC, NOX-4-derived superoxide
has also been shown to interfere with PGI2 bioactivity (193).

Xanthine oxidase

Xanthine oxidoreductase is the enzyme that catalyzes the
oxidation of hypoxanthine to xanthine and uric acid during
purine metabolism (250, 286). The enzyme exists in two
forms: xanthine dehydrogenase and xanthine oxidase (XO).
XO is one of the major sources of ROS in the vasculature
(183) producing superoxide and H2O2 and can be induced by
TNFa (99). XO activity and superoxide generation are
stimulated by oscillatory SS (183). A number of studies have
identified a role for XO in the pathogenesis of ventilator-
induced lung injury (VILI) via a p38-dependent mechanism
(81), and p38/XO inhibition attenuates VILI pathogenesis
(153, 258). Increased XO activity also impairs shear-
dependent and endothelium-dependent vasodilation (80,
151).

Endothelial NO synthetase

A number of studies have established a regulatory role of
post-translational modifications (PTMs) of eNOS. Multiple
phosphorylation sites implicate several protein kinases in the
modulation of eNOS activity.

Tyrosine phosphorylation of eNOS induced by H2O2 in EC
increases the association of eNOS with caveolin-1 (104).
Phosphorylation by Akt1 at Ser1177 increases NO synthesis
(79), and LSS or pulsatile SS induces this PI3K/Akt1-dependent
phosphorylation in a Ca2+-independent manner (94, 161).

Several reports describe the phosphorylation of the same
site, Ser1177, by protein kinases A and G (PKA and PKG),
AMP-dependent protein kinase (AMPK), and Ca2+-
calmodulin-dependent protein kinase II (CaMKII); PKA also
phosphorylates Ser633 and Ser615 [reviewed in Boo and Jo
(31)]. LSS (15 dyn/cm2) induces PKA-dependent phosphor-
ylation of eNOS at Ser633, which positively regulates its
activity (30, 32).

eNOS-mediated NO signaling can also be inhibited by
asymmetric dimethylarginine (ADMA), a product of cellular
protein degradation (29). Increased levels of ADMA have
been shown to be associated with PH (91, 229). ADMA levels
have been shown to be stimulated by increased pulmonary
blood flow (PBF) and pressure in vivo (254) and this leads to
the uncoupling of eNOS and the peroxynitrite-mediated ni-
tration and activation of Akt1 (216). This, in turn, induces the
mitochondrial redistribution of eNOS that causes mitochon-
drial dysfunction and increases mitochondrial ROS genera-
tion and further increase in cellular oxidative stress (256).
The ADMA degrading enzymes, dimethylaminohydrolases
(DDAH), are now considered key regulators of eNOS-
produced NO (93, 162).

In ALI models, the ADMA/DDAH balance is critical for
the endothelial barrier disruption and disease progression,
and DDAH II overexpression reduces lipopolysaccharide
(LPS)-mediated increases in oxidative/nitrosative stress
in vivo (3). DDAH II is inhibited via an Src-dependent
phosphorylation (149, 238). As Src activity is stimulated by
biomechanical forces (39, 76, 173), this could be a common
mechanism for increasing cellular ADMA levels.

eNOS is also susceptible to a protein kinase C (PKC)-
dependent phosphorylation at Thr495 (96, 186), this correlated
with increases in NOS-derived superoxide and decreased NO
levels (51). A similar Ang II-mediated increase in eNOS un-
coupling was also recently identified in LPS-challenged EC
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that is mediated via a NOX-2-induced glutathionylation of
eNOS (103, 292). Regulation of both eNOS gene expres-
sion and eNOS mRNA stability is also sensitive to various
biomechanical stimuli, including LSS and oscillatory SS,
LPS, and oxidative stress. The literature data regarding the
regulation of eNOS gene expression have been extensively
summarized by Searles (235).

Mitochondrial function, biogenesis, and network
dynamics

Mitochondrial generation of ATP requires the activity of
the electron transport complexes (ETCs) I–IV acting in
concert with ATP synthase (Fig. 4A).

Biomechanical forces have been shown to modulate ETC
activity (Fig. 4A). For example, LSS-induced NO production
mediates a sustained suppression of ETC I, II/III, and IV
(116). Mitochondrial ROS generation is also regulated by SS
due to the eNOS-derived NO and reactive nitrogen species
(RNS)-mediated inhibition of mitochondrial electron trans-
port (116). Increased PBF and pressure also attenuate mito-
chondrial function via the nitration-mediated inhibition of
carnitine acetyl transferase (CrAT) and the reduction in
CrAT, carnitine palmitoyltransferase type 1 (CPT1), and
carnitine palmitoyltransferase type 2 (CPT2) expression
(239, 256). The resulting disruption of b-oxidation leads to
increased mitochondrial ROS generation.

The reduction in CrAT, CPT1, and CPT2 expression ap-
pears to be caused by a loss of peroxisome proliferator-

activated receptor c (PPARc) signaling via increased WSS
and/or increased pressure (240). PPARc antagonists also in-
duce mitochondrial ROS in the lung (237). Oscillatory shear
stress also increases mitochondrial superoxide production via
an NOX-c-Jun N-terminal kinase signaling pathway (260).
At present the effect of CS on mitochondrial-mediated ROS
in vascular cells is limited. One study in SMCs has shown that
CS (15% elongation, 24 h) stimulates NOX-4 activity via a
mechanism that requires CIII activity (288). How CS modu-
lates mitochondrial-mediated ROS in EC is unresolved.

Mitochondrial biogenesis is a complex process involving
the replication of mitochondrial DNA (mtDNA) that contains
37 genes encoding 13 subunits of electron transport chain
complexes I, III, IV, and V (139). Again, biomechanical
forces have been shown to regulate this process (Fig. 4B).

LSS has been shown to activate the AMPK pathway in EC
(83, 200). As a result, AMPK stimulates DNMT1, RBBP7, and
HAT1 signaling pathways (175) and stimulates mitochondrial
biogenesis via peroxisome proliferation and the activated re-
ceptor gamma coactivator-1a (PGC-1a), which, in turn, acti-
vates nuclear respiratory factor (NRF)-1, NRF-2, transcription
factor A mitochondrial, and transcription factor B mitochon-
drial (41, 277) (Fig. 4B). LSS can also stimulate mitochondrial
biogenesis through Sirtuin 1, an NAD+-dependent deacetylase
(59, 143). This laminar flow-enhanced mitochondrial biogen-
esis may also protect ECs against oxidative stress by stimu-
lating PGC-1a-induced ROS-detoxifying enzymes (59). Thus,
mitochondrial biogenesis is also involved in controlling the
redox state of the endothelium.

FIG. 4. Effects of biomechanical forces on mitochondria. Biomechanical forces exert effects on the mitochondria at multiple
levels. All of the ETCs can be regulated by biomechanical forces altering both mitochondrial function and ROS generation (A).
Mitochondrial biogenesis (B) is regulated by PGC-1a via the transcription factors NRF1 and TFAM. Mitochondrial network
dynamics (C) are regulated by the opposing effects of fission and fusion. Fission mediated by Drp1 guided by MFF, Fis1, MiD49,
and MiD51. Fusion is mediated by mitofusins in the outer membrane and Opa1 in the inner membrane. Drp1, dynamin-related
protein 1; ETCs, electron transport complexes; NRF, nuclear respiratory factor; PGC-1a, peroxisome proliferation and the
activated receptor gamma coactivator-1a; TFAM, transcription factor A mitochondrial. Color images are available online.
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A common misconception is that the mitochondria are
present as static individual organelles, within the cell. In re-
ality, mitochondria are dynamic: constantly forming elon-
gated tubes, through the process of fusion and, through
fission, splitting into small less connected mitochondria (44,
52, 131, 195) (Fig. 4C). This process has been termed ‘‘mi-
tochondrial network remodeling.’’

The correct balance of fission and fusion is critical for mi-
tochondrial homeostasis. Mitochondrial fragmentation (fis-
sion) has been linked to increased apoptotic cell death (36,
158). However, the seminal work of Archer’s group has shown
that in PH, the increase in fission is associated with a hyper-
proliferative antiapoptotic SMC phenotype (10, 54, 223, 224).

Fusion permits the mixing of the contents between mito-
chondria and may be a pathway that protects the mitochondria
(115) (Fig. 4C). Three mitochondrial guanosine triphosphatases
(GTPases) regulate mitochondrial fusion: the mitofusins (Mfn)-
1 and -2 and the optic atrophy 1 protein (OPA-1). Fusion is also
an underappreciated regulator of cell proliferation as the initial
term for Mfn-2 was ‘‘hyperplasia suppressor gene’’ due to its
antiproliferative effect when overexpressed (46, 52).

Fission is mediated through the GTPase activity of dynamin-
related protein 1 (Drp1) (Fig. 4C). Drp1 is present in the cytosol
and translocates to the mitochondria when activated. On the
mitochondrion, it assembles into oligomeric structures that
mechanically constrict and fragment the mitochondria (170).

Drp1 is regulated by a complex array of PTMs, including S-
nitrosylation, ubiquitination, sumoylation, O-GlcNAcylation,
and phosphorylation (115, 203). The best studied PTM with
respect to Drp1 is its phosphorylation that occurs at Ser616 and
Ser637. Phosphorylation at Ser616 activates Drp1 to promote
mitochondrial fission (135, 230). Cyclin-dependent kinase 1
(Cdk1) phosphorylates Drp1 at Ser616. Phosphorylation at
Ser637 has been shown to occur through PKA, Cam kinase,
and Pim1 (115). Phosphorylation at Ser637 inhibits Drp1
oligomerization, sequesters Drp1 in the cytosol, and can,
therefore, suppress mitochondrial fission (135, 230). Ser637
can be dephosphorylated by calcineurin that enhances Drp1
mitochondrial translocation and so stimulates fission. Rho ki-
nase (ROCK) has also been shown to phosphorylate Drp1 (34).

ROCK exists as two isoforms 1 and 2 and is known to be a
major player in the pulmonary vascular disease (PVD)
through its ability to reorganize the actin cytoskeleton. One of
the major upstream activators of ROCK is RhoA (Ras ho-
mologous GTP-binding protein A) (275, 290). The canonical
activation of RhoA GTPase involves the activation of GPCRs
and/or tyrosine kinases, resulting in the activation of guanine
nucleotide exchange factors (GEFs) that enhance the ex-
change of GDP for GTP and translocation of GTP-RhoA to
the plasma membrane. Upon translocation to the plasma
membrane, GTP-RhoA is able to activate ROCK.

A new mechanism of RhoA activation has been recently
identified in which post-translational (PTM) nitration events
can directly stimulate RhoA nucleotide exchange, indepen-
dent of GEF activation (215). Thus, there could be a link
between nitrosative stress and mitochondrial fission, al-
though this has not been explored.

The effects of biomechanical forces on mitochondrial net-
work remodeling are also still far from resolved as the limited
published data are conflicting. For example, LSS has been
shown to both increase mitochondrial fission and apoptosis
(234) and increase mitochondrial fusion (293). As already

described, the transient receptor potential cation channels are
important players in mechanotransduction pathways (148).
Increased calcium uptake is associated with LSS and is es-
sential for the initiation of mitochondrial fission (35).

Nrf2 and Krüppel-like factor 2

Biomechanical forces can also regulate the removal of ROS.
For example, LSS-dependent activation of Erk5 induces the
activity of Nrf2 (144). Nrf2 acts via the ARE and stimulates
expression of a number of antioxidant enzymes, including
NAD(P)H:quinone oxidoreductase 1, glutathione reductase,
glutathione peroxidase (GPx), and catalase (138). Nrf2-
dependent upregulation of these enzymes has been shown to
protect cardiac fibroblasts, macrophages, and cardiomyocytes
against oxidative/nitrosative stress (42, 310, 311).

HO-1, the downstream target gene of Nrf2, is also capable
of suppressing atherosclerotic lesion formation by reducing
the oxLDL-induced transmigration of monocytes (132) and
protecting against oxidative stress and inflammation, two of
the predominant mechanisms in atherosclerosis.

The activation of transcription factor, Krüppel-like factor 2
(KLF2), is also stimulated by LSS (12 dyn/cm2, 16–24 h)
(144). VCAM-1 mRNA levels are decreased in ECs exposed
to LSS (209), whereas KLF2 inhibits the expression of vas-
cular cell adhesion protein 1 (VCAM-1) as well as E-selectin
(78, 281). This suggests a link between LSS-mediated in-
crease in KLF-2 and a decrease in monocyte attachment to
the endothelium. In human umbilical vein endothelial cell
(HUVEC), KLF2 activity is also associated with SS-induced
extracellular ATP release followed by P2X4 Ca2+-channel
activation (232), suggesting a functional link between
calcium-mediated signaling, antioxidant and antiatherogenic
gene expression, and vasorelaxation.

KLF-2 also suppresses inflammatory gene expression via
the inhibition of NFjB and AP-1 (33). KLF2 also improves
the nuclear localization of Nrf2, and the combined actions of
these two factors are thought to constitute the majority of the
LSS-induced endothelial gene expression (95).

Mechanosensitive MicroRNAs and Cell Homeostasis

MicroRNAs (miRNAs) are single-stranded noncoding
small RNAs that play an important role in the regulation of
gene expression via binding targeted mRNA and suppressing
their translation or inducing their degradation (157) (Fig. 5A).

In ECs, miRNA profiling has revealed 21 miRs that are
differentially expressed (8 up- and 13 downregulated) after
24 h pulsatile SS (283) (Fig. 5B). Multiple miRNAs have been
shown to be regulated by biomechanical forces (Fig. 5B). Fluid
SS, like other physiological stimuli, can both induce and
suppress gene expression, including expression of miRNA
genes. Thus, miRNA expression patterns depend on specific
transcription factors activated by different types of SS.

Pulsatile SS activates miR-10a expression via a retinoic acid
receptor RARa/KLF2-dependent mechanism, and this miRNA
downregulates VCAM-1 expression. In contrast, oscillatory SS
induces histone deacetylase-dependent suppression of miR-
10a expression (154). RARa/RXRa agonists rescue miR-10a
expression in oscillatory SS regions in vivo. Moreover, in-
duction of miR-10a by RARa/RXRa agonists protects ApoE-/-

mice against atherosclerosis, inhibiting VCAM-1 expression
and inflammatory cell infiltration (156). In addition, miR-23b,
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induced by pulsatile SS via KLF2-dependent transcription,
possesses antiproliferative properties, repressing cyclin H and
cell cycle progression. Oscillatory SS has no effect on miR-
23b, however, and, therefore, does not induce cell cycle arrest
(14). In HUVECs, induction of miR-19a by laminar flow leads
to cyclin D1 downregulation and cell cycle arrest (214),
whereas under the same conditions, miR-101 has an anti-
proliferative effect, suppressing mTOR expression (53).

Biomechanical forces affect the expression of several
miRNAs that are either directly or indirectly involved in
cellular redox balance [reviewed in Marin et al. (174)].
Among the mechanosensitive miRNAs, directly targeting
ROS-regulating enzymes are miR-221/222 (252) and miR-
92a (90, 294), which inhibit eNOS and miR-17* [inhibits
superoxide dismutase (SOD) 2] (296) that are all down-
regulated by LSS. Conversely, miR-21 (252), miR-25 (100),
and miR-23b (283) are upregulated by LSS and have been
shown to inhibit NOX-4. miR-30b is also upregulated by LSS
and inhibits catalase expression (117). Oscillatory SS upre-
gulates miR-221/222 (252), miR-92a (90, 294), and miR-663,
all of which inhibit eNOS expression. Oscillatory SS also
upregulates miR-21 (304), which inhibits SOD3 expression.

Mechanosensitive miRNAs can also indirectly regulate
oxidative stress by affecting ICAM-1/VCAM-1 expression
and, therefore, adhesion and activation of neutrophils on the
endothelium and subsequent ROS generation. LSS upregu-
lates miR-10a (154) and miR-126 (118, 119), both of which
inhibit VCAM-1 expression, whereas oscillatory SS down-
regulates miR-10a (154), which increases VCAM-1 expres-
sion. Several other miRs upregulated by oscillatory SS
[miR-21 (309), miR-34a (89), and miR-663 (198)] have also
been described as ICAM-1/VCAM-1-inhibitory miRs, sug-
gesting a complex interplay in the regulation of these adhe-
sion receptors by mechanical forces.

miR-486-5p, which is downregulated by oscillatory SS,
may also be another indirect regulator of cellular redox bal-
ance as it can inhibit the expression of the phosphatase,
PTEN, leading to increased Akt1 activity (125, 279). As Akt1
can phosphorylate eNOS, this could regulate NO levels.

Sirtuin-1 expression, a positive regulator of mitochondrial
biogenesis, is inhibited by miR-92a (90, 164) and miR-217
(184), both of which are upregulated by oscillatory SS. LSS
also upregulates miR-20a that inhibits VEGF expression (283).

Expression of PPARc, a nuclear hormone receptor, is
negatively regulated by miR-21 under oscillatory SS condi-
tions (309). Detailed studies of PPARc functions have iden-
tified its role in maintaining endothelial function and its loss
has been shown to enhance the development of atheroscle-
rosis, hypertension, and PH (6, 17, 126, 192, 237, 240). Ex-
periments with pulmonary artery endothelial cells (PAECs)
obtained from PH patients and mouse model of endothelial
PPARc loss-of-function showed that high levels of ET-1
correlated with the downregulation of PPARc and miR-98
(140). Another miRNA family, miR-130/301, also negatively
regulates the expression of PPARc under conditions of ex-
cessive blood flow and pressure (15). miR-130/301-driven
downregulation of PPARc induces two downstream path-
ways that results in the decreased expression of miR-424/503
(in PAEC) and miR-204 (in PASMC); both pathways stim-
ulate cell proliferation and are critical for PH promotion (16).

The exposure of ECs to CS (15% elongation, 24 h) also
induces a dramatic change in the miRNA expression profile.

Intriguingly, several miRs that inhibit NOX-4 expression are
regulated with miR-4428, miR-1273 being downregulated
and miR-17-5p, miR-93-5p, miR-23a-3p being upregulated.
This divergent regulation is suggestive of a complex regu-
latory mechanism of NOX-4 expression via miRNAs. CS
also downregulates miR-4763-3p that is a negative regulator
of eNOS expression and miR-551b-5p that inhibits ICAM-1
expression (307). Taken together, these data demonstrate
complex multileveled regulation of pathological pathways in
vasculature by miRNAs that are responsive to biomechanical
forces to either enhance vasoprotective effects or support
excessive ROS generation.

Vascular Diseases/Pathologies Resulting from Altered
Biomechanical Forces

Pulmonary hypertension

PH is biomechanically characterized as an increase in the
resistive and reactive components of pulmonary vascular im-
pedance (201, 285). In severe forms of PH, a progressive in-
crease in the pulmonary vascular resistance leads to right heart
pressure overload and right heart failure (102). Thus, changes in
biomechanical forces are likely important in PH development.
Increased levels of oxidative stress markers have been detected
in PH patients (303) underpinned by multiple molecular, ge-
netic, and epigenetic abnormalities, which cause endothelial
dysfunction, pathological vascular remodeling, and mitochon-
drial metabolic abnormalities (4). WSS-dependent endothelial
alterations within the complex pathobiology of PH play a very
important role in blood clotting, inflammation, vascular tone,
metabolism, angiogenesis, and repair. WSS is required for the
development and maintenance of severe occlusive vascular le-
sions after Sugen-induced pulmonary vascular injury (280).

As was shown in healthy volunteers, a relationship between
vascular WSS and flow-dependent vascular dilation can be
directly accessed by phase contrast magnetic resonance im-
aging (MRI) (246), and in vivo data collected using MRI
demonstrated site-specific WSS magnitudes in arterial system
(206). Furthermore, using MRI, an occurrence of disturbed
blood flow in pulmonary artery was directly demonstrated in
PH patients. Vortex blood flow patterns and early systolic
retrograde flow in main pulmonary artery were detected in all
PH patients studied and were absent in healthy individuals; PA
flow velocities and WSS were lower than those in control
group (13, 202). Vortical blood flow duration in main pul-
monary artery correlates with PH progression (220).

Disturbed blood flow is considered to be a critical trigger of
PH development, since it stimulates numerous signaling
pathways leading to oxidative stress, endothelial dysfunction,
and expression of atherogenic factors. Experimental models of
PH demonstrate dysregulation of oxidative signaling, with el-
evated ROS/RNS, reduced SOD, GPx, and catalase (4).

In the chronic hypoxia model of PH, pulmonary vascular
remodeling is primarily mediated by NOX-2- and NOX-4-
dependent ROS production (14, 134, 159). In PASMC,
transforming growth factor (TGF)-b1 treatment stimulates
increased NOX-4 levels, resulting in increased ROS that
drives cellular proliferation, suggesting that NOX-4 mediates
TGF-b1-dependent pulmonary vascular remodeling (4, 180,
251). NOX-4 also mediates the effects and hypoxia-induced
factor-1a (HIF-1a) (28, 97, 227), which is critical to the
pathogenesis of PAH.
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Mitochondrial metabolic abnormalities are emerging as
key players in the pathobiology of PAH (224, 239). Activa-
tion of HIF-1a causes the switch to a glycolytic phenotype,
thereby suppressing oxidative phosphorylation, with multiple
downstream consequences including mitochondrial depo-
larization (7). The underlying mechanism has been studied in
animal models and is usually considered to be multifactorial
through changes in eNOS production and uncoupling (256,
306), alteration in l-arginine metabolism (26), and increased
NO consumption (295).

Evidence of mitochondrial fragmentation has also been
identified due to a decrease in the expression of MFN2, and
MFN2 overexpression attenuates the severity of PH (225).
Several miRNAs are dysregulated in PH patients (19), in-
cluding miR-204, which in healthy pulmonary artery SMCs
(PASMCs) inhibits the STAT3/HIF-1a pathway (68).

Recent studies demonstrated that endothelial-to-mesenchy-
mal transition (EndMT) could contribute to PH development
and complexity. In PH models, various insults (such as he-
modynamic stress and hypoxia) applied to the endothelium
induce a loss of cell–cell and cell–matrix contacts, decrease of
endothelial marker expression (VE-cadherin, PECAM-1, and
von Willebrand factor), and increase of SMC- and fibroblast-
specific proteins (a-SM-actin, fibronectin, SM-myosin, and
calponin) (8, 98). TGF-b1-activated signaling was shown to
contribute to EndMT (9, 98). Hypoxia-induced EndMT occurs
via HIF-1a-mediated transcription followed by Twist1 acti-
vation (302), which, in turn, may lead to upregulation of TGF-b
receptor 2 and Smad2 phosphorylation (172) linking hypoxia
and TGF-b signaling.

Recently, HIF-2a-mediated transcription network was also
demonstrated as critical for EndMT and PH development:
siRNA-directed depletion of HIF-2a downregulated expression
of Snai1/2 and EndMT in lung EC from idiopathic PAH patients
(264). Also, HIF-2a-mediated upregulation of endothelial ar-
ginase II may contribute to an impairment of NO signaling in
hypoxia-challenged EC and development of PH, since arginase
II and eNOS utilize the same substrate, l-arginine (69, 146).

The diverse and complex mechanisms underlying the
pathogenesis of PH offer the potential for new therapies.
Specific therapies that have been developed for PH patients
include the endothelin receptor antagonists, phosphodiester-
ase 5 (PDE5) inhibitors, prostanoids, sGC stimulators, and
calcium channel blockers. New therapeutic targets have
arisen since the emergence of the recent data that mito-
chondrial abnormalities and the presence of a hypoxic state
are key to PH pathogenesis

Targeting various pathways (e.g., STAT3, mTORC, Akt1,
PI3K, FoxO, and NFjB) in addition to dysregulated metabolic
and mitochondrial signaling networks may help to reverse
disease. Drugs aimed at blocking apoptosis might prevent the
development of vascular remodeling in PAH, whereas pro-
moting apoptosis in end-stage PAH might improve it (259).
The treatment of PH could also benefit from advancements in
precision medicine, by applying treatments that already exist in
other areas. Combining two or more therapeutic approaches
may be a strategy for the treatment of PH (101).

Congenital heart disease

In the United States, congenital heart disease (CHD) occurs
in at least 8 of every 1000 live births and accounts for >24% of

birth defect-related infant deaths (108). All congenital heart
defects, in which a large intra- or extracardiac communication
allows unrestricted pressure and volume overload of the pul-
monary circulation, can lead to the development of PH (105,
221). The resulting shunt increases the pressure in the pul-
monary arteries, leading to increased SS, circumferential wall
stretching, and endothelial dysfunction. However, the classi-
fication of the PVD associated with CHD belies the complexity
and varying physiology of predisposing cardiac lesions—from
the classic example of unrestrictive ventricular septal defect to
complex single ventricle lesions (Table 1).

The natural history of PVD associated with systemic-to-
pulmonary shunt reveals the differential, or perhaps incre-
mental, effects of increased PBF and increased pulmonary
arterial pressure. In patients with increased blood flow
alone—pretricuspid valve lesions such as atrial septal de-
fects—the development of PVD is uncommon and presents
late, among 5%–15% of patients by the fourth decade of life
(249). In stark contrast, in patients with increased blood flow
and a direct pressure stimulus from the systemic ventricle—
post-tricuspid lesions—the development of PVD is common,
and develops early in life. Thus, the progression of PVD in
these lesions reflects the severity of the hemodynamic insults
to the pulmonary vasculature with lesions that exert only
increased shear forces, from increases in blood flow alone,
having a slower progression than those that have both flow
and direct pressure stimuli (1, 120, 150).

Altered expression of vasoactive mediators, such as ET-1,
PGI2, and NO, in CHD results in vasoconstriction, whereas
aberrant expression of VEGF and fibroblast growth factor
promotes vascular remodeling (1). These changes contribute
to a progressive increase in pressures in the right ventricle (1).
Compared with patients with other PH etiologies, the in-
creases in pulmonary pressure seen in patients with PH–CHD
occur early (during infancy rather than during adulthood),
and this seems to provide PH–CHD patients with a prognostic
advantage. More than 50% of patients with large unrestrictive
ventricular septal defect will develop PH and cyanosis due to
a reversal of left-to-right shunting, known as Eisenmenger
syndrome (142).

Table 1. Risk of Pulmonary Vascular Disease in

Differing Lesions Associated with Congenital

Heart Disease and Increased Pulmonary Blood Flow

Defect Risk of PVD (%)

Age of
occurence

(years)

CHD with increased pulmonary blood flow
and/or pressure
Truncus arteriosus *100 <2
A-V septal defect *100 *2
Transportation of great
arteries1VSD

*70 to 100 1–2

Patent ductus arteriosus *15 to 20 >2
Ventricular septal defect *15 to 20 >2
ASD *20 >20

Defects in bold represent high flow/direct high-pressure lesions;
defects in italics represent high flow/variable direct high pressure.

ASD, atrial septal defect; CHD, congenital heart disease; PVD,
pulmonary vascular disease.

Source: Hoffman and Rudolph (122, 123) and Hoffman et al. (124).
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Treatment of PH–CHD has evolved in recent years with
options for either late repair in some patients (surgical) or PH
disease-targeting therapy (87, 121). The use of PH-specific
therapies in CHD significantly lowers the rate of cumulative
mortality when compared with no therapy. Clinical studies
evaluating oxidative stress and antioxidant status in children
with CHD have revealed significant elevation of the oxidative
stress biomarkers, malondialdehyde (MDA) and protein car-
bonyl, in patient plasma samples, as well as proinflammatory
cytokines, such as IL-6 and TNFa (212). Superoxide and H2O2

levels have also been shown to increase (24). A comparison of
total oxidant system (TOS) and total antioxidant system (TAS)
in plasma collected from cyanotic acyanotic CHD patients and
age-matched control individuals revealed a significant TOS
increase and TAS decrease in cyanotic CHD patients (88).

Acute lung injury

ALI and its more severe form, acute respiratory distress
syndrome (ARDS), are pathological states of lung dysfunc-
tion of various etiology such as Gram-positive or Gram-
negative respiratory infection, sepsis, trauma, acid aspiration,
or toxic gas inhalation (219, 270). Although ALI/ARDS is
not necessarily a pathology induced by biomechanical forces,
it can be associated with VILI in patients. Therefore, studies
of so-called two-hit models (bacterial toxin challenge or any
other ALI-related stimuli plus in vitro CS or in vivo lung
mechanical ventilation) are considered to be more clinically
relevant (21–23) (Fig. 6). Published data demonstrate that the
toxin pretreatment dramatically potentiates effects of exces-
sive CS (18% elongation) inducing cell signaling pathways
that lead to the barrier-disruptive cytoskeleton remodeling,
cell–cell contact loss, expression of proinflammatory cyto-
kines, and adhesive molecules (21–23, 291).

The most studied models of ALI are cultured pulmonary
cell monolayers or animals challenged with either Gram-
negative (LPS) or Gram-positive (pneumolysin, PLY; lis-
teriolysin, LLO) bacterial toxins. In these models, the pivotal
role of oxidative/nitrosative stress in the endothelial dys-
function is well documented. On molecular level, ALI is

characterized by an excessive ROS generation and mito-
chondrial dysfunction. The major sources of ROS generation
are NOX isoforms, which are activated by LPS in neutrophils
(NOX-1) or EC (NOX-2) (171, 233). In ECs and SMCs, LPS
induces oxidative stress and AP-1-/NFjB-mediated proin-
flammatory responses via NOX-4 activation via TLR4 (207,
208, 210). Uncoupled eNOS is another critical source of ROS
in ALI/ARDS models (112, 238) that leads to peroxynitrite
generation followed by protein tyrosine nitration and that
plays an important role in ALI/ARDS pathogenesis (e.g.,
nitrated RhoA activation) (112, 149, 215).

Gram-positive bacterial toxins are pore-forming proteins
that may rapidly induce oxidative stress via perturbance of
[Ca2+]i homeostasis and mitochondrial dysfunction. PLY
increases mito-ROS and decreases mitochondrial O2 con-
sumption (160). In vitro, PLY or LLO shows dose-dependent
negative effects on the endothelial barrier and, due to robust
[Ca2+]i elevation, the stimulation of PKC and CaMKII ac-
tivities (71). The activation of PKCa has been shown to
trigger pulmonary endothelial dysfunction (168). PKC-
dependent phosphorylation of eNOS at T495 leads to eNOS
uncoupling (51, 255).

Actin stress fiber formation and contraction in PLY-
challenged EC are the result of RhoA activation, Rac1 inhi-
bition, myosin light chain (MLC), and filamin A phosphor-
ylation causing the barrier disruption (70). Oxidative stress-
mediated activation of protein tyrosine kinases followed by
VE-cadherin tyrosine phosphorylation can also impair ad-
herens junctions (167). In animal models, Gram-positive
toxins induce endothelial dysfunction causing vascular
leakage and pulmonary edema (71, 168).

Ventilator-induced lung injury

Mechanical ventilation of lungs is one of few clinical ap-
proaches effective for ARDS patients. However, excessive
mechanical stress induced by ventilation may also cause lung
tissue damage. This mechanical force, which is difficult to
control in individual patients, may result in abnormal cyclic
strain of the lung tissue (11). Such prolonged abnormal strain

FIG. 6. Effect of biomechanical forces on endothelial barrier function. In ‘‘two-hit’’ models, ALI/ARDS stimuli
potentiate pathological effect of excessive CS/mechanical ventilation. Signaling pathways induced by bacterial toxins
activate Ca2+-dependent PKC, eNOS uncoupling, and ROS generation; their effects are aggravated by excessive CS via
mechanoreceptor signaling. ALI, acute lung injury; ARDS, acute respiratory distress syndrome; eNOS, endothelial NO
synthetase. Color images are available online.
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affects the lung vasculature inducing endothelial dysfunction
and an inflammatory response [reviewed in Wang et al. (284)].

Experimental data obtained in EC subjected to excessive CS
in specially designed devices or in animals subjected to me-
chanical ventilation demonstrate dramatic changes in cell sig-
naling and cell metabolism affecting virtually all levels of EC
and SMC homeostasis, including cytoskeletal structures and
cell–cell contacts (adherens and tight junctions), protein mod-
ifications, gene expression, and cytokine/chemokine secretion.

Numerous studies have implicated ROS-modulating en-
zymes (NOX, NOS, and XO) as well as mitochondrial-derived
ROS in VILI pathology (176, 177, 218, 276). Uncoupling of
eNOS due to a functional BH4 shortage also exists in VILI
(276). Exposing EC to various levels of CS has highlighted the
critical role of the RhoA/ROCK signaling pathway in the
development of endothelial dysfunction (21). Activation of
ROCK appears to be due to a specific Rho-GEF, GEF-H1 (21,
47). GEF-H1 activation has been linked to microtubule dis-
assembly (145) that occurs under excessive mechanical force
(106). Importantly, GEF-H1 inhibition results in a decrease
of proinflammatory factor levels in excessive CS-challenged
EC. Therefore, a link between RhoA/ROCK pathway and
NFjB-dependent proinflammatory response has been dem-
onstrated (145).

Protective Approaches

Since the generation of excessive ROS/RNS and the re-
sulting oxidative/nitrosative stress in the lung play a central
role in the development and progression of a number of lung
pathologies, antioxidant therapies have been tested as a
general approach to protect the lung against the effects pro-
duced by abnormal biomechanical forces. However, such a
general antioxidant approach has demonstrated either very
modest or no therapeutic effect in humans due to inability to
distinguish between harmful effects of excessive ROS and
physiological ROS-mediated processes (213, 273). These
failures have led to new ideas regarding antioxidant therapies
that are designed to specifically target individual ROS/RNS-
generating enzyme(s) or specific intracellular sites of ROS
generation (e.g., dysfunctional mitochondria), which have
been defined as critical for a particular disease.

Studies have focused on the specific inhibition of distinct
NOX isoforms. Small-molecule inhibitors of NOX were
tested in atherosclerosis mouse model (streptozotocin-treated
ApoE-/- mice) and NOX-1/NOX-4 inhibitors (such as
GKT137831) application showed decreased lesions and
macrophage infiltration [reviewed in Altenhöfer et al. (5)].
NOX-inhibitory peptides have had success in inhibiting p22phox

function, p47phox phosphorylation, and translocation and su-
peroxide generation [reviewed in Cifuentes-Pagano et al. (64)].

Another protective approach being tested is the use of
modulators of the downstream effectors regulated by exces-
sive biomechanical forces and oxidative stress. For example,
a number of publications have shown that ROCK inhibitors
can be efficient in animal models of PH (58, 305). A more
precise approach by preventing RhoA activation by Y34 ty-
rosine nitration using a specific RhoA-shielding peptide
significantly protects the pulmonary vasculature against LPS-
mediated damage in vivo (215). This type of precise targeting
of ROS/RNS-dependent activation or inhibition of key reg-
ulators based on a fundamental understanding of a disease

pathology could lead to more targeted and effective antiox-
idant therapies.

Another interesting therapeutic direction is the develop-
ment of disintegrins, peptides originated from snake venoms
that specifically interact and inhibit particular integrins [re-
viewed in Daavid et al. (73)]. This approach is aimed at
preventing thrombocyte aggregation and leukocyte adhesion
and activation and, therefore, has the potential to exert anti-
oxidative and anti-inflammatory effects in the lung.

Recent preclinical and/or clinical studies in other complex
pathologies (such as cancer) have demonstrated an increased
therapeutic efficiency using drug combinations. Such com-
bined approaches may be successful in the therapy of pul-
monary diseases. In this regard, l-carnitine supplementation
was successfully used in our laboratory to prevent eNOS un-
coupling and nitration of mitochondrial proteins to improve
eNOS function and protect/restore mitochondrial bioener-
getics in a lamb model of CHD (236, 239, 256). Such sup-
plementation can be tested in combination with other drugs in
models of cardiovascular pathologies, wherein uncoupled
eNOS-dependent mitochondrial dysfunction is observed.

Concluding Remarks

The exposure of the pulmonary vasculature to biomechan-
ical forces affects the lung in a number of important ways,
allowing cells in the vasculature to respond to a changing
external environment via alterations in the production/secre-
tion of vasoactive factors, gene expression changes, ROS
generation, and mitochondrial bioenergetics/biogenesis/net-
work dynamics. Lung injury and disease can alter the normal
patterns of these forces, resulting in pathological signaling
events that are intimately involved in disease progression.
However, despite substantial investigations, there are still
many unresolved issues surrounding how vascular cells re-
spond to mechanical stress. This limitation is based on both the
different types of forces to which the lung is exposed and the
complexity of the lung itself.

Indeed, most of our data come from single cell types ex-
posed to a single mechanical force. Thus, more sophisticated
experimental systems that will allow the analysis of multiple
cell types exposed to both SS and pressure/stretch will be
necessary to more accurately determine how the pulmonary
vasculature responds to a changing mechanical environment
and how this is subverted in pathological conditions to drive
the disease progression.
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101. Galiè N, Corris PA, Frost A, Girgis RE, Granton J, Jing
ZC, Klepetko W, McGoon MD, McLaughlin VV, Preston
IR, Rubin LJ, Sandoval J, Seeger W, and Keogh A. Up-
dated treatment algorithm of pulmonary arterial hyper-
tension. J Am Coll Cardiol 62: D60–D72, 2013.
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D’Alto M, Prokšelj K, Diller GP, Dimopoulos K, Estensen
ME, Holmstrøm H, Turanlahti M, Thilén U, Gatzoulis
MA, and Søndergaard L. Past and current cause-specific
mortality in Eisenmenger syndrome. Eur Heart J 38:
2060–2067, 2017.

122. Hoffman JI and Rudolph AM. The natural history of
ventricular septal defects in infancy. Am J Cardiol 16:
634–653, 1965.

123. Hoffman JI and Rudolph AM. The natural history of
isolated ventricular septal defect with special reference to
selection of patients for surgery. Adv Pediatr 17: 57–79,
1970.

124. Hoffman JI, Rudolph AM, and Danilowicz D. Left to right
atrial shunts in infants. Am J Cardiol 30: 868–875, 1972.

125. Holliday CJ, Ankeny RF, Jo H, and Nerem RM. Dis-
covery of shear- and side-specific mRNAs and miRNAs in
human aortic valvular endothelial cells. Am J Physiol
Heart Circ Physiol 301: H856–H867, 2011.

126. Hu C, Lu KT, Mukohda M, Davis DR, Faraci FM, and
Sigmund CD. Interference with PPARc in endothelium
accelerates angiotensin II-induced endothelial dysfunc-
tion. Physiol Genomics 48: 124–134, 2016.

127. Huang W, Sakamoto N, Miyazawa R, and Sato M. Role of
paxillin in the early phase of orientation of the vascular
endothelial cells exposed to cyclic stretching. Biochem
Biophys Res Commun 418: 708–713, 2012.

128. Humphries MJ, Travis MA, Clark K, and Mould AP.
Mechanisms of integration of cells and extracellular ma-
trices by integrins. Biochem Soc Trans 32: 822–825, 2004.

129. Hwang SA, Boo YC, Sorescu GP, McNally JS, Holland
SM, Dikalov S, Giddens DP, Griendling KK, Harrison
DG, and Jo H. Oscillatory shear stress stimulates endo-
thelial production of O2

- from p47phox-dependent
NAD(P)H oxidases, leading to monocyte adhesion. J Biol
Chem 278: 47291–47298, 2003.

130. Hynes RO. Integrins: bidirectional, allosteric signaling
machines. Cell 110: 673–687, 2002.

131. Ikeda Y, Shirakabe A, Brady C, Zablocki D, Ohishi M, and
Sadoshima J. Molecular mechanisms mediating mitochon-
drial dynamics and mitophagy and their functional roles in the
cardiovascular system. J Mol Cell Cardiol 78: 116–122, 2015.

132. Ishikawa K, Navab M, Leitinger N, Fogelman AM, and
Lusis AJ. Induction of heme oxygenase-1 inhibits the
monocyte transmigration induced by mildly oxidized
LDL. J Clin Invest 100: 1209–1216, 1997.

133. Ishimitsu T, Uehara Y, Ishii M, Ikeda T, Matsuoka H, and
Sugimoto T. Thromboxane and vascular smooth muscle
cell growth in genetically hypertensive rats. Hypertension
12: 46–51, 1988.

134. Ismail S, Sturrock A, Wu P, Cahill B, Norman K,
Huecksteadt T, Sanders K, Kennedy T, and Hoidal J.
NOX4 mediates hypoxia-induced proliferation of human
pulmonary artery smooth muscle cells: the role of auto-
crine production of transforming growth factor-{beta}1
and insulin-like growth factor binding protein-3. Am J
Physiol Lung Cell Mol Physiol 296: L489–L499, 2009.

135. Jahani-Asl A and Slack RS. The phosphorylation state of
Drp1 determines cell fate. EMBO Rep 8: 912–913, 2007.

136. Jeremy JY, Rowe D, Emsley AM, and Newby AC. Nitric
oxide and the proliferation of vascular smooth muscle
cells. Cardiovasc Res 43: 580–594, 1999.

137. Ji Y, Wang Z, Li Z, Zhang A, Jin Y, Chen H, and Le X.
Angiotensin II enhances proliferation and inflammation
through AT1/PKC/NF-kappaB signaling pathway in he-
patocellular carcinoma cells. Cell Physiol Biochem 39:
13–32, 2016.

138. Jones CI 3rd, Zhu H, Martin SF, Han Z, Li Y, and
Alevriadou BR. Regulation of antioxidants and phase 2
enzymes by shear-induced reactive oxygen species in
endothelial cells. Ann Biomed Eng 35: 683–693, 2007.

139. Jornayvaz FR and Shulman GI. Regulation of mitochon-
drial biogenesis. Essays Biochem 47: 69–84, 2010.

140. Kang BY, Park KK, Kleinhenz JM, Murphy TC, Green
DE, Bijli KM, Yeligar SM, Carthan KA, Searles CD,
Sutliff RL, and Hart CM. Peroxisome proliferator-
activated receptor c and microRNA 98 in hypoxia-induced
endothelin-1 signaling. Am J Respir Cell Mol Biol 54:
136–146, 2016.
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Rautou PE, Ramkhelawon B, Esposito B, Dalloz M, Paul
JL, Julia P, Maccario J, Boulanger CM, Mallat Z, and
Tedgui A. Inhibition of microRNA-92a prevents endo-
thelial dysfunction and atherosclerosis in mice. Circ Res
114: 434–443, 2014.

165. Lu T, Wang XL, Chai Q, Sun X, Sieck GC, Katusic ZS,
and Lee HC. Role of the endothelial caveolae micro-
domain in shear stress-mediated coronary vasorelaxation.
J Biol Chem 292: 19013–19023, 2017.

166. Lu X and Kassab GS. Nitric oxide is significantly reduced
in ex vivo porcine arteries during reverse flow because of
increased superoxide production. J Physiol 561: 575–582,
2004.

167. Lucas R, Sridhar S, Rick FG, Gorshkov B, Umapathy NS,
Yang G, Oseghale A, Verin AD, Chakraborty T, Matthay
MA, Zemskov EA, White R, Block NL, and Schally AV.
Agonist of growth hormone-releasing hormone reduces
pneumolysin-induced pulmonary permeability edema.
Proc Natl Acad Sci U S A 109: 2084–2089, 2012.

168. Lucas R, Yang G, Gorshkov BA, Zemskov EA, Sridhar S,
Umapathy NS, Jezierska-Drutel A, Alieva IB, Leustik M,
Hossain H, Fischer B, Catravas JD, Verin AD, Pittet JF,
Caldwell RB, Mitchell TJ, Cederbaum SD, Fulton DJ,
Matthay MA, Caldwell RW, Romero MJ, and Chakra-
borty T. Protein kinase C-alpha and arginase I mediate
pneumolysin-induced pulmonary endothelial hy-
perpermeability. Am J Respir Cell Mol Biol 47: 445–453,
2012.

169. This reference has been deleted.
170. Macdonald PJ, Stepanyants N, Mehrotra N, Mears JA, Qi

X, Sesaki H, and Ramachandran R. A dimeric equilibrium
intermediate nucleates Drp1 reassembly on mitochondrial
membranes for fission. Mol Biol Cell 25: 1905–1915,
2014.

171. Maitra U, Singh N, Gan L, Ringwood L, and Li L. IRAK-
1 contributes to lipopolysaccharide-induced reactive ox-
ygen species generation in macrophages by inducing
NOX-1 transcription and Rac1 activation and suppressing
the expression of antioxidative enzymes. J Biol Chem 284:
35403–35411, 2009.

172. Mammoto T, Muyleart M, Konduri GG, and Mammoto A.
Twist1 in hypoxia-induced pulmonary hypertension
through transforming growth factor-beta-Smad signaling.
Am J Respir Cell Mol Biol 58: 194–207, 2018.

173. Mao X, Said R, Louis H, Max JP, Bourhim M, Challande
P, Wahl D, Li Z, Regnault V, and Lacolley P. Cyclic

836 ZEMSKOV ET AL.



stretch-induced thrombin generation by rat vascular
smooth muscle cells is mediated by the integrin al-
phavbeta3 pathway. Cardiovasc Res 96: 513–523, 2012.

174. Marin T, Gongol B, Chen Z, Woo B, Subramaniam S,
Chien S, and Shyy JY. Mechanosensitive microRNAs-role
in endothelial responses to shear stress and redox state.
Free Radic Biol Med 64: 61–68, 2013.

175. Marin TL, Gongol B, Zhang F, Martin M, Johnson DA,
Xiao H, Wang Y, Subramaniam S, Chien S, and Shyy JY.
AMPK promotes mitochondrial biogenesis and function
by phosphorylating the epigenetic factors DNMT1,
RBBP7, and HAT1. Sci Signal 10: pii: eaaf7478, 2017.

176. Martı́nez-Caro L, Lorente JA, Marı́n-Corral J, Sánchez-
Rodrı́guez C, Sánchez-Ferrer A, Nin N, Ferruelo A, de
Paula M, Fernández-Segoviano P, Barreiro E, and Esteban
A. Role of free radicals in vascular dysfunction induced
by high tidal volume ventilation. Intensive Care Med 35:
1110–1119, 2009.

177. Martı́nez-Caro L, Nin N, Sánchez-Rodrı́guez C, Ferruelo
A, El Assar M, de Paula M, Fernández-Segoviano P, Es-
teban A, and Lorente JA. Inhibition of nitro-oxidative
stress attenuates pulmonary and systemic injury induced
by high-tidal volume mechanical ventilation. Shock 44:
36–43, 2015.

178. Masatsugu K, Itoh H, Chun TH, Ogawa Y, Tamura N,
Yamashita J, Doi K, Inoue M, Fukunaga Y, Sawada N,
Saito T, Korenaga R, Ando J, and Nakao K. Physiologic
shear stress suppresses endothelin-converting enzyme-1
expression in vascular endothelial cells. J Cardiovasc
Pharmacol 31(Suppl. 1): S42–S45, 1998.

179. Masatsugu K, Itoh H, Chun TH, Saito T, Yamashita J, Doi
K, Inoue M, Sawada N, Fukunaga Y, Sakaguchi S, Sone M,
Yamahara K, Yurugi T, and Nakao K. Shear stress attenu-
ates endothelin and endothelin-converting enzyme expres-
sion through oxidative stress. Regul Pept 111: 13–19, 2003.

180. Mata-Greenwood E, Meyrick B, Steinhorn RH, Fineman
JR, and Black SM. Alterations in TGF-beta1 expression in
lambs with increased pulmonary blood flow and pulmo-
nary hypertension. Am J Physiol Lung Cell Mol Physiol
285: L209–L221, 2003.

181. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y,
Mukai Y, Hirano K, Kanaide H, and Takeshita A. Hy-
drogen peroxide is an endothelium-derived hyperpolariz-
ing factor in mice. J Clin Invest 106: 1521–1530, 2000.

182. Matrougui K, Maclouf J, Lévy BI, and Henrion D. Im-
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Abbreviations Used

ACE¼ angiotensin-converting enzyme
ADMA¼ asymmetric dimethylarginine

ALI¼ acute lung injury
AMPK¼AMP-dependent protein kinase
Ang II¼ angiotensin II
ARDS¼ acute respiratory distress syndrome

ARE¼ antioxidant response element
AT1R¼Ang II type 1 receptor

CaMKII¼Ca2+-calmodulin-dependent protein
kinase II

cav-1¼ caveolin-1
CHD¼ congenital heart disease

COX-2¼ cyclooxygenase-2
CPT1¼ carnitine palmitoyltransferase type 1
CPT2¼ carnitine palmitoyltransferase type 2
CrAT¼ carnitine acetyl transferase

CS¼ cyclic stretch
DDAH¼ dimethylaminohydrolase

Drp1¼ dynamin-related protein 1
ECs¼ endothelial cells

EDH¼ endothelium-dependent
hyperpolarization

EDHF¼ endothelium-derived
hyperpolarizing factor

EDNO¼ endothelium-derived NO
EndMT¼ endothelial-to-mesenchymal transition

eNOS¼ endothelial nitric oxide synthetase
ET-1¼ endothelin-1
ETC¼ electron transport complex

FA¼ focal adhesion

GEF¼ guanine nucleotide exchange factor
GPCR¼G-protein-coupled receptor

GPx¼ glutathione peroxidase
GTPase¼ guanosine triphosphatase

H2O2¼ hydrogen peroxide
HIF-1a¼ hypoxia-induced factor-1a

HUVEC¼ human umbilical vein endothelial cell
KLF2¼Krüppel-like factor 2
LLO¼ listeriolysin
LPS¼ lipopolysaccharide
LSS¼ laminar shear stress
Mfn¼mitofusin

miRNA¼microRNA
MRI¼magnetic resonance imaging

mRNA¼messenger RNA
NO¼ nitric oxide

NOX¼NADPH oxidase
NRF¼ nuclear respiratory factor
Nrf2¼NF-E2-related factor 2

PAEC¼ pulmonary artery endothelial cell
PAH¼ pulmonary arterial hypertension

PASMC¼ pulmonary artery smooth muscle cell
PBF¼ pulmonary blood flow
PDE¼ phosphodiesterase

PGC-1a¼ peroxisome proliferation and the activated
receptor gamma coactivator-1a

PGI2¼ prostacyclin
PGIS¼ prostaglandin I synthase

PH¼ pulmonary hypertension
PKA¼ cAMP-dependent protein kinase/protein

kinase A
PKC¼ protein kinase C
PKG¼ cGMP-dependent protein kinase/protein

kinase G
PLY¼ pneumolysin

PPARc¼ peroxisome proliferator-activated
receptor c

ppET-1¼ preproendothelin-1
PTM¼ post-translational modification
PVD¼ pulmonary vascular disease

RhoA¼Ras homologous GTP-binding protein A
RNS¼ reactive nitrogen species

ROCK¼Rho kinase
ROS¼ reactive oxygen species
sGC¼ soluble guanylate cyclase

SMCs¼ smooth muscle cells
SOD¼ superoxide dismutase

SS¼ shear stress
TAS¼ total antioxidant system

TGF-b1¼ transforming growth factor b1
TNFa¼ tumor necrosis factor a
TOS¼ total oxidant system

TP¼ thromboxane receptors
TxA2¼ thromboxane A2

VCAM-1¼ vascular cell adhesion molecule 1
VEGF¼ vascular endothelial growth factor

VILI¼ ventilator-induced lung injury
WSS¼wall shear stress

XO¼ xanthine oxidase
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