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Abstract

Introduction: The incidence of biliary tract cancer (BTC) is increasing, and the disease is 

frequently diagnosed during advanced stages, leading to poor overall survival. Limited treatment 

options are currently available and novel therapeutic approaches are needed. A number of 

completed clinical trials have evaluated the role of chemotherapy for BTC, demonstrating a 

marginal benefit. Thus, there is increased interest in applying targeted therapies for this disease.

Areas Covered: This review article summarizes the role of chemotherapeutic regimens for the 

treatment of BTC, and highlights key signal transduction pathways of interest for targeted 

inhibition. Of particular interest are the MEK or MAP2K (mitogen-activated protein kinase 

kinase), phosphatidylinositol-3 kinase (PI3K) and signal transducer and activator of transcription-3 

(STAT3) pathways. We discuss the available data on several promising inhibitors of these 

pathways, both in the pre-clinical and clinical settings.

Expert Opinion: Future treatment strategies should address targeting of MEK, PI3K and STAT3 

for BTC, with a focus on combined therapeutic approaches.
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1.0 Introduction

Biliary tract cancer (BTC) is comprised of intra- and extrahepatic cholangiocarcinoma and 

cancers of the gallbladder. This malignancy results from the transformation of epithelial 

cells that line the bile duct tree. The 5-year survival rate for this rare malignancy is dismal at 

only 3.2% [1]. Surgery represents an option for a subset of patients with BTC, especially 

those without metastases or invasion of nearby tissues. Approximately 65% of patients with 
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this malignancy are eligible to undergo surgical resection, although only 50% of those who 

underwent surgery achieved curative or margin-free resection (R0) [2]. Gallbladder cancers 

present with distant metastatic disease in approximately 85% of patients upon recurrence, 

whereas 60% of cholangiocarcinoma patients present primarily with a local regional pattern 

upon disease recurrence [3]. These data underscore the urgency for developing improved 

therapeutic options in this disease. Here, we review approaches for the treatment of BTC and 

highlight ongoing pre-clinical studies that may provide new therapeutic opportunities, with a 

focus on signal transduction pathways.

2.0 Combination chemotherapy treatment options in BTC

Over the last three decades, more than 50 articles reporting the results of clinical trials in 

BTC have been published (Table 1) [4–66]. Of these, the majority have focused on 

evaluation of chemotherapeutic agents. Thirty trials utilized gemcitabine (Gem)-based 

regimens: 7 trials included combination therapy with cisplatin (Cis), 4 with capecitabine 

(Cap), 9 with oxaliplatin (Ox) and 4 with S-1, oral fluoropyrimidine. In a single arm phase II 

study, Knox et al evaluated the combination of gemcitabine and capecitabine for 75 patients 

with BTC, of which 22 had objective responses with a median PFS and OS of 6.2 and 12.7 

months, respectively [15]. Gemcitabine plus oxaliplatin (GEMOX) has also been evaluated 

in a phase II study of 56 patients (n = 19 GBC, n = 5 ECC, n = 3 ampulla of vater, n = 29 

ICC). This trial reported a response rate of 36% in 33 patients who had not received prior 

treatment. These individuals demonstrated median PFS and OS of 5.7 and 15.4 months, 

respectively [24]. Based on the promising activity observed with the combination of 

gemcitabine and platinum based therapy in earlier trials, ABC-02, the largest randomized 

phase III trial in BTC to date, was conducted to investigate the efficacy of these agents in 

patients with unresectable BTC. In this study, 410 patients with locally advanced or 

metastatic disease, including all anatomic subgroups (cholangiocarcinoma, gallbladder and 

ampullary) were randomized to receive gemcitabine and cisplatin (GemCis) or gemcitabine 

alone, with overall survival (OS) as the primary endpoint. The combination of GemCis 

resulted in increased median OS (11.7 months) compared to patients treated with single 

agent Gem (8.1 months). GemCis also resulted in an increased median progression-free 

survival (PFS) of 8 months in patients receiving the combination as compared to 5 months 

for patients treated with Gem alone [59]. However, a more recent pooled analysis of 104 

trials did not demonstrate any significant benefit of GemCis in either time to tumor 

progression (TTP), or median OS as compared to GemCap or GEMOX [67]. Though a 

phase III randomized trial would be necessary to access clinical advantages between the 

different gemcitabine-based regimens, GemCis has become the standard approach in treating 

locally advanced or metastatic BTC based on the data from the ABC-02 trial. Finally, 

clinical activity has been observed for advanced BTC with single agent, oral 

fluorpyrimidine, S-1 in the setting of a Phase II trial [12]. The combination of S-1 with 

gemcitabine also showed favorable activity in a randomized phase II trial versus S-1 alone 

with an acceptable safety profile [65]. These data have led to a randomized Phase III study 

of gemcitabine and S-1 that is powered to assess non-inferiority against the current standard 

of care consisting of gemcitabine and cisplatin [65]. Taken together, there are a number of 
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ongoing clinical trials utilizing chemotherapy that will provide important data upon 

completion (Table 2).

3.0 Novel targeted therapies in the treatment of BTC

While up to 80% of BTC patients experience some benefit from chemotherapy, the great 

majority ultimately develop resistance, emphasizing the need to identify more efficacious 

therapies. Further, novel targeted therapies may offer greater tolerability in cancer patients. 

This premise is centered around the idea that malignant cells may be more dependent on the 

activation of the targeted pathways [68–70]. Chemotherapeutic agents typically target 

rapidly proliferating cells irrespective of whether they are malignant or normal. For this 

reason, adverse events often manifest as fatigue, diarrhea, and nausea [71], and are prevalent 

in the majority of patients during the course of chemotherapy. Ongoing efforts to improve 

BTC treatment regimens can be seen in the context of numerous ongoing clinical trials 

(summarized in Table 3). A growing number of trials are focused on small molecule or Ab-

based targeted therapies that inhibit intracellular signal transduction pathways, kinases, 

survival pathways or receptors (i.e. VEGF, EGFR) [28] [46].

However, resistance to targeted therapy remains a concern, due to the cross-talk and 

redundancy in the maintenance of key pathways in this disease [72]. Various studies looking 

at known oncogenic drivers in BTC (summarized in Table 4) [73–91], as well as whole-

exome sequencing of responders to single-agent selumetinib (MEK inhibitor) [92], all failed 

to identify any common mutational signatures, highlighting the heterogeneous nature of the 

disease.

Since current treatment options for BTC patients have shown limited improvement in PFS 

and OS, testing of new potential targeted therapies continues. Candidate pathways of interest 

for targeted therapy will be discussed in further detail below, with a focus on inhibitors 

targeting the MAPK, PI3K, and JAK/STAT pathways.

3.1 MEK Inhibitors

The Ras/Raf/MEK/ERK signaling cascade is among the most commonly dysregulated 

pathways in human cancers [93]. MEK, also known as MAP2K (mitogen-activated protein 

kinase kinase), is part of the Ras/Raf/MEK/ERK (MAPK) pathway. Depending on the 

stimulus, activation of this pathway can result in context-dependent effects on apoptosis or 

the cell cycle [94]. Aberrant activation of this pathway is frequently observed in BTC, as 

well as in melanoma, lung carcinoma, pancreatic, and colon cancers, among others [81, 95]. 

Although several studies have documented BRAF mutations in BTC [75, 77, 78], the 

existing evidence indicates a number of potential advantages to targeting MEK rather than 

its upstream mediators of activation, such as B-Raf. First, inhibition of MEK signaling can 

be accomplished without genetic testing to identify mutations leading to the aberrant 

activation of this pathway, as certain B-Raf inhibitors in the presence of RAS mutations can 

lead to reactivation of Raf and development of resistance necessitating such genetic 

screening [96]. Second, MEK1/2 have a narrow substrate specificity [95], and are only 

known to activate ERK1/2 [97], whereas there are 3 families of Raf proteins and ERK1/2 

has numerous downstream targets [98]. Accounting for the properties of the proteins 
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involved, MEK represents a point of convergence for many signaling pathways, thereby 

making it an attractive target for mitigating the effect of pathway activation.

With the exception of E6201, most MEK inhibitors do not target ATP binding. This allows a 

relatively higher specificity, as ATP binding sites tend to be highly conserved [99]. Indeed, 

the structure of MEK1 and MEK2 allows allosteric inhibitors to bind in a hydrophobic 

pocket which does not overlap with the ATP-binding site [100]. A summary of the MEK 

inhibitors being used in both preclinical studies and in clinical trials is provided in Table 5 

[95, 96, 99, 101–166]. Trametinib, a well-studied MEK inhibitor, was approved by the FDA 

in 2013 after a phase III trial demonstrated superior efficacy over standard chemotherapy in 

melanoma patients with BRAF V600E/K mutations. Patients who received trametinib had a 

median PFS of 4.8 months, versus 1.5 months for those on chemotherapy (p < 0.001). The 

OS at 6 months was 81% on trametinib compared to 67% on standard chemotherapy [134]. 

This MEK inhibitor is currently being evaluated in the setting of a phase I clinical trial for 

BTC patients ().

The MEK inhibitor MEK162 has been evaluated for safety in a phase I dose-escalation study 

of advanced solid tumors, and showed signs of clinical efficacy and desirable 

pharmacokinetics. This agent had an acceptable safety profile at 60 mg twice daily [167]. 

This small molecule is currently under investigation for BTC in combination with GemCis 

in a phase I/II clinical trial (NCT 01828034). One encouraging phase II study in metastatic 

BTC patients using selumetinib (another MEK inhibitor), observed clinical activity in 28 

patients, with a median PFS of 3.7 months, and median OS of 9.8 months. Interestingly, the 

clinical activity of selumetinib in this cohort of patients was not associated with BRAF or 

KRAS mutations (as assessed by pre-treatment sequencing of tumor biopsies)[168]. Another 

notable observation from this clinical trial was the fact that administration of selumetinib led 

to a gain in lean muscle mass in BTC patients. These data imply that MEK inhibitors may 

provide some benefit to patients by limiting the cancer cachexia syndrome that accompanies 

BTC and other advanced malignancies. Pre-clinical studies using MEK162 in a classic 

model of colon-26 cancer cachexia confirmed that the muscle sparing effects of MEK 

inhibitors can occur in a manner independent of their action on the tumor cells [169].

MEK inhibition appears to be an effective therapy in a small subset of BTC patients. 

However, the overall effects on clinical response have been modest. That said, several 

ongoing clinical trials using MEK inhibitors in combination with chemotherapeutic agents in 

BTC may establish their role in the treatment of this disease and its utility as an agent to 

combat the cancer cachexia syndrome deserves further investigation (Table 3).

3.2 PI3K Inhibitors

Phosphotidylinositol-3 kinase (PI3K) is the first of the downstream proteins regulated in the 

PI3K/Akt pathway following activation of associated receptors. This pathway is important 

for numerous biological functions in malignant cells, including proliferation, senescence, 

and survival [170]. Disruption in the regulation of this pathway has been associated with up 

to one-third of all cancers [171–173], and has demonstrated a prominent role in BTC [174–

178]. Constitutive activation of PI3K can occur via several mechanisms including genomic 

alterations in PIK3CA or PTEN [179, 180]. Due to the extensive involvement of the PI3K 
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pathway in different components of cell-cycle regulation and survival, there are ongoing 

efforts to develop and test inhibitors specific to this pathway. Table 5 lists both PI3K 

inhibitors in pre-clinical testing and those currently in clinical trials [96, 105, 107, 135, 139–

164, 181]. Buparlisib is one orally bioavailable pan-class I PI3K inhibitor that was well 

tolerated in patients as a single agent. In combination with other chemotherapeutic agents, 

buparlisib demonstrated clinical activity in patients with advanced breast cancer [135]. 

Another PI3K inhibitor GDC-0941 has been tested concurrently with GDC-0973 (a MEK1/2 

inhibitor). The regimen was well-tolerated, and also showed clinical responses in patients 

with melanoma, pancreatic cancer, NSCLC, prostate cancer, and endometrioid cancer [135]. 

Results from this combination are encouraging for future studies incorporating inhibitors of 

MEK and PI3K.

To date, inhibitors directly targeting PI3K activity have not been utilized extensively as 

either single agents, or as combination treatment in the context of clinical trials for BTC 

patients. However, one clinical trial in BTC patients was recently completed (), utilizing an 

Akt inhibitor (MK2206) to limit the activation of this pro-survival pathway. Results from 

this trial indicated this drug was tolerable, but no clinical activity was observed [11]. Thus, 

targeting the PI3K/Akt signaling pathway may be a potential strategy to overcome resistance 

if combined with other agents. Thus this pathway represents an interesting target for BTC 

that deserves more rigorous pre-clinical and potentially clinical evaluation.

3.3 STAT3 Inhibitors

Another pathway relevant to BTC is the JAK/STAT signaling cascade [89, 182, 183]. There 

are 7 Signal Transducer and Activator of Transcription (STAT) family members (STAT1–4, 

STAT5a, STAT5b, STAT6), all transcription factors. Though structurally similar, these 

proteins have distinct cellular functions. Of the STAT proteins, STAT3 and STAT5 most 

frequently undergo constitutive activation in malignancy [184–186]. These proteins act in an 

oncogenic manner and promote the expression of genes that enhance metastatic spread and 

survival [187–189]. STAT3 activation has been observed in numerous human cancer cell 

lines, including BTC, and is thought to act downstream of IL-6 or other cytokines to 

promote progression of the disease [190–195]. The diverse pro-tumorigenic cellular 

functions regulated by STAT3 signaling makes this pathway an attractive target. Agents 

targeting upstream JAK have also been of interest as a way of mediating STAT3 signaling, 

especially in myeloproliferative neoplasms given a high frequency of activating JAK2V617F 

mutations. Ruxolitinib is a JAK1/2 inhibitor, and has undergone several phase I, II, and III 

clinical trials and is approved in the treatment of myelofibrosis based on significant 

improvement in splenomegaly [196, 197]. However, in a randomized, double-blind phase II 

trial in patients with metastatic pancreatic cancer that failed gemcitabine therapy, ruxolitinib 

combined with capecitabine did not demonstrate a significant improvement in OS or PFS 

[198]. Furthermore, a recent phase III trial combining Jakafi (JAK1/2) with capecitabine was 

discontinued after interim analyses in pancreatic cancer patients (). To date, JAK/STAT 

inhibitors have not been evaluated in human clinical trials for BTC.

Natural products have been one driving force in the development of STAT3 inhibitors, as 

many synthetic products are modified from natural compounds that were identified to inhibit 
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STAT3 [199]. The majority of STAT3 inhibitors have been designed in an effort to prevent 

its phosphorylation or STAT:STAT dimerization. A variety of naturally-derived and synthetic 

STAT3 inhibitors that target various STAT3 interactions are summarized in Table 5 [165, 

166]. One major limitation to natural product-derived compounds has been their 

bioavailability, which has limited their in vivo efficacy.

Likewise, only two STAT3 small molecule inhibitors have undergone investigation in the 

clinical setting. OPB-31121 is an inhibitor of STAT3 phosphorylation developed by Otsuka 

Pharmaceuticals Co. This molecule was evaluated in a phase I clinical trial in patients with 

advanced HCC [165]. Twenty-four patients were enrolled, and 26% experienced stable 

disease≥ 8 weeks. The second,, BBI-608, is a small molecule STAT3 inhibitor developed by 

Boston Biomedical, Inc. BBI-608 inhibits STAT3 and can inhibit expression of genes 

involved in the cancer stem cell phenotype. This approach may be of interest for BTC, given 

the role of cancer stem cells in this disease [200–203]. Although not investigated formally 

for BTC, this aspect has been the primary focus of preclinical studies using BBI-608. In 
vitro studies demonstrate this agent has activity against prostate and pancreatic cancer cell 

lines. BBI-608 down-regulated β-catenin and c-Myc in pancreatic cancer at the level of 

protein expression [204] and decreased expression of these same mRNAs in prostate cancer 

cell lines [205]. Further studies showed that in vivo treatment of mice with BBI-608 strongly 

inhibited the growth of PC-3 prostate cancer xenografts [205]. In pancreatic cancer 

xenograft models using the PaCa-2 cell line, BBI-608 likewise slowed tumor growth as 

compared to mice treated with gemcitabine [204]. Several ongoing phase III studies are 

investigating the combination of BBI-608 with chemotherapy in multiple GI malignancies, 

including gastric, colon and pancreatic cancer (Table 5).

In addition to the role of STAT3 and β-catenin in regulating stemness, these proteins each 

play important roles in regulating immune evasion in advanced malignancy. This property 

may also be of interest in BTC, given the immunosuppressive features of disease. As 

mentioned previously, STAT3 plays an important role in regulating T cell phenotypes and 

the expansion of immunosuppressive myeloid cells [206]. With regards to β-catenin, a recent 

study by Spranger et al. reported that activated β-catenin signaling was associated with gene 

expression signatures in patient melanoma tumors indicative of limited T cell infiltration 

[207]. This and other studies suggest that targeting STAT3 and β-catenin may augment the 

efficacy immunotherapy. However, it is also appreciated that Wnt/β-catenin signaling plays a 

key, T-cell intrinsic role in balancing the generation of CD8+ memory T cells that may be 

instrumental in maintenance of effective anti-tumor immune responses [208, 209]. Several 

ongoing clinical trials are utilizing BBI-608 in combination with chemotherapy, inhibitors of 

VEGF or MEK, and immune checkpoint inhibitors (Table 5) and will provide valuable 

information.

Another clinically relevant approach to STAT3 inhibition is using AZD9150, an antisense 

oligonucelotide. This agent has been tested in patients with advanced lymphoma and solid 

tumors. With promising results observed in two-thirds of patients with diffuse large B-cell 

lymphoma (DLBCL), AZD9150 is currently under evaluation in several other clinical trials. 

For example, phase I studies of AZD9150 as a single agent are ongoing in HCC patients (), 

as a single agent in phase II studies in ovarian and GI cancers () and in combination with 
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immunotherapies such as MEDI4736, an anti-programmed death-ligand 1 (PD-L1) inhibitor 

and tremelimumab, an anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody 

() in diffuse large B cell lymphoma. Though no results from these clinical trials are available 

yet, the outcome will surely have significant implications on targeting STAT3 in the setting 

of BTC, given the role of this pathway in its pathology.

4.0 Resistance to Targeted Inhibition

Resistance to targeted, small-molecule therapies represents an ongoing challenge for 

numerous malignancies including BTC. Inhibition of the MEK and PI3K signaling pathways 

are particularly subject to resistance based on several published studies. For example, 

resistance to single agent MEK inhibition is mediated via both PI3K and STAT3 signaling 

pathways in BTC and other cancers, providing rational approaches to combined therapy [72, 

210, 211]. Further, MEK inhibition results in MYC-dependent transcriptional upregulation 

of ERBB3, leading to cell intrinsic drug resistance in KRAS mutant tumors [212]. Similarly, 

resistance to PI3K inhibitors can occur via multiple mechanisms. These include cell-intrinsic 

events such as negative feedback loops mediated via downstream mTOR signaling or MYC 

accumulation resulting activation [213, 214]. Alternatively, upstream receptor tyrosine 

kinase activation can also occur, maintaining the signaling through this pathway [215].

Further contributing to resistance to these inhibitors are the inherent crosstalk between each 

of these signaling pathways. This multi-directional communication occurs by virtue of 

common features of both the receptors and their ligands. For instance, IL-6, GM-CSF, and 

EGF can activate MEK, PI3K, and STAT3 signal transduction [216, 217] as these cytokines 

activate kinases associated with each pathway. IL-6, an inflammatory cytokine, is highly 

elevated in patient BTC tumors and circulating blood, and is secreted from human BTC cell 

lines. This and other gp130 interacting cytokines can also function in an autocrine manner to 

signal simultaneously via the MEK, PI3K, and STAT3 pathways (Fig. 1). Thus, inhibition of 

any individual pathway has the potential to promote compensatory activation of other 

signaling nodes, ultimately leading to drug resistance. Other proteins can behave in a 

manner that activates redundant signal transduction between these pathways. For example, 

Src can activate STAT3, Raf-1, and A-Raf, while B-Raf can be phosphorylated 

independently of Src [94]. Similarly, activated Ras can interact with PI3K, leading to its 

activation [218], while the PI3K-TOR and STAT3 signaling pathways are functionally linked 

[219]. Besides signaling to downstream Raf, Ras can also activate PI3K by directly binding 

to the catalytic subunit [220–222], thus bypassing the need for EGFR activation, and 

rendering EGFR inhibition ineffective.

Inhibition of multiple signaling pathways, notably those that crosstalk and can act to 

compensate one another, represents a rational strategy in the treatment of BTC. Several 

recent studies have examined the mechanisms by which cancers may bypass the inhibitory 

effects of these drugs. In vitro resistance to the MEK inhibitor AZD6244 in BTC was 

overcome with the addition of Akt or mTOR inhibitors (MK-2206 and AZD8055), and was 

most likely effective due to inhibition of the feedback mechanism on the PI3K pathway 

[210]. Such resistance has also been observed in cancers with KRAS mutations [211]. 

Notably, the STAT3 pathway also functions as a mechanism of resistance to MEK inhibition 
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in KRAS mutated pancreatic and colon cancers [72]. Such compensatory signaling 

mechanisms showcase the need for concurrent targeting of these pathways to circumvent 

resistance.

5.0 Conclusion

Applying targeted therapeutic approaches to the treatment of BTC represents an area that 

remains largely unexplored. Given the complicated pathology and heterogeneity of BTC, 

inhibiting a single oncogenic signaling pathway is unlikely to elicit durable complete 

responses. Combined targeting of multiple signaling pathways may be an important strategy 

to improve efficacy and limit resistance. The small molecule inhibitors discussed also have 

the potential to be tested in combination with other modalities, including radiotherapy and 

immunotherapy. Given that MEK, PI3K, and JAK/STAT pathways may be involved in the 

radio-resistance or immune suppression observed in cancer patients, concurrent inhibition of 

these pathways may impact efficacy.

Expert Opinion

BTC is a refractory tumor that has poor outcomes. Chemotherapeutic regimens have been 

evaluated extensively in clinical trials and have provided only incremental benefit. Recent 

data has uncovered a role for many key pro-survival and inflammatory pathways that are 

candidates for targeting therapeutically. These findings hold strong potential for 

identification of new treatment approaches that may produce durable clinical activity in this 

aggressive malignancy. It is likely that targeting constitutively active signal transduction 

pathways could benefit patients with advanced biliary cancer, when they are administered 

together with chemotherapeutic approaches, or when applied in combination based on 

supportive pre-clinical data. Among the most notable of these pathways which can be 

subject to pharmacologic inhibition are the MEK, PI3K and STAT3 pathways. These 

pathways are particularly interesting based on their role in the malignant phenotype, the 

tumor microenvironment and immune dysregulation that occurs in BTC patients. However, 

additional pre-clinical data will be necessary to achieve the goal of translating combination 

therapy approaches into human clinical trials. In the coming years, it will be critical to adapt 

our understanding of cross-talk between these and other pathways to identify the most 

promising therapeutic combinations to move forward. Given the recent renaissance in 

immunotherapy, it is also desirable to identify small molecules that can be administered with 

the goal of potentiating the efficacy of these immune stimulatory modalities. This is 

especially important in light of a recent report indicating that adoptive immunotherapy can 

produce clinical activity in BTC [223].

One of many challenges to date in advancing therapy for BTC has been a lack of in vivo pre-

clinical models that approximate human disease. The fact that most BTC patients diagnosed 

already possess metastatic disease also leaves little time to attempt multiple lines of 

treatment and learn in the clinical setting. Further, it is likely that because these tumors have 

heterogeneous etiology, genetic profiles, and anatomic location, development of relevant 

pre-clinical models will remain a challenge. These factors necessitate the need for a 
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collaborative, coordinated effort within the field to collect and study patient material 

whenever possible to gain the most information about this disease.

It is conceivable that small molecule inhibitors targeting MEK, PI3K and STAT3 will have 

utility as second line therapy in patients who receive limited benefit from chemotherapy and 

radiotherapy. This particularly relevant as the activation of these pathways could be altered 

in response to many of these conventional therapy approaches. However, a key endeavor will 

be to more carefully define how the order of treatment alters activation of these pathways, 

and importantly, the mechanisms of resistance to these modalities. It will also be critical to 

gain further information about resistance of patient tumors on an individual level, which 

could allow for prioritizing among the many pathways that could be targeted. As new 

treatment combinations targeting these pathways enter clinical trials, we must take several 

factors into consideration when planning both patient assessment and laboratory correlative 

studies. These include characterizing the safety profile, optimizing dose, schedule and 

potential for synergy or antagonism on tumor, immune and stromal cell compartments.

Several opportunities are available to fine-tune the use of these and other drugs to improve 

clinical outcomes for BTC patients in the future. First, we need to continue to improve our 

ability to classify patients in a more personalized manner via unique mutation profiles in the 

tumor. This may identify distinct subsets of patients with greater likelihood to respond to 

these targeted agents. In the coming years, coordinated efforts to conduct both targeted and 

unsupervised sequencing may identify key genetic features that could be used as prognostic 

or predictive markers in the clinical setting.
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Article Highlight Box

• Poor survival and limited treatment options for biliary tract cancer (BTC) 

demonstrate the need for novel therapeutic approaches.

• A summary of the various chemotherapeutic regiments of both published and 

ongoing clinical trials in BTC has been presented.

• Key signal transduction pathways are of interest for targeted therapy in BTC, 

with particular focus and rationale for targeting mitogen-activated protein 

kinase kinase (MEK), phosphatidylinositol-3 kinase (PI3K), and signal 

transducer and activator of transcription-3 (STAT3) pathways.

• Several small molecule inhibitors designed to inhibit MEK, PI3K, and STAT3 

are available for potential application to BTC.
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Figure 1. 
Network of gp130-interacting signaling pathways. This figure illustrates the network of 

integral signaling pathways that are aberrantly activated in a variety of cancers, as well as in 

BTC. Mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and 

Janus kinase/signal transducer and activator of transcription (Jak/STAT) signaling cascades 

cross talk and contribute to tumor growth, proliferation and treatment resistance.
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Table 1.

Published clinical trials on BTC.

Single agent trials Reference

Capecitabine [4]

Docetaxel [5, 6]

Erlotinib [7]

Gemcitabine [8, 9]

Irinotecan [10]

MK2206 [11]

S-l [12]

Sunitinib [13]

Gemcitabine (Gem) combination based trials Reference

Gem + capecitabine [14–18]

Gem + cetuximab [19]

Gem + cisplatin [20–22]

Gem + docetaxel [23]

Gem + oxaliplatin [24–27]

Gem + oxaliplatin + bevacizumab [28]

Gem + oxaliplatin + cetuximab [29]

Gem + cisplatin + S-l [30, 31]

Fluorouracil (5-FU) combination based trials Reference

5-FU + cisplatin [32]

5-FU + IFNα−2b [33]

5-FU + leucovorin [34–36]

5-FU + carboplatin + leucovorin [37]

5-FU + cisplatin + epirubicin [38]

5-FU + cisplatin + leucovorin [39]

5-FU + doxorubicin + mitomycin C [40]

5-FU + epirubicin + leucovorin + methotrexate [41]

FOLFIRI + bevacizumab [42]

Gemcitabine + 5-FU combination based trials Reference

Gem + 5-FU + leucovorin [43]

Gem + 5-FU + cisplatin + epirubicin [44]

Gem + oxaliplatin + 5-FU [45]

Other combination trials Reference

Bevacizumab + erlotinib [46]

Capecitabine + cisplatin [47, 48]

Capecitabine + oxaliplatin [49]
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Single agent trials Reference

Capecitabine + cisplatin + epirubicin [50]

S-l + oxaliplatin [51]

S-l + valproic acid [52]

2-arm Comparison trials Reference

5-FU vs. 5-FU + doxorubicin + mitomycin C [53]

Gem vs. Gem + 5-FU + leucovorin [54]

Mitomycin C + Gem vs. mitomycin C + capecitabine [55]

5-FU + etoposide + leucovorin vs. 5-FU + cisplatin + epirubicin, [56]

Gem vs. Gem + cisplatin [57–59]

Gem + oxaliplatin vs. Gem + oxaliplatin + erlotinib [60, 61]

Gem + oxaliplatin vs. Gem + oxaliplatin + cetuximab [62]

Gem vs. Gem + sorafenib [63]

5-FU vs. capecitabine vs. 5-FU + irinotecan vs. 5-FU + oxaliplatin vs. 5-FU + cisplatin vs. sunitinib [64]

S-l vs. S-l + Gem [65]

Photodynamic therapy (PDT) vs. PDT + S-l [66]

5-FU - fluorouracil, FOLFIRI - irinotecan with fluorouracil and folinic acid, Gem - gemcitabine
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Table 2.

Completed clinical trials in BTC.

Type of Trial Patient Characteristics Treatments Outcome
Reference/

ClinicalTrials.gov 
Identifier

Phase I Patients at risk of CCA 
recurrence

Gem + cisplatin + sirolimus 
(rapamycin)

Completed, results not yet 
posted

Phase I/II CCA Gem + cisplatin + floxuridine Completed, results not yet 
posted

Phase II Advanced and/or inoperable 
CCA Gem + capecitabine Completed, results not yet 

posted

Phase II Metastatic or unresectable 
biliary cancers Erlotinib + bevacizumab Median survival: 9.9 months; 

TTP: 4.4 months

Phase II CCA Gem + capecitabine + 
bevacizumab

Completed, results not yet 
posted

Phase I/II CCA Gem + cisplatin Completed, results not yet 
posted

Phase II Advanced or metastatic 
BTC Imatinib + 5-FU + leucovorin Completed, results not yet 

posted

Phase II BTC
Gem + oxaliplatin vs. 
panitumumab + gem + 

oxaliplatin

Completed, results not yet 
posted

5-FU - fluorouracil, CCA - cholangiocarcinoma, TTP - time-to-progression
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Table 3.

Ongoing clinical trials in BTC.

Type of Trial Treatments ClinicalTrials.gov 
Identifier

Phase 0 HAI of FURD + dexamethasone vs. HAI of FURD + dexamethasone + gem vs. HAI of FURD + 
dexamethasone + gem + oxaliplatin

Phase I Acelarin + Cisplatin

Phase I DKN-01 + gem + cisplatin

Phase I HAI of FURD + dexamethasone + gem

Phase I Pazopanib + GSK1120212

Phase I/II Amphinex + gem vs. gem + cisplatin

Phase I/II ARQ 087

Phase I/II CX-4945 + gem + cisplatin

Phase I/II Cytokine induced killer cells

Phase I/II Gem + cisplatin + MEK162

Phase II Abraxane + gem + cisplatin

Phase II ASLAN001

Phase II BGJ398 (pan FGFR kinase inhibitor)

Phase II Cabozantinib

Phase II Ceritinib (LDK378)

Phase II FOLFIRINOX

Phase II Gem + cisplatin + selumetinib

Phase II Gem + oxaliplatin + capecitabine vs. gem + oxaliplatin + capecitabine + panitumumab

Phase II Gem + oxaliplatin + capecitabine + panitumumab vs. gem + oxaliplatin + catecitabine + bevacizumab

Phase II HAI of FURD + dexamethasone + gem + oxaliplatin

Phase II Low-dose radiation + gem + cisplatin

Phase II Nab-paclitaxel + gem

Phase II Pembrolizumab

Phase II Ramucirumab

Phase II Refametinib

Phase II Regorafenib

Phase II RRx-001 + gem + cisplatin

Phase II Sunitinib

Phase Ha Trametinib

Phase II/III Radiofrequency ablation + cytokine-induced killer cells (CIK) transfusion

Phase III Gem + cisplatin

Phase III Gem + oxaliplatin vs. capecitabine

Phase III Oxaliplatin

5-FU - fluorouracil, FOLFIRI - irinotecan with fluorouracil (5FU) and folinic acid, FOLFIRINOX - FOLFIRI plus oxaliplatin, FURD - floxuridine, 
Gem - gemcitabine, HAI - hepatic arterial infusion.
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Table 4.

Genetic alterations and abnormal protein expression found in BTC.

Gene Percentage of patients Function/Alterations Reference

Proliferation

KRAS

24.6% of BTC

Mutation at codon 12 or 13, constitutively active protein

[73]

54% of BTC [74]

45% of BTC [75]

33% of BTC [76]

7.4% ICC [77]

5% of ICC and 23% of ECC [78]

BRAF

22% of BTC Mutations at various codons [75]

7.4 of ICC V600E substitution, constitutively [77]

3% of ICC active protein [78]

EGFR

13.6% of BTC

Mutations at various codons

[79]

13–15% of BTC [80]

26.5% of BTC [81]

RASSF1A

69% of BTC

Promoter hypermethylation, decreased transcriptional activity

[82]

68.75% of ECC [83]

27% of BTC [84]

PIK3CA
8.2% of BTC

Gain of function mutation
[81]

9% of ICC and 0% of ECC [85]

Cell-cycle regulation

SMAD4 45.2% of ICC Loss of protein expression [86]

CDKN2A (p16)
35.7% of ICC Loss of protein expression [86]

16.1%, 57.1%, 20% of BTC Hypermethylation, mutation, LOH [87]

TP53
5% of ICC and 14% of ECC G245S and R175H substitution, loss of protein function [78]

37% of ICC Loss of protein function [88]

Chronic inflammation

SOCS3 27% of ICC Promoter hypermethylation [89]

Metabolism

IDH1/2

23% of ICC and 0% of ECC

Mutation decrease protein function

[78]

10% of ICC [90]

28% of ICC and 7% of ECC [91]

BTC - biliary tract cancer, CDKN2A - cyclin-dependent kinase inhibitor 2A, ECC - extrahepaticcholangiocarcinoma, EGFR - epidermal growth 
factor receptor, ICC - intrahepatic cholangiocarcinoma, IDH1/2 - isocitrate dehydrogenase, LOH - loss of heterozygosity, PIK3CA – 
phosphatidylinositol−4,5-bisphosphate 3-kinase, RASSF1A - Ras association domain family 1 isoform A, SMAD4- mothers against 
decapentaplegic homolog 4, SOCS3 - suppressor of cytokine signaling 3,TP53- tumor suppressor protein p53
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Table 5.

Inhibitors of MEK/PI3K/STAT3

Pathway Name Target Clinical trial Cancers References

MAPK

PD098059 MEK1/2 Preclinical Advanced hematological and 
advanced solid cancers [101–104]

U0126 MEK1/2 Preclinical Advanced hematological and 
advanced solid cancers [103–105, 107, 108]

AZD8330 MEK1/2 Phase I Advanced solid tumors [109]

E6201 MEK1 Phase I Melanoma [99, 110, 111]

PD-0325901 MEK1/2 Phase I Melanoma, NSCLC [110, 112, 113]

Pimasertib 
(AST03026) MEK1/2 Phase I Colorectal, multiple myeloma [115]

RO4987655 MEK1 Phase I Melanoma [116]

RO5126766 Raf/MEKl/2 Phase I Melanoma [117]

TAK733 MEK1/2 Phase I Melanoma, NSCLC, colorectal, 
breast [114, 118]

MEK162 MEK1/2 Phase I/II NRAS mutant melanoma, 
NSCLC, pancreatic, BTC [119]

Selumetinib 
(AZD6244) MEK1 Phase I, II Melanoma HCC, pancreatic, 

colon, lung, breast, NSCLC [120–133]

Refametinib 
(RDEA119) MEK1/2 Phase II HCC, melanoma, colorectal [95]

WX-554 MEK1/2 Phase II Advanced solid tumors [95]

Trametinib 
(GSK1120212) MEK1/2 Phase III Melanoma, colorectal [134]

Cobimetinib 
(GDC-0973) MEK1 Phase I, II, III Advanced solid tumors, 

melanoma [135–138]

PI3K

LY294002 PI3K and other related 
kinases Preclinical Fibrosarcoma [105, 107, 139–141]

PI-103 PI3K, mTORC1/2, DNA-
PK Preclinical Glioma prostate, colon, NSCLC [142–146]

PWT-458 PI3K Preclinical NSCLC, glioblastoma, renal [147, 148]

Wortmannin PI3K, mTOR, DNA-PK, 
MAPK Preclinical Advanced hematological and 

advanced solid cancers [135, 142, 149]

ZSTK474 PI3Ks Preclinical NSCLC, melanoma, ovarian, 
prostate [150, 151]

BAY 80–6946 PI3K(p110α, p) Phase I Lymphoma, esophageal, 
pancreatic [135]

GDC-0032 PI3K(pl00α,-δ,-γ) Phase I Breast, NSCLC [135]

GSK-2126458 PI3K, mTOR Phase I Renal cell, bladder [152]

IPI-145 PI3K(p110 δ, γ) Phase I Leukemia, lymphoma [135]

BEZ-235 PI3K, mTOR Phase I, II Breast, glioma, melanoma, 
pancreatic [135, 153–156]

BGT-226 PI3K, mTOR Phase I/II Solid tumors, breast [157]

BKM120 
(Buparlisib) PI3K Phase I/II Breast, glioblastoma, NSCLC [135,158]

BYL-719 PBK(p110 α) Phase I/II Breast, cervical, ovarian, head 
and neck [135]
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Pathway Name Target Clinical trial Cancers References

GDC-0941 PI3K(p110α),Flt3 Phase I/II
Lymphoma, NSCLC, breast, 
melanoma, pancreatic 
endometrial

[135, 159–161]

GDC-0980 PI3K, mTOR Phase I/II Prostate [135]

PX-866 PI3K Phase I/II
Glioblastoma, breast, colon, 
prostate, NSCLC, pancreatic, 
ovarian

[135, 162, 163]

XL-147 PI3K Phase I/II NSCLC, solid tumors, 
glioblastoma [96, 135]

XL-765 PI3K, mTOR Phase I/II Glioma, NSCLC [164]

PF-04691502 PI3K, mTOR Phase II Endometrial [135]

PF-05212384 PI3K(p110 α, γ), mTOR Phase II Solid tumors, colon [135]

CAL-101 (Idelalisib) PI3K(p110δ) Phase III Leukemias, lymphomas, 
myeloma [135]

STAT3

OPB-31121 STAT3 Phase I Advanced HCC [165]

AZD9150 STAT3 Phase I/II Lymphoma, HCC, ovarian, GI

,
,
,
,
[166]

BBI6018 
(napabucasin) STAT3 Phase I/II/III

Hematologic malignancies, 
colorectal, GI, pancreatic, HCC, 
glioblastoma, NSCLC, 
mesothelioma,

,
,
,
,
,
,
,
,
,
,
,
,
,
,
,

BTC - biliary tract cancer, DNA-PK - DNA-dependent protein kinase, Flt3 - Fms-related tyrosine kinase 3, GI - gastrointestinal, HCC - 
hepatocellular carcinoma, MEK - extracellular signal-regulated kinase (ERK) kinase, mTOR - mammalian target of rapamycin, NSCLC – non-
small cell lung cancer,PI3K - phosphoinositide 3-kinase, STAT3 - signal transducer and activator of transcription 3
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