Skip to main content
. 2019 Sep 18;20:480. doi: 10.1186/s12859-019-3050-8

Table 1.

Accuracy of classifiers used in the experiments on the TCGA dataset

Classifier Accuracy (10-fold CV)
1046 Features 100 Features Hyper parameters Feature selection method
avg std avg std
Gradient Boosting 0.9398 0.0076 0.9359 0.0086 300 predictors Decision Trees
Random Forest 0.9351 0.0071 0.9324 0.0073 300 predictors Decision Trees
Logistic Regression 0.9178 0.0096 0.9237 0.0067 - Coefficients
Passive Aggressive 0.9117 0.0104 0.8831 0.0115 - Coefficients
SGD 0.91 0.0074 0.9035 0.0152 - Coefficients
SVC 0.9211 0.0122 0.9154 0.0065 Linear kernel Coefficients
Ridge 0.8971 0.0138 0.8305 0.0062 - Coefficients
Bagging 0.9151 0.0120 0.9110 0.0077 300 predictors Decision Trees
Average 0.918463 - 0.9044 - - -

In the case a classifier is not using standard values for its hyperparameters, the relevant variations are summarized in the corresponding column