Table 1.
Classifier | Accuracy (10-fold CV) | |||||
---|---|---|---|---|---|---|
1046 Features | 100 Features | Hyper parameters | Feature selection method | |||
avg | std | avg | std | |||
Gradient Boosting | 0.9398 | 0.0076 | 0.9359 | 0.0086 | 300 predictors | Decision Trees |
Random Forest | 0.9351 | 0.0071 | 0.9324 | 0.0073 | 300 predictors | Decision Trees |
Logistic Regression | 0.9178 | 0.0096 | 0.9237 | 0.0067 | - | Coefficients |
Passive Aggressive | 0.9117 | 0.0104 | 0.8831 | 0.0115 | - | Coefficients |
SGD | 0.91 | 0.0074 | 0.9035 | 0.0152 | - | Coefficients |
SVC | 0.9211 | 0.0122 | 0.9154 | 0.0065 | Linear kernel | Coefficients |
Ridge | 0.8971 | 0.0138 | 0.8305 | 0.0062 | - | Coefficients |
Bagging | 0.9151 | 0.0120 | 0.9110 | 0.0077 | 300 predictors | Decision Trees |
Average | 0.918463 | - | 0.9044 | - | - | - |
In the case a classifier is not using standard values for its hyperparameters, the relevant variations are summarized in the corresponding column