Skip to main content
. 2019 Sep 18;20:480. doi: 10.1186/s12859-019-3050-8

Table 9.

Comparison of the 8 classifiers, for the different experiments with the 100-miRNA signature

TT vs TCGA GEO
Classifier TCGA NT GEO (Subtype) (Subtype) Global
Gradient Boosting 0.9359 0.9846 0.6697 0.9725 0.8909 0.8907
Random Forest 0.9324 0.9839 0.8085 0.9725 0.8634 0.9121
Logistic Regression 0.9237 0.9799 0.9351 0.9647 0.8476 0.9302
Passive Aggressive 0.8831 0.9606 0.8678 0.9556 0.8197 0.8974
SGD 0.9035 0.9767 0.9393 0.9490 0.8145 0.9166
SVC 0.9154 0.9791 0.7724 0.9451 0.8355 0.8895
Ridge 0.8305 0.9470 0.8867 0.9503 0.8300 0.8889
Bagging 0.9110 0.9812 0.7682 0.9555 0.9070 0.9046

Logistic Regression was the best across all experiments, and Ridge has the worst accuracy