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Purpose: Next-generation sequencing (NGS) is rapidly replacing
Sanger sequencing in genetic diagnostics. Sensitivity and specificity
of NGS approaches are not well-defined, but can be estimated from
applying NGS and Sanger sequencing in parallel. Utilizing this
strategy, we aimed at optimizing exome sequencing (ES)–based
diagnostics of a clinically diverse patient population.

Methods: Consecutive DNA samples from unrelated patients with
suspected genetic disease were exome-sequenced; comparatively
nonstringent criteria were applied in variant calling. One thousand
forty-eight variants in genes compatible with the clinical diagnosis
were followed up by Sanger sequencing. Based on a set of variant-
specific features, predictors for true positives and true negatives
were developed.

Results: Sanger sequencing confirmed 81.9% of ES-derived
variants. Calls from the lower end of stringency accounted for the

majority of the false positives, but also contained ~5% of the true
positives. A predictor incorporating three variant-specific features
classified 91.7% of variants with 100% specificity and 99.75%
sensitivity. Confirmation status of the remaining variants (8.3%)
was not predictable.

Conclusions: Criteria for variant calling in ES-based diagnostics
impact on specificity and sensitivity. Confirmatory sequencing for
a proportion of variants, therefore, remains a necessity. Our study
exemplifies how these variants can be defined on an empirical basis.
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INTRODUCTION
Sanger sequencing has been the major technology for
molecular diagnosis of inherited diseases. In genetically
heterogeneous conditions, the associated “one gene after
the other” strategy is costly and time-consuming. With the
continuing increase in the number of candidate genes for
many conditions,1 it also becomes more and more imprac-
tical. Next-generation sequencing (NGS) is therefore rapidly
replacing Sanger sequencing not only in research settings,
but also in routine genetic diagnostics. The corresponding
approaches either target a predefined set of genes (panel
sequencing), the exonic regions of all genes (exome-sequen-
cing, ES), or the complete human genome (genome sequen-
cing, GS).2

Initial applications of NGS suggested that an enrichment
step as immanent to panel sequencing and ES introduces a
significant amount of error which manifests as false positives
and false negatives.3 For the implementation of NGS as a
diagnostic test, determination (and optimization) of analytical
specificity and sensitivity is therefore crucial, and orthogonal

Sanger sequencing is the most straightforward corresponding
approach.4

Early studies that addressed specificity of NGS-based
diagnostics applied small gene panels to limited numbers
of patients, and commonly observed a considerable
fraction of false positives.5–8 Later studies on larger
panels and more patients, however, frequently reported
(close to) 100% specificity.9–13 Some authors therefore
proposed that independent confirmation of NGS findings
is unnecessarily redundant, and that panel sequencing can
reliably be implemented as a stand-alone test.10,13,14 Similar
conclusions have later been drawn for diagnostic ES.15,16 A
very large recent study, however, (re-)raised some concerns
toward this attitude: based on the analysis of 47 genes in
~20,000 patients with hereditary forms of cancer, Mu et al.17

suggested that up to 1.3% of gene panel–based candidate
variants represent false positives. Based on the presumed
negative effect on specificity, the authors therefore
refrained from completely omitting Sanger-based confirma-
tory sequencing.17
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The sensitivity aspect of NGS has apparently received
much less attention. This may be due to the fact that, to
properly determine sensitivity, NGS-derived as well as
Sanger sequencing–derived data must be available for all (!)
nucleotides analyzed. Naturally, this premise can only be met
on a small scale. Of the few pertinent studies, most applied
NGS-based resequencing of samples that had previously
been Sanger-sequenced. Some of them found 100%
sensitivity,11,14,18 but usually involved very small numbers of
variants. Conceptually similar but larger studies did observe
false negatives, and showed that overall sensitivity depends
on certain thresholds applied during variant calling.6–9

In contrast to these initial efforts that focused on known
variants, most subsequent reports on a combination of NGS
and Sanger sequencing aimed at identifying (and verifying)
novel family-specific variants. While this enabled estimating
specificity (see also above), the sensitivity of NGS in these
instances is unknown. This fact, however, is often not
acknowledged (or not considered?) when claiming “high
concordance” to Sanger sequencing for gene panels 13 and for
clinical exomes.19 It was again Mu et al.17 who emphasized
that the well-known interdependency of specificity and
sensitivity needs to be accounted for also in NGS-based
diagnostics: upon modeling 100% specificity for their set of
~8,000 panel-derived variants, they noticed a significant drop
in sensitivity. They concluded that Sanger-based confirmatory
sequencing for at least subsets of NGS-derived candidate
variants is required to maintain high specificity and sensitivity
in panel-based NGS. They also pointed out that such subsets
can only be defined after having followed up very large
numbers of variants, and that the corresponding criteria may
be platform-specific.17

We set out to assess the performance of ES in a clinically
heterogeneous diagnostic setting. We initially implemented
very nonstringent criteria for variant calling to test whether
the potential increase in diagnostic yield would outweigh
the expected decrease in specificity. We subsequently utilized
selected features of the >1,000 followed-up variants to
generate an algorithm that reliably predicts true and false
positives. We thereby minimized confirmatory Sanger
sequencing load in an evidence-based and highly objective
manner, while maintaining not only high specificity, but also
high sensitivity.

MATERIALS AND METHODS
Sample origin
Our study incorporates data on a total of 1,048 candidate
genomic variants. They were derived from routine ES-based
genetic workup of 773 individuals who had been diagnosed
with presumably genetic diseases. Geographic origin of these
patients was highly diverse (Europe, the Middle East, South
and Central America, North America, other regions), and a
significant fraction had a consanguineous background.
Clinical conditions included (amongst others): (1) abnorm-
alities of the nervous system, (2) abnormalities of the head
and neck, (3) muscular hypotonia/weakness, (4)

developmental and/or growth delay, (5) abnormalities of the
eye, and (6) metabolic abnormalities. Patient samples
were provided as EDTA blood or as dried blood spots on
filter cards (CentoCard®). DNA was extracted as described
previously.20

Exome sequencing
Exome capture was carried out with the Nextera Rapid
Capture Exome Kit (Illumina, Inc., San Diego, CA). The kit
covers 214,405 exons with a total size of about 37 Mb.
Sequencing was done using either NextSeq500 or
HiSeq4000 sequencers (Illumina) to produce 2 × 150-bp
reads, and pooling up to nine exomes per lane. The
bioinformatics pipeline was based on the 1000 Genomes
Project data analysis pipeline,21 and on Genome Analysis
Toolkits (GATK) best practice recommendations;22 it incor-
porated widely used open source software projects and was
supplemented with custom-developed software (a list of
relevant bioinformatics tools is provided in Supplementary
Table 1). In short, raw sequencing data were first converted
to standard fastq format using bcl2fastq (Illumina), and then
aligned using Burrows–Wheeler Aligner (BWA) software.23

Alignments were converted to binary bam file format, sorted
on the fly and de-duplicated. Variant calling utilized the
GATK HaplotypeCaller (the approach for deriving the quality
score is detailed in Supplementary File 1). Lower cutoffs were
set to: frequency ≥7.5%, total number of reads ≥2, and phred-
scaled quality score ≥20.

Sanger sequencing
The primary aim of our service is to provide informed genetic
diagnosis. A “gene-hunting” aspect, i.e., the identification
of novel disease genes, is therefore explicitly not part of
our routine diagnostic pipeline. Confirmatory Sanger sequen-
cing was therefore initiated only for ES-derived variants
in established disease genes that were compatible with the
primary clinical diagnosis. To this end, exons containing the
candidate variant were amplified from genomic DNA, and
resequenced bidirectionally.

Modeling the application of filtering criteria as commonly
used in variant calling
The criteria for variant calling in panel-based NGS
approaches vary widely. Thresholds for coverage (equivalent
to number of reads for a given position) included 20×,18

30×,10 40×,9 and even 100×.13 Similarly wide ranges have been
used for frequency, i.e., the fraction of reads for the candidate
variant (15–30%).6,8 Cutoffs for the quality score have been
reported as being at least 20 or 25,8,13 but frequently only the
statement “high quality” is made.9 We eventually considered
20× coverage plus 20% frequency plus a quality score of
20 as representing a typical set of minimum values for
variant calling in panel sequencing. For ES-based NGS,
surprisingly, corresponding cutoffs are rarely reported. We
therefore implemented those applied by Strom et al.,15 as their
study, by Sanger following up selected ES-derived variants,
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is conceptually similar to ours. The thresholds thus
considered are 5× coverage, 35% frequency, and a quality
score of 139.
To model these criteria for our set of data, we identified the

variants that would have met the filtering criteria and those
that would not have met them. We then determined the
fractions of Sanger-confirmed and Sanger–not confirmed
variants in these groups.

Definition of potential classifiers
Numerous features were considered to be potentially
informative for beforehand prediction of Sanger confirma-
tion status for the candidate ES-derived variants. The
majority of these features were analogous in nature, i.e.,
consisted of a continuum of quantitatively differing states.
They included (1) the phred-based quality score (“quality”),
(2) the total number of reads for the position in question
(“read number”), (3) the fraction of reads for the variant
allele (“frequency”), (4) the number of reads for the
candidate variant allele (“variant reads”), (5) the number
of reads for the reference allele (“reference reads”), and (6)
the GC-content in the +/− 100 bp neighboring the position
in question (“GC-content”). In addition, a couple of digital
features, i.e., those with only two possible states, were
considered. They included (7) suggested presence of the
candidate variant in heterozygosity versus in hemi- or
homozygosity (“zygosity”), (8) localization in exonic versus
in intronic or UTR sequence (“localization”), (9) single
nucleotide exchange versus. insertion or deletion (“type”),
(10) predicted pathogenic versus other prediction

(“prediction”), and (11) origin in a homopolymer region
(>3 consecutive identical nucleotides) versus origin
not in a homopolymer region (“homopolymer origin”).
Supplementary Table 2 summarizes the selected features,
describes in detail the possible states, and indicates the
corresponding distributions.

Criteria for defining groups of variants that do and do not
require Sanger sequencing
The above-listed 11 features were individually correlated
with Sanger-based confirmation status. For the digital
features, the overlap of each of the two values with
confirmation status was recorded. The analogous
features were used to generate receiver operating character-
istics curves with respect to confirmation status. We
defined two criteria for deeming diagnostic relevance to
an observed correlation. First, the group defined by the
correlation should maintain overall sensitivity at >99.75%.
This threshold corresponds to a misclassification of a
maximum of 2 (of 890) Sanger-confirmed variants from
our data set. Second, not more than one misclassified
variant should be present per group. Third, the number of
variants per group should cover a minimum of 5% of all
followed-up variants (n= 53 for our data set). The best of
the above-defined correlations was chosen based on group
size (large preferred over small). Following removal of the
corresponding variants from the data set, the analysis was
repeated on the remaining variants in an iterative manner
until groups fulfilling the three criteria could no longer be
generated.
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RESULTS
Stringent thresholds during variant calling reduce
analytical sensitivity
Our above-defined approach resulted in the following
up of a total of 1,048 ES-derived variants (n= 735
identified on HiSeq400 versus n= 313 identified on Next-
Seq500) by Sanger sequencing. Of these, 858 and 190
were confirmed and not confirmed, respectively. This
translates into a precision of 81.9% for our set of ES data
(Fig. 1a).
We were first interested in estimating the effect of having

utilized very nonstringent criteria for variant calling. To
this end, we derived two sets of modeled data by implement-
ing more stringent thresholds as applied in previous panel-
and ES-based approaches (see Materials and Methods for
details).
Of all 1,048 variants, 849 survived filtering by the panel-

associated criteria. Amongst them were 807 Sanger-confirmed
variants, meaning that precision increased from 81.9 to 95.1%
(=807/849). The remaining 51 Sanger-confirmed variants,
however, had been filtered out. Sensitivity, therefore,
decreased from 100% (as based on positive Sanger status)
to 94.1% (=807/858). Using common ES-associated
filtering criteria, 240 variants got removed, while 808 variants
were retained. With 801 of the latter representing Sanger
confirmed variants, precision rose to 99.3% (=801/808).
Sensitivity, however, simultaneously dropped to 93.4%
(=801/858) (Fig. 1b). Both sets of criteria, despite
increasing precision, thus considerably reduce analytical
sensitivity.

All filtering parameters contribute to decreased sensitivity
The above calculations incorporated all filtering criteria
simultaneously. We wondered whether the observed decreases
in sensitivity could be explained by one parameter with
a major influence, or whether parameters contribute more
uniformly. We therefore analyzed the effects of quality,
frequency, and read number separately. Regarding the
panel-associated cutoffs, read number had the biggest
effect on sensitivity. For the ES-associated cutoffs, however,
the strongest contributions came from quality and frequency
(Fig. 1c). The negative impact on sensitivity thus results
from an additive effect rather than being traceable to only
one of the filtering parameters.

Many variant-specific features are significantly associated
with Sanger-based confirmation status
Having shown that standard filtering criteria are inappropri-
ate for our data, we aimed at using our low-stringency data set
to identify variant-specific features that are potentially more
suitable for a priori prediction of Sanger confirmation status.
For the analogous candidate features, we compared means of
confirmed versus nonconfirmed variants. All differences were
highly significant, with p values ranging from 2.3 × 10−4 (for
“reference reads”) to 2.6 × 10−28 (for “frequency”) (Fig. 2a).
For the digital features, we asked whether the two states are
distributed differentially among confirmed versus noncon-
firmed variants. The most striking difference was found for
“zygosity”: homo- or hemizygous variants accounted for
40.4% of confirmed variants (347 of 858), but only 2.6%
(5 of 190) of nonconfirmed variants (p= 2.2 × 10−13).
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Highly significant differences were also observed for “type
of variant,” “localization within gene,” and “pathogenicity
prediction.” Somewhat surprisingly, “homopolymer origin”
was not significantly associated with confirmation status
(Fig. 2b).

Several features can define diagnostically relevant
subgroups of ES-derived variants, with “quality” being
the most powerful predictor
To analyze sensitivity and specificity for binary classifications
according to the analogous features we generated receiver
operating characteristic (ROC) curves. Consistent with the
above statistical analyses (see Fig. 2a), areas under the curve
were >0.5 for all features (Fig. 3a). More importantly,
most features enabled the definition of thresholds which

create subgroups that exclusively contain “Sanger confirmed”
or “Sanger not confirmed” variants (Supplementary Table 3).
By far the largest such subgroup was based on “quality”:
a corresponding score of >215 unites 813 candidate
ES-derived variants that all got confirmed by Sanger
sequencing, and this figure corresponds to 94.8% of all such
variants. Binary classification based on the digital features was
unable to create groups that consist of “Sanger confirmed”
or “Sanger not confirmed” exclusively (Supplementary
Table 3; Fig. 3a, compare also Fig. 2b). Our analysis therefore
suggested that 77.6% of all variants (813 of 1,048) do not
require follow up by Sanger sequencing due to being a
priori identifiable as true positives. In other words, Sanger
sequencing load can be reduced to 22.4% by solely
considering “quality.”
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round 1. Arrow: “variant reads”–based binary classifier that correctly predicts status “not confirmed” for 87 of 88 variants. Overall sensitivity decreases to
99.9%. c Third round of analysis on the 147 variants that remained after round 2. Arrow: “frequency”-based binary classifier that correctly predicts status
“not confirmed” for 59 of 60 variants. Overall sensitivity decreases to 99.8%. d A fourth round of analysis on the 87 variants remaining after round 3 does
not define additional classifiers
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Two iterative rounds of analysis define predictors for large
groups of “Sanger not confirmed” variants
Having found that a “quality” score of >215 defines a large
group of variants that do not require Sanger confirmation due
to exclusively representing true positives, we next turned to
the remaining 235 variants. Numerous features were, again,
significantly associated with confirmation status (not shown).
We therefore repeated the above analysis. The largest group
that met our criteria for sensitivity and specificity was defined
by “variant reads”: a value <3 separated 88 variants, of which
87 had not been confirmed by Sanger sequencing (Fig. 3b). By
applying this threshold we increased the fraction of variants
that do not require Sanger sequencing to 86.0% (901 of 1,048),
and reduced Sanger sequencing load to 14.0% (147 of 1,048).
The simultaneous drop in sensitivity (from 100 to 99.9%)
resulted from the fact that one of the variants with only 2
reads for the candidate variant had actually been confirmed
by Sanger sequencing. A third round of analysis using the
147 candidate variants that remained after round 2 showed
that a frequency score ≤0.25 defines an additional 60 variants

highly enriched for “Sanger not confirmed” variants (59 of 60)
(Fig. 3c). By applying this finding, sensitivity minimally
dropped further to 99.8%, but specificity remained at 100%.
More importantly, the percentage of variants requiring Sanger
sequencing got further reduced to 8.3% (87 of 1,048). A fourth
round on the remaining 87 variants, despite still revealing
significant associations of certain features with confirmation
status (not shown), did not allow separation of further groups
that fulfill our predefined criteria (Fig. 3d).

The variants that require Sanger sequencing lack specific
characteristics
The above analyses defined three conceptually distinct groups
of ES-derived candidate variants: (1) a group that does not
require Sanger sequencing because every variant would get
confirmed, (2) a group that does not require Sanger
sequencing because the majority of the corresponding
variants would not get confirmed, and (3) a group for which
Sanger sequencing is required because attempts to predict
confirmation status failed. These groups had been created
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based on iteratively applying thresholds for the three
analogous features “quality,” “variant reads” and “frequency.”
We were interested in how this impacted on overall
composition of the three groups, especially as regards the
features that had not been used to define these groups. A
random distribution was observed for “homopolymer origin”
and “GC-content within +/− 100 bp” (Fig. 4a). Interestingly,
these were the features that had shown no association with
confirmation status already in the first round of analysis
(“homopolymer origin”; see Fig. 2b) or for which such an
association had been comparatively weak and was not
observed in the data derived from iterative steps 1–3 (“GC-
content within +/− 100 bp”; Figs. 2a and 3). Strikingly,
however, all other features showed a stepwise distribution of
status (digital features) and mean values (analogous features),
with the group that requires Sanger sequencing consistently
ending up at the intermediate position (Fig. 4a). We also
observed that this group is highly enriched for false positives
and false negatives as resulting from the application of
common filtering criteria in variant calling (Fig. 4b, compare
Fig. 1a). The variants for which we found Sanger sequencing
to be necessary do therefore indeed constitute a class that, in
many respects, shows mixed contributions from the two other
groups. This further underscores that their confirmation
status is not predictable with any of the features at hand.

DISCUSSION
The present paper reports on our experience with Sanger-
based confirmatory sequencing of ES-derived variants in a
clinically and ethnically heterogeneous diagnostic setting.
Our strategy differed from that chosen in conceptually similar
previous studies 13,15–17 in that very nonstringent criteria for
variant calling were initially applied. Specifically, our lower
cutoffs for “quality,” “read number,” and “frequency” were
between 10 and 50% of those applied by others (Fig. 1c; see
also Materials and Methods). We were aware that this
approach was likely to decrease precision, but reasoned that
it would enable us to address sensitivity issues at an hitherto
unmatched scale.
Only 81.9% of the variants on our nonstringent candidate

list got Sanger-confirmed (Fig. 1a). This finding corroborated
the view that highly covered variants with a good quality score
and frequencies around 50% or 100% do not require further
confirmation.14,16 Having confirmed this precision-related
aspect also in our data, we turned to the sensitivity issue. We
started out by comparing our variant list to two lists generated
with more stringent criteria. Rather unexpectedly, we found
that >5% of the true positive variants were absent from these
derived lists (Fig. 1b). Moreover, it appears that cutoffs for all
three relevant features contribute to this phenomenon
(Fig. 1c). In light of these observations, claims of a high
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concordance between NGS and Sanger sequencing in
“high-cutoff studies” 10,13,19 need to be considered with
caution. Along this line we note that our data support the
assumption that laboratories reporting zero false positives
may sacrifice sensitivity during variant calling.17 One
explanation for this unsatisfactory situation may be a lack
of awareness. Guideline papers have extensively discussed
several aspects related to Sanger confirmation of NGS-derived
variants 4,24–26, but at best have only shortly touched upon
variant calling.27 This is, however, inherently related to
the nature of such publications: they aim at providing
general guidelines, while recognizing that specific details are
dependent upon individual sequencing workflows. We believe
that the present study will help to increase awareness for the
fact that variant calling represents one of the more important
pertinent details.
The above-discussed first part of our study suggested that

candidate lists should be extended by variants that, on
average, are more likely to be false positives. This clearly
argues against complete omission of confirmatory sequencing
as frequently proposed 10,13–16, but does not necessarily imply
that all variants require confirmation. In the second part, we
therefore wanted to define criteria that are able to predict
confirmation status. In contrast to a more or less intuitive
listing of rather conservative round values for one or two
standard features,26 or an a priori exclusion of certain classes
of variants,15 we aimed at utilizing all information available,
and to thereby derive an evidence-based conclusion. By
considering a variety of NGS-derived, nucleotide-specific,
variant-associated features, we constructed a decision tree
that, in our data set, is associated with 100% specificity and
99.8% sensitivity (Fig. 5). Especially the latter value is much
higher than the ~94% that would be achieved by standard
criteria (compare Fig. 1b). That this improvement comes at a
price, i.e. confirmatory sequencing for 8.3% of all variants,
appears more than justified. We have meanwhile updated our
ES-associated diagnostic pipeline accordingly. We are, how-
ever, also Sanger sequencing 10% of the variants regarded to
not actually require this step. This quality assurance measure
will reveal whether the chosen cutoffs remain valid over time.
It will also allow for revalidations after substantial changes to
the workflow such as implementation of a new sequencing
platform.
The present study was based on the standardized collection

of data over a long period of time. Retrospective analysis
then enabled conclusions that are of immediate relevance
for both cost (i.e., Sanger sequencing load) and quality
(specificity, sensitivity) of our diagnostic service. We
thereby followed suggestions as to a reevaluation of NGS-
associated policies once a meaningful amount of data
and experience are available.4,26,27 Due to platform and
operator characteristics likely playing a role,17,24 our very
cutoffs should, however, not be simply adopted by other
labs. Instead we recommend that, in analogy to the strategy
applied here, an initial test period be combined with a
subsequent evaluation step.
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