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Purpose: To provide a validated method to confidently identify
exon-containing copy-number variants (CNVs), with a low false
discovery rate (FDR), in targeted sequencing data from a clinical
laboratory with particular focus on single-exon CNVs.

Methods: DNA sequence coverage data are normalized within
each sample and subsequently exonic CNVs are identified in a
batch of samples, when the target log2 ratio of the sample to the
batch median exceeds defined thresholds. The quality of exonic
CNV calls is assessed by C-scores (Z-like scores) using thresholds
derived from gold standard samples and simulation studies. We
integrate an ExonQC threshold to lower FDR and compare
performance with alternate software (VisCap).

Results: Thirteen CNVs were used as a truth set to validate Atlas-
CNV and compared with VisCap. We demonstrated FDR reduction
in validation, simulation, and 10,926 eMERGESeq samples without

sensitivity loss. Sixty-four multiexon and 29 single-exon CNVs with
high C-scores were assessed by Multiplex Ligation-dependent Probe
Amplification (MLPA).

Conclusion: Atlas-CNV is validated as a method to identify exonic
CNVs in targeted sequencing data generated in the clinical
laboratory. The ExonQC and C-score assignment can reduce FDR
(identification of targets with high variance) and improve calling
accuracy of single-exon CNVs respectively. We propose guidelines
and criteria to identify high confidence single-exon CNVs.
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INTRODUCTION
Copy-number variation (CNV) is an important feature of the
human genome and can confer disease susceptibility.1–4 The
ability to detect CNVs accurately is critical for both genetic
diagnostics and to advance understanding their impact on
gene function. Next-generation sequencing (NGS) based
targeted gene panels are commonly used in clinical genetic
testing and various methods5–13 have been developed to
identify exonic CNVs in gene panel sequence data. Gene
panels afford a qualitatively different opportunity to assess
small CNVs due to their typically deeper sequence coverage

when compared with genome or exome sequencing (ES).
Ideally, the methods would detect single-exon CNVs, but this
is challenging because a single exon represents one data point,
which must exhibit minimal noise and maximal signal
compared with multiexonic CNVs, which have corroborating
data points. Detecting and reporting CNVs in the clinical
context is another challenge as false positives (FPs) must be
minimized, while all true positives (TPs) are all identified.
Achieving the high accuracy required for clinical applications
invariably demands validation on alternative platforms, which
bears its own set of technical challenges.
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Existing CNV tools that have been validated for the clinical
setting include VisCap,9 CoNVaDING,10 DeCON,11 Exome-
Depth,12 and others.5,8,13,14 CoNVaDING and ExomeDepth
are methods that are successful at detecting single-exon CNVs
by evaluating individual exon suitability for variant detection
and selecting highly correlated samples as reference controls.
In these methods, however, each single-exon CNV is treated
equally and there is no mechanism to evaluate the confidence
of the call. VisCap has relied on human visual scoring to
reduce FPs and evaluate small CNVs.
The Electronic Medical Records and Genomics (eMERGE)

Network provides an opportunity to develop tools addressing
these challenges. Briefly, eMERGE Phase III is the continuation
of a National Institutes of Health (NIH) program that aims to
incorporate genomic information into medical records (25,000
participants) by identifying rare genetic variants using eMER-
GESeq (a targeted gene panel designed by multiple eMERGE
sites to identify impactful variants; https://emerge.mc.vanderbilt.
edu/the-emergeseq-platform/ and https://doi.org/10.1101/
457523), and their effects in 109 clinically relevant genes,
including the American College of Medical Genetics and
Genomics (ACMG)15 56 medically actionable genes. Here, we
present Atlas-CNV, a method to identify CNVs even at the
single-exon level based on the normalized coverage among
samples but constrained to the same capture experiment. We
incorporate standard deviation (StDev) thresholds to remove
low quality exons and samples for controlling FPs. Atlas-CNV
produces graphical gene and exon bar plots to allow for
visualization by clinicians and diagnosticians. The leveraging of
the C-scoring exons to prioritize high quality single-exon CNVs
enables significant reduction of FPs and obviates much of the
need for costly expert-based reviewing. Atlas-CNV is designed
to analyze gene-targeted data from a set of samples without the
need for additional sequencing controls. Instead, a “midpool”
experiment is defined from a subset of the multiplexed samples
within a single probe hybridization capture experiment under-
going identical experimental conditions. The typical eMERGE-
Seq midpool is optimized to 45–48 samples. Overall, Atlas-CNV
is a fast (<2minute/midpool/CPU-core) and versatile caller that
integrates easily into clinical pipelines.
We benchmarked and validated Atlas-CNV on known

CNVs previously identified by exome sequencing (ES) and
chip array, demonstrated the C-scoring feature through
simulation on a subset of eMERGESeq samples (sequenced
at the Baylor College of Medicine Human Genome Sequen-
cing Center), and assessed its performance by verifying 64
and 29 multi- and single-exon CNVs respectively through
Multiplex Ligation-dependent Probe Amplification (MLPA).
Currently, while eMERGE reports CNVs spanning two or
more contiguous exons, our findings support the feasibility of
including single-exon CNVs into medical records with the
potential for increased diagnostic yield.16

MATERIALS AND METHODS
Atlas-CNV (v.0) is available at http://github.com/theodorc/
atlas-cnv (Perl 5.12.2, R 3.1.1). Three inputs are required: (1)

Genome Analysis Toolkit (GATK) DoC interval summary
files, (2), a panel design containing target exons, and (3) a
sample file with gender and/or midpool groupings.

Clinical sequencing
Our clinical pipeline processes 45–48 samples per midpool
experiment. Briefly, sample DNA is isolated, sheared, ligated
to barcode adapters for multiplexing, then incubated with
capture probes, and sequenced on Illumina HiSeq 2500
instruments with two midpools loaded on a single flow-cell
lane. Paired-end reads are aligned to the hg19 reference using
bwa-0.6.2 (ref. 17) with GATK-2.5.2 (ref. 18) for realignment,
recalibration, and depth of coverage calculations (DoC).

RPKM normalization and sample quality
The read depth (RD) data is normalized at the individual
sample level. GATK DoC is converted to average RD per
target, and normalized as a fraction of the sample coverage
with RPKM19 (reads per thousand bases per million reads
sequenced) as illustrated in Fig. 1a. Essentially, this step
converts the average RD per target to the equivalent number
of reads (100 bp/read) and reports the proportion to the
total number of mapped reads in the sample per million. At
each exon, the median sample is selected as the reference
after removing the 5% outliers (Z-score at 1.96). Then, log2
scores of the sample/median ratio are computed accordingly
for all exons on all samples as shown in Fig. 1b. To assess
sample quality, we define a SampleQC (Supplementary
Figure S1) with two components: (1) a 0.2 threshold on the
StDev of log2 scores for the sample, and (2) a one-way
analysis of variance (ANOVA) F-test at 5% significance
applied on the mean RPKM coverage between midpool
samples. If either component is not satisfied, the sample is
labeled “Fail.” The former is determined by computing the
StDev of log2 scores in one theoretical diploid sample with
noise randomly introduced (R function runif to generate
random deviates) into the sample/median (S/M) ratio in 5%
increments (Supplementary Figure S3). For a panel of 2000
targets, we show that StDev= 0.2 is equivalent to 25% overall
sample variability, which means given an exon deletion, it is
possible that noise could account for up to 75% (0.25/0.33) of
the overall signal to reach the calling threshold for deletions
(0.66 or log2=−0.6), and vice versa for duplications (1.32 or
log2= 0.4). While this can vary and lead to FPs, bona fide
signal may be present. Thus, we set 0.2 as the default upper
bound.

Exon quality and calling exonic CNVs
As illustrated in Fig. 1b, we also use log2 scores to assess exon
data quality because having even-exon normalized coverage is
essential to reduce FPs. Thus, we remove outliers where
coverage exceeds a threshold based upon the StDev of log2
scores at a given exon (EStDev), which is calculated on midpool
samples. We evaluate the overall distribution of all EStDevs
and establish a data derived threshold termed ExonQC, which
we define as the EStDev at 99.9% of the EStDev distribution
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(z= 3.921). An exon is labeled “Fail” if its EStDev exceeds
ExonQC. To account for EStDev overinflation due to true
exonic CNVs, we first exclude the 5% outliers (approximately
two samples), to produce a tighter EStDev value that also allows
for samples with identical CNVs (kinship). Numerous failed
exons may indicate aberrant experimental steps, or systematic
biases (Supplementary Figure S2). Typical exon fail rate per
midpool is 0.5%.
To call CNVs, we apply two thresholds on the log2 scores

(Fig. 1c): (1) a user-configurable hard limit of −0.6 and 0.4
(default) for losses and gains, and (2) a soft threshold derived
from the data distribution using a Z-score cutoff at 99% (z=
2.576), intended as a boundary to threshold calls at the
distribution tail. Any log2 scores exceeding both thresholds
are called CNVs. Autosomes and sex chromosomes are
analyzed separately with a sample file defining midpool and/
or gender subgroupings.

Visualization and confidence score
For visualization, Atlas-CNV produces a sample gene plot
with bars representing exons, and also sectioned exon bar plot
(s) to display the context of the exonic CNV with all midpool
samples. In the latter, the median sample is designated as blue,
the test as red, and other samples in gray. Fig. 1c illustrates
two deleted contiguous exons in CFTR.
We define a confidence score (C-score) assigned to each

CNV exon (positive and negative scores for duplications and
deletions) and propose three categories: “duplication or
deletion,” “likely duplication or deletion,” and “uncertain
duplication or deletion” with ranges to denote copy number
(Supplementary Material Table 1–3). C-scores are somewhat
analogous to Z-scores but rescale each exon to unit variance
by dividing the individual log2 score by the EStDev, with the
assumption that the mean log2 score for the given midpool is
zero (diploid). C-scoring standardizes exons on the same
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comparative scale. For CNVs spanning multiple exons on a
gene, individual C-scores are averaged on the gene plot report.

Performance measures and MLPA
To assess performance, we used CNV samples previously
identified by ES, and the Illumina HumanExome-12v array as
our gold standard (GS). We define sensitivity as the
proportion of GS exons (true positives, TP) over the sum of
TP and GS exons not called (false negatives, FN); specificity as
the proportion of exons other than GS exons (true negatives,
TN) over the sum TN and called exons that are not GS (false
positives, FPs); precision as the proportion of TP over the sum
of all positive calls (TP+ FP); and false discovery rate (FDR)
as the proportion of FP over all positive calls. We also define
the reproducibility of a tool as the pairwise comparison of two
identical runs (i, j) expressed as the proportion of common
exons to the union of i and j exons. Finally, an estimated FDR
(eFDR) is computed per sample using the Robust FDR
procedure,20 which is based on p values obtained from C-
scores.
MLPA (MRC Holland, www.mlpa.com) was used to

confirm CNVs for available genes. Samples were processed
according to vendor protocols using three controls: NA12878,
NA12891, and NA12892.

RESULTS
Performance assessment and comparison
To assess Atlas-CNV performance and comparisons with
VisCap, we selected 13 clinical samples with a heterozygous
gene deletion previously identified by ES and the Illumina
HumanExome-12v array as our gold standard (Table 1).
Generally, the samples were sequenced in triplicates and
divided into technical and biological replicates. The technical

replicates used aliquots from the same midpool experiment
for sequencing while the biological replicates (2 samples:
1–100155, 12–100189) are completely distinct experiments.
To compute performance measures, we averaged the
replicates of each sample’s comparison with the gold standard
and report an overall mean of these 13 samples as bars in
Fig. 2. We observed high sensitivity and specificity (>99%)
across technical and biological replicates, but VisCap has
lower precision (80%) and higher FDR (20%) than Atlas-CNV
(95%, 4%), which can be attributed to filtering FPs by
ExonQC. The legitimacy of filtered FPs was confirmed by
their absence in ES data. We also observed that the average
EStDev is nearly twice as large in FP calls (EStDev= 0.14 on 45
calls) compared with TP calls (EStDev= 0.079 on 1137 calls),
and the average SampleQC StDev is 0.2 at z= 3 (99.9%).
For reproducibility, pairwise comparisons of replicates were

first averaged per sample and then the 13 means were
averaged and reported. For the two samples with additional
distinct experiments, 3 representative pairwise comparisons
were chosen beforehand as the biological replicates (first
sample of the technical replicate set), while the remaining 12
comparisons were treated as technical replicates. We report a
higher reproducibility in Atlas-CNV (92%) compared with
VisCap (80%) indicating ExonQC may be filtering unrepeated
calls in replicate runs.
We estimated an FDR based on p values from C-scores

without prior knowledge of the truth set to confirm the Atlas-
CNV FDR of 4%. Using a robust FDR routine under the
assumption of a one-sided test,20 we computed the estimated
FDR for the 13 gold standard samples in the range from
0.12% to 14% for technical replicates, and 0% to 15% for
biological replicates at p value cutoffs between 0.009 and 0.01.
Although the estimated range is broad, our reported FDR of

Table 1 Gold standard CNVs from 13 clinical samples used to assess Atlas-CNV performance

Sample Gene Chr Start End Sizea cSNP sizeb Class Number of ES exons in CNV Exon range of CNV

1–100155 MYH11 16 15797848 15932110 134,262 815,577 hetdel 42 2–42c

2–100159 MYH11 16 15797848 15932110 134,262 735,806 hetdel 42 2–42

3–100161 MYH11 16 15797848 15932110 134,262 2,104,716 hetdel 42 2–42

4–100171 MYH11 16 15797848 15932110 134,262 1,158,489 hetdel 42 2–42

5–100168 RYR2 1 237205822 237995948 790,126 4,170,626 hetdel 104 1–105d

6–100175 DSG2 18 29078215 29118942 40,727 20,632 hetdel 12 1–12

7–100185 BRCA1 17 41242961 41249307 6346 5803 hetdel 4 8–11

8–100196 IL33 9 6241695 6256169 14,474 232,335 hetdel 7 1–7

9–100199 MYH7 14 23882022 23889487 7465 28,302 hetdel 14 27–40

10–100208 MLH1

(LRRFIP2)

3 37089010 37116608 27,598 27,528 hetdel 4 (9) 16–19 (21–29)

11–100184 HNF1B 17 36047375 36104876 57,501 1,351,422 hetdel 9 1–9

12–100189 HNF1B 17 36047336 36104876 57,540 1,375,039 hetdel 9 1–9

13–100209 HNF1B 17 36047336 36104876 57,540 1,375,039 hetdel 9 1–9
All CNVs are heterozygous deletions and were previously identified in ES and Illumina HumanExome-12v array with the exception of sample 13, which has no ES.
CNV copy-number variant, ES exome sequencing.
aCNV size from clinical ES.
bCNV size from Illumina HumanExome-12v array.
cMHY11 exon 42 has 2 targets in ES data.
dRYR2 exon 91 is absent in ES.
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4% is within this range of 0–15% and suggests the utility of
the procedure on prospective samples without orthogonal
confirmation.

Analysis of eMERGE samples
We analyzed 10,926 eMERGESeq samples from 233 midpools
(excluding PMS2 [ref. 21] due to highly homologous
sequences and 4 midpools with >10% samples failed) with
an average of 47 samples per midpool and average coverage of
252× per sample. First, we evaluated the ability of Atlas-CNV
and VisCap to call CNVs with at least two contiguous exons.
Both detected multiexonic CNVs in 2% of samples with 89%
agreement (CNVs identified by both/all CNVs identified) at
the sample and gene level (autosomes only). Atlas-CNV and
VisCap identified 232 and 184 CNVs respectively with fewer
samples failing SampleQC in Atlas-CNV than VisCap (90 vs.
208). Discordant calls (70) were largely made on samples
failed by the other tool.
Second, we focused on single-exon detection and initially

observed significant discrepancies in the number of these
calls. First, Atlas-CNV called nearly five times fewer single-
exon CNVs than VisCap (2240 vs. 10,417; dels= 861:5213,
dups= 1379:5204); and second, CoNVaDING, a tool devel-
oped for single-exon detection, called even fewer than Atlas-
CNV (685; 514 dels, 171 dups). Thus, to reduce the
complexities of these comparisons and obtain an estimate of
the FDR, we counted the number of single-exon CNVs
present in >1% of samples, which we assume would likely be
artifacts or common CNVs. We report 85% (8818/10,417) of
VisCap calls, which are observed in only 10 exons, exist in

>1% of the samples; 5% (114/2240) for Atlas-CNV (1 exon);
and 0% (0/685) for CoNVaDING. This highlights the
importance of having a mechanism to automatically filter
low quality exons to reduce FPs (present in Atlas-CNV and
CoNVaDING but not VisCap). In contrast, if we focus on
calls in <1% of the samples (Atlas-CNV: 2126, VisCap: 1599,
CoNVaDING: 685), which are more likely to be TPs, our
results show 46% (or 741/1599) of VisCap and 42% (or 286/
685) of CoNVaDING calls are in common with Atlas-CNV.
While the concordance is low, closer examination revealed
that missed calls were labeled as multiexon CNVs in Atlas-
CNV or failed to meet the Atlas-CNV passing criteria for
either an exon or sample (ExonQC or SampleQC). For
example, 58% (or 395/685) of CoNVaDING calls either failed
the Atlas-CNV ExonQC (6) or SampleQC (324), were labeled
as multiexon CNVs (47), or flagged as FPs (18), leaving only 4
real missed calls. A similar outcome was observed in the
VisCap comparison, but only 15% of calls failed an Atlas-
CNV quality control (QC) (225) or were labeled as multiexon
CNVs (8), leaving 39% of calls as truly missed (or 625/1599).
Further examination of the common calls also showed
CoNVaDING with a higher mean C-score (7.11 vs. 4.9) and
lower mean EStDev (0.11 vs. 0.14) than VisCap (see summary
in supplementary Table S4).
Figure 3 summarizes the overall Atlas-CNV analysis. It

includes results for PMS2 and X chromosome genes, the
former of which may require further analyses.21 In total,
345 samples were identified (172 losses, 173 gains) for
multiexonic CNVs, which represents an overall frequency of
3.2% (1.57% losses, 1.58% gains), or 0.03 CNVs/sample.
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Adding high confidence single-exon CNVs (abs[C-score] ≥8,
109 losses, 22 gains) increases the frequency to 4.36% (2.57%
losses, 1.78% gains). As a relative comparison, the CNV
frequency in ExAC22 is 1.43%. Interestingly, we detected

CNVs in 41 of the 58 ACMG genes (excluding ATP7B) with
the highest occurrence in OTC (24) and GLA (24) while
CNVs were observed in 38 of 51 non-ACMG eMERGE genes
with KCNE1 (18) and SLC25A40 (11) as the top genes.
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Finally, 13 exons with high frequency of failing ExonQC were
identified in >25% of eMERGESeq midpools (Supplementary
Table S5).

Evaluation of C-score threshold for CNV calling
Across all samples, a total of 2475 exons (on average
11 exons/midpool) were removed by exon filtering with an
average EStDev= 0.36 compared with the 2240 passing exons
with a much lower average EStDev= 0.13. We report an
average eFDR of 3.14% across all samples, which coincides
with the FDR (4%) reported in the performance assessment
study (Fig. 2). However, even with low EStDev and FDR, there
is still a tenfold enrichment of single over multiexon CNVs
(2240/232). Therefore, we set out to determine whether
C-scores could be used as a secondary assessment of
confidence of single-exon CNVs primarily on the basis that
standalone log2 scores do not account for the exon variability
whereas C-scores are standardized by this exact variance.
First, we computed the expected EStDev in a simulation of log2
scores by adding 5% increments of variability into the S/M
ratio using the R function runif under a uniform distribution
(Supplementary Figure S3). We determined EStDev at 0.08,
0.13, and 0.16 correspond respectively to 10%, 15%, and 20%
variability. Therefore, for both eMERGESeq (mean EStDev=
0.92) and gold standard assessed samples (mean EStDev=
0.079), the multiexonic CNVs fall in the 10% noise range.
However, eMERGE single-exon CNVs (2240) with nearly
twice the mean EStDev (0.14), fall over the >15% noise range
(Supplementary Figure S4). Therefore, to control single-exon
FPs, both the log2 scores and EStDev should be utilized.
We performed a simulation of single-exon deletions to

obtain C-score thresholds for optimal sensitivity. Briefly, 100
random samples were chosen from 59% (6413/10,926) of
eMERGESeq samples with no previous single-exon deletion.
Each sample was randomly assigned a single-exon deletion by
artificially downsizing the read depth by 5% increments from
30% to 50%. The mean C-score and sensitivity were calculated
at each coverage increment and plotted on a curve
(Supplementary Figure S5). We iterated this analysis using
three calling thresholds of −0.4, −0.5, and −0.6 (default), and
for all instances in the simulation study, we noted the
following: (1) EStDev range 0.08–0.09, (2) eFDR range 3–3.2%,
(3) specificity >99%, and most importantly, (4) sensitivity
>90% on C-scores >10 where read depth is reduced by >40%.
We conclude that these observed ranges for C-score and
EStDev are conservative for calling confident single-exon
CNVs. When we applied a C-score ≥8 and EStDev ≤ 0.1
criteria on eMERGE samples, we identified 79 candidate
single-exon CNVs (candidates for MLPA validation), which
represents a 28-fold decrease from the total of 2240 identified
single-exon CNVs. Notably, VisCap and CoNVaDING called
62 and 69 respectively out of these 79.

MLPA confirmation of CNVs
Sixty-four multiexon CNVs (34 losses, 30 gains; mean
C-score= 9.4, EStDev= 0.087) called by Atlas-CNV were

selected for MLPA confirmation (Supplementary Table S6).
Although MLPA has its own technical limitations, using it
here as the truth set, we confirmed 55 CNVs with Atlas-CNV
having higher sensitivity (88.8%) and lower FDR (25.0%)
compared with VisCap (86.8% and 33.6% respectively).
Notably, two confirmed CNVs (Vanderbilt-23 and Colum-
bia-29) were missed by VisCap. The 9 unconfirmed CNVs
were compared with the 55 confirmed CNVs and found to
have significantly (1) deflated C-scores (5.4, P= 8.7e-05), (2)
elevated EStDev (0.13, P= 2.2e-16), and (3) high CNV genes
per sample (>6, P= 3.3e-16). A three-pronged criteria
(C-score >8, EStDev < 0.1, CNV genes <3) could easily remove
these 9 CNVs and cut the FDR in half to 12.7%. The
examination of the actual remaining false positives and
negatives indicate missed CNV exons were due to borderline
signals on either the gene panel or MLPA platform. Finally,
in a further separate analysis, three (28-Northwestern, 30-
Columbia, 36-Mayo) samples of the confirmed CNVs
(MYH7, LDLR) were also validated using a second gene
panel in routine use. Overall, these multiexon CNV data
demonstrate Atlas-CNV performed best with 86% (55/64)
confirmed samples and 14% (9/64) failed.
MLPA was also used to evaluate the single-exon CNVs

detected by Atlas-CNV (Table 2). Initially, 29 single-exon
CNVs were selected for testing from the 79 candidates
described above, consisting of 23 high confidence CNVs
(22 losses, 1 gain; mean C-score= 12.3, EStDev= 0.081) and
6 borderline confidence CNVs (C-score <8 or EStDev > 0.1).
However, exact probe reagents for the exon of interest were
available for only 14 CNVs (samples 1–14), from which
MLPA assays confirmed 10 CNVs (71.4% or 10/14) and were
negative for the other 4 (28.6% or 4/14) although 3 of the
failed cases had >3 CNV genes per sample. Thus, our overall
validation confirmed 90.9% (10/11) of single-exon CNVs
(samples 2–11) with C-score >8. One additional single-exon
CNV was confirmed from the 15 CNVs (samples 15–29)
without exon-specific probes when MLPA assays were carried
out using nearby or flanking probes. This results in 14
inconclusive cases for which future investigation is needed
using alternate validation methods.

DISCUSSION
Prior studies have demonstrated successful CNV detection in
DNA sequence data generated from gene panels, but the
burden of analyzing single-exon CNVs is a challenge because
of high false-positive rates.8,9 Recently developed tools such as
CoNVaDING10 and modified versions of ExomeDepth11,12

have been designed to identify single-exon CNVs, but lack
quality metrics that enable differentiation of different levels of
confidence. As a result, clinical laboratories may often ignore
single-exon CNVs. Here, we introduced Atlas-CNV, a fast
and accurate CNV calling method based on read depth that
reports confidence scores for each CNV event that are used to
reduce FPs. Previously established methods often failed to
account for target variability arising from extremes of DNA
sequence coverage, while Atlas-CNV implements multiple
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strategies to cope with these variabilities. Thus, Atlas-CNV’s
advantage over other similar methods is the ability to screen
or prioritize for high confidence single-exon CNVs. Atlas-
CNV also overcomes the limitation of using log2 scores as the
sole criteria to detect calls. Furthermore, while existing
methods9,10 have also shown high sensitivity and specificity
for detecting single exons in targeted sequence data, our
method does not require additional control samples, prior
knowledge of model parameters, or empirical assessments of
specific panel designs.11,13 These require additional calibra-
tion, effort and cost.
Because Atlas-CNV and VisCap are integral components of

the eMERGESeq program, we compared the two and our
results showed 90% agreement for large or multiexonic
variants. However, given VisCap’s lack of exon filtering, it is
difficult to interpret the 39% (or 625/1599) of calls missed by
Atlas-CNV for single-exon variants. Furthermore, visual
inspection (VisCap) would be a cumbersome task. Therefore,
we evaluated the single-exon CNVs in comparison with
CoNVaDING calls and conclude Atlas-CNV only missed 4
calls (0.6% or 4/685). We report favorable mean Atlas-CNV
C-scores (7.11) and EStDev (0.11) for the 286 common calls
even though 57% (164/286) fail the abs(C-score) >8, EStDev ≤
0.1 criteria. Interestingly, CoNVaDING missed 10 calls that
were called by Atlas-CNV (met the abs[C-score] >8, EStDev ≤
0.1). We also compared Atlas-CNV with exome CNV caller
CoNIFER,23 which utilizes similar approaches, but includes a
broad secondary normalization (SVD), which appears to
overcorrect and smooth individual target signal when applied
to eMERGESeq data. While advantageous for capture assays
with high numbers of targets (exome), it loses detection power
at the discrete single-exon level in smaller target panels, due in
part to the lack of mechanisms to assess and score single
exons. Thus, taken together these results highlight Atlas-
CNV's performance and ability to prioritize CNV calls to
control the FDR and reduce expensive and labor-intensive
secondary tests.
Our results also show that optimal C-scores >10 can

produce >90% sensitivity for single-exon deletions. We
therefore propose the following usage guidelines to assist in
selecting high confidence CNVs: (1) abs(C-score) >8, (2)
EStDev < 0.1, (3) exon size >50 bp, (4) mappability >0.8, (5)
CNV genes <3 per sample. The first two parameters were
derived from multiexonic CNVs, the third is specific to small
targets with potential coverage bias, and the last two are
considerations to be vetted accordingly because samples with
many CNVs could indicate either high FPs or the need for
further study. Applying a criterion of only C-score ≥8 and
EStDev ≤ 0.1, we prioritized 79 significant candidates from the
initial 2240 single-exon calls. Of 11 cases with definitive
MLPA assays we confirmed 10 with examples in CFTR,
MLH1, and other genes like PKP2 and DSP in which known
pathogenic variants can increase the risk of arrhythmogenic
right ventricular cardiomyopathy, a leading cause of sudden
heart failure in young people. Additional frameshift indels
were also discovered in the DSP samples, raising the

important role single-exon deletions play in compound
heterozygotes for autosomal recessive disorders.
This work advances the confident identification of exonic

CNVs, especially in clinical programs deployed at scale.
Applying the Atlas-CNV approach to call single-exon variants
should improve current variant calling standards and identify
noncallable exons requiring alternate methods. We also
expect that our knowledge of disease genes will increase as
new single-exon CNVs are uncovered, catalogued in public
databases, and reliably reported. Clinical sites receiving such
reports will also benefit patients, who will obtain better
diagnosis and treatment. In conclusion, we have demon-
strated Atlas-CNV as a validated approach for clinical
laboratories to screen the full spectrum of exonic CNVs in
gene panels, with particular focus on single-exon CNVs.
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