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Purpose: To consider the impact and cost-effectiveness of offering
preventive population genomic screening to all young adults in a
single-payer health-care system.

Methods: We modeled screening of 2,688,192 individuals, all
adults aged 18-25 years in Australia, for pathogenic variants in
BRCAI/BRCA2/MLHI/MSH2 genes, and carrier screening for
cystic fibrosis (CF), spinal muscular atrophy (SMA), and fragile X
syndrome (FXS), at 71% testing uptake using per-test costs ranging
from AUD$200 to $1200 (~USD$140 to $850). Investment costs
included genetic counseling, surveillance, and interventions (reim-
bursed only) for at-risk individuals/couples. Cost-effectiveness was
defined below AUD$50,000/DALY (disability-adjusted life year)
prevented, using an incremental cost-effectiveness ratio (ICER),
compared with current targeted testing. Outcomes were cancer
incidence/mortality, disease cases, and treatment costs reduced.

Results: Population screening would reduce variant-attributable
cancers by 28.8%, cancer deaths by 31.2%, and CF/SMA/FXS

INTRODUCTION
Genomic screening of the adult population has significant
potential to prevent disease. Some single-payer or state-
funded health-care systems are already considering offering
preventive population genomic screening to all their
members.”> A combined genomic screening approach,
testing for multiple conditions concurrently, is likely to be
most cost-effective, rather than screening for individual,
often rare, genetic conditions in isolation. Combined
genomic screening is an intuitive concept, yet the necessary
cost-effectiveness analysis (CEA) of population screening
for multiple conditions concurrently has been lacking. Most
modeling of adult genetic screening, to date, has been
limited to single genetic conditions, often considered in

cases by 24.8%, compared with targeted testing. Assuming AUD
$400 per test, investment required would be between 4 and 5 times
higher than current expenditure. However, screening would lead to
substantial savings in medical costs and DALYs prevented, at a
highly cost-effective ICER of AUD$4038/DALY. At AUD$200 per
test, screening would approach cost-saving for the health system
(ICER = AUD$22/DALY).

Conclusion: Preventive genomic screening in early adulthood
would be highly cost-effective in a single-payer health-care system,
but ethical issues must be considered.
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targeted, high-risk populations,”®

population.

Two areas where adult population genomic screening may
have the most preventive potential are cancer gene testing, to
identify individuals with high risk of common and penetrant
forms of familial cancer, and preconception carrier screening
(PCS), to address the burden of severe, childhood-onset genetic
conditions. In both of these areas, clinical guidelines, standard
of care, and health system-funded interventions are available in
Australia for at-risk individuals/couples. To our knowledge, the
two screening models have never been combined in CEA, nor
implemented in population screening together. Preventive
genomic screening would be most beneficial if offered in early
adulthood, above the age for informed consent, but prior to the

rather than the general
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Fig. 1 Schematic: Preventive genomic screening of all young adults in a single-payer health-care system. The model is purposely conservative,
based on the Australian health system, estimating the total preventive health impact and cost-effectiveness of offering combined cancer gene testing and

preconception carrier screening concurrently to all adults aged 18-25 years.

average age of onset for most hereditary cancer syndromes, and
prior to the average age of first childbirth.

The current model of family history or clinical
criteria—based gene testing for hereditary cancer is failing to
reach many at-risk individuals who need it most, especially
younger individuals. Targeted testing for BRCA1/2 has been
reported to miss over 50% of at-risk individuals, even in high-
risk communities with increased prevalence of founder var-
iants.*”® One study estimated family history-based testing, at
the current rate, would take 250 years to identify all BRCA1/2
carriers in the UK population.” Detection rates for Lynch
syndrome (predisposition to colorectal, endometrial, and
other cancers) are even lower, with an estimated 95% of
individuals in Australia remaining undetected.” This is
despite the proven, and sometimes life-saving, interventions
available."" Although the prevalence of hereditary cancers is
often considered rare, identification of affected families at the
population level has a large preventive impact.

CEA of population-based cancer gene testing has mostly
been in the context of hereditary breast and ovarian cancer
(HBOC),*>'? where cost-effectiveness has been demonstrated
in the US/UK unselected female population aged >30 years."’
More recently, some of the first real-world population-based
HBOC screening programs have been implemented. This

GENETICS in MEDICINE | Volume 21 | Number 9 | September 2019

includes screening of 50,726 unselected adults in a single US-
based health-care system, identifying five times as many at-
risk individuals than previous clinical care."* Over 80% of
identified at-risk individuals had received no prior clinical
testing, despite having actionable BRCA1/2 pathogenic variants.
A second study screened 5908 unselected Australian women
with a positive detection rate of 0.64% (ref. '°). This study
found 42% of identified at-risk women did not have a first-
degree relative with breast or ovarian cancer, and would not
meet the current eligibility for funded testing.

CEA of population-based testing for Lynch syndrome,'®
and the return of clinically actionable variants for adult-onset
conditions,'” has also been conducted. CEA of preconception
carrier screening has been mainly limited to single diseases,
predominantly cystic fibrosis.® CEA for combined carrier
screening of multiple conditions has been limited,'® despite
the availability of expanded carrier testing panels and recent
calls for such work."

The Human Genetics Society of Australasia, American
College of Medical Genetics and Genomics, and UK Human
Genetics Commission support offering carrier screening for
recessive conditions with high carrier frequencies and sever-
ity.zo"22 Yet estimated rates of preconception carrier screening
for conditions such as cystic fibrosis, spinal muscular atrophy,
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and fragile X syndrome remain below 5% in Australia, with
testing not reimbursed by the public health-care system.”

Here we present, for the first time, a combined CEA of
preventive genomic screening for seven different genetic
conditions concurrently, offered universally in early adult-
hood through a single-payer health-care system (Fig. 1
schematic). We model screening from the health system
perspective, to reflect the real and emerging possibility of large
health systems funding genomic testing at the population
level, for prevention and cost reduction. We focus only on
genetic conditions with an existing evidence base to justify
consideration for population screening, where early identifi-
cation of risk has high clinical impact and reimbursed health
services are currently available. Sufficient health system data
are available for these conditions to forecast the costs and
likelihood of uptake of interventions, following genetic
testing. We purposely modeled cost-effectiveness in this
limited set of conditions, as a proof-of-concept toward more
expansive genomic screening in the future.

MATERIALS AND METHODS

This study evaluated the impact on lifetime costs and clinical
consequences of offering preventive population genomic
screening to all adults aged 18-25 years in Australia, assuming
a 71% testing uptake,'” compared with current estimated rates
of targeted testing (15% for cancer gene testing'”? and 5% for
preconception carrier screening”’). For model design, inputs,
and calculations, see Supplementary Materials.

Decision tree models

Seven independent decision-analytic models were constructed
to comprise the genomic screen (Fig. 2): cancer gene testing
for breast, ovarian, colorectal, and endometrial cancer; and
preconception carrier screening for CF, SMA, and FXS.
Decision trees illustrate the alternative choices, interventions
and outcomes for individual/couples after testing, based on
Australian health system data and published literature (see
Supplementary Materials $2.1-2.7).

For cancer gene testing, the prevalence and pene-
trance’>”” of pathogenic variants were used to estimate the
incidence of cancer in the population attributable BRCA1/2
and MLHI/MSH2 genes. Weighted average lifetime risk
(penetrance) was used for BRCA1/2 combined, and MLH1/
MSH2 combined, rather than for individual genes. We
assumed 100% testing sensitivity (assumptions Table S4).

For preconception carrier screening (PCS), frequency of
carriers, at-risk couples, and affected pregnancies for CF +
SMA + FXS were modeled using European-based carrier
frequencies and the national lifetime fertility rate per woman.
For FXS, only females with repeat size >70 were considered
carriers, with weighted risk of maternal transmission
calculated per repeat size. A total of 2,339,339 births were
estimated in the population lifetime, considered as a “closed
population”, with no migration.

24,25
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Model inputs

We collected model indicators across four categories: demo-
graphic, disease-related, costing, and life quality information
(Table S1-S3). Demographic information included popula-
tion size, fertility rate, and life expectancy, sourced from the
Australian Bureau of Statistics. Disease-related data included
population frequency of conditions, penetrance of cancer
genes, disease survival rates, impact of current targeted
testing, and surveillance and treatment in the Australian
health-care system.

Costs of genomic screening, confirmation testing, and
subsequent surveillance and treatment were obtained from
the literature or government reports (Table S2). The costs and
impact of prevention achieved through chemoprevention and
risk-reducing surgery were calculated. Post-diagnosis cancer
treatment was averaged to an estimate of AUD$33,400 per
year, across all invasive cancer types (Australian Institute of
Health and Welfare, 2017). Burden of disease was measured
in disability-adjusted life years (DALYs), with one DALY
equivalent to the loss of one year of healthy life due to disease-
induced disability. Disability weights for cancer were obtained
from the Global Burden of Disease Study,”® but were not
available for CF/SMA/FXS, so Down syndrome was used a
proxy (0.81), as done previously.”

Impact evaluation and cost-effectiveness analyses
Decision-analytic models evaluated population genomic
screening for seven conditions (S2.1-2.7). Each model was
assessed independently, and then in combinations. We
modeled four scenarios: i) each condition independently;
ii) combined groups- breast and ovarian cancer, colorectal
and endometrial cancer (Lynch syndrome), and combined
PCS; iii) all cancers combined and combined PCS; and iv) all
seven conditions combined into a single test.

We repeated these four scenarios for different per-test
screening prices (AUD$200/$400/$800/$1200), guided by
benchmarks including the current government-reimbursed
price for HBOC testing in Australia (AUD$1200) and the
prepair™ carrier screen (AUD$385) (ref. >*). There were a total
of 16 scenarios. We present findings at AUD$400 per test, a
price considered feasible, and AUD$200, feasible in the near
future.

Impact of population cancer gene testing was measured in
reduced cancer incidence/mortality, achieved by early sur-
veillance and chemoprevention for pathogenic variant
carriers, and elective risk-reducing surgeries for some
(conservative uptake estimates, Table S3). Impact of pre-
conception carrier screening was measured by reduction in
disease cases, through prenatal diagnosis (PND) (0.8 uptake)
and elective termination of affected pregnancies (TOP) (0.5
uptake). We modeled subsequent probability of unaffected
future pregnancy, no pregnancy, or affected pregnancy (0.65,
0.30, and 0.05 respectively), to calculate the number of
unaffected births following screening (and DALYs prevented).

Total investment was calculated by adding the costs of
screening, confirmation testing, genetic counseling, ongoing
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Fig. 2 Population genomic screening: decision-analytic tree models. Seven independent decision-analytic tree models were constructed. Each
forecasts the cost-effectiveness and preventive impact of population genomic screening for a given disease, compared with current targeted/criteria-based
testing. Models focused on either adult cancer gene testing (52.1-2.4) or preconception carrier screening (52.5-2.7). We forecast changes in health system
costs and disability-adjusted life years (DALYs) prevented as a result of population genomic screening, compared with targeted testing. Cost-effectiveness
was calculated from a health system payer perspective using incremental cost-effectiveness ratio (ICER = Acosts/ADALYs) for each independent model, then
combined for all models. For detailed methods and tree model diagrams see Supplementary Materials S2.1-2.7. CF cystic fibrosis, FXS fragile X syndrome,

SMA spinal muscular atrophy.

surveillance, and interventions for all identified pathogenic
variant carriers. Incremental cost-effectiveness ratio (ICER)
was compared between population screening and targeted
testing, below the willingness-to-pay (WTP) threshold of
AUD$50,000/DALY prevented.”® DALYs and costs for
surveillance, intervention, and treatments were discounted
by 3% to account for investment depreciation over time.
Discounting was not applied to genomic screening, consid-
ered a fixed, up-front cost at present value. Analysis was
conducted from a health-care system/payer perspective, and
time horizon was lifetime. Consolidated Health Economic
Evaluation Reporting Standards were followed (Supplemen-
tary Materials).

For each scenario, we calculated the following outputs com-
pared with targeted testing (in AUD$M): costs of up-front
genomic screening and confirmation testing; subsequent

GENETICS in MEDICINE | Volume 21 | Number 9 | September 2019

downstream medical costs following screening; total incre-
mental health system investment cost; DALYs prevented;
disease cases prevented (total, per million); deaths prevented
(total, per million); and ICER ($AUD/DALY prevented).
Calculations are shown as median values from 2000 model
simulations for each variable. Data is not always normally
distributed; therefore, combined results do not always reflect
arithmetic addition of median values.

Uncertainty and sensitivity analysis

Model inputs were obtained from Australian Government
sources and literature (Table S1). When uncertainty ranges
were unavailable, we assumed +25% uncertainty around input
parameters. Model results are presented with median and 95%
confidence intervals, with models run iteratively using
2000 simulations for each scenario. We conducted
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cost-effectiveness (cost/DALYs prevented).
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probabilistic sensitivity analyses to explore robustness on
cost-effectiveness planes, with a WTP threshold of $50,000/
DALY prevented. We conducted one-way sensitivity analysis
to investigate variations in ICER related to key variables/
assumptions.

RESULTS
Burden of disease under current rates of testing
Under current rates of targeted testing and treatment regimens,
we forecast 8473 (6484 to 11,118) cancers occurring in the
target population due to autosomal dominant pathogenic
variants (PVs) in BRCAI1/BRCA2/MLHI/MSH2. This was
estimated to result in 4082 (3143 to 5313) cancer deaths.

The number of all-cause cancers (suffered by both PV
carriers and non-PV carriers) forecast in the population was
416,308 (347,575 to 489,044), leading to 178,439 (148,952 to
209,164) cancer deaths. Therefore, under the current model of
targeted testing, we estimated cancers attributable to BRCA1/
BRCA2/MLHI1/MSH?2 account for 2.0% (1.5-2.8%) of all
cancers and 2.3% (1.7-3.1%) of cancer deaths in the
population. We forecast 1988 (1760 to 2216) births affected
by CF/SMA/FXS.

The total disease burden in the modeled population, under
current targeted testing, was estimated at 1.85 million DALY
(1.53 to 2.18 million) due to all-cause cancer, of which
143,123 (111,026 to 184,988) were due to BRCAI/BRCA2/
MLHI1/MSH2, and 59,332 (50,672 to 68,755) due to CF/SMA/
FXS (Table S5).

Impact of population genomic screening

With an assumed 71% testing uptake and conservative
intervention estimates, we forecast population-based cancer
gene testing would reduce the number of cancers due to
BRCAI/BRCA2/MLHI/MSH2 PVs by 28.8% (20.6-39.6%),
preventing 2411 (1626 to 3643) cancers. Cancer deaths would
reduce by 31.2% (22.6% to 42.4%), preventing 1270 (869 to
1907) deaths, compared with targeted testing. We estimated
cancers attributable to BRCA1/BRCA2/MLHI/MSH2, as a
proportion of all cancers, would reduce to 1.5% (1.0-2.1%),
with attributable cancer deaths reducing to 1.6% (1.1-2.2%) of
total. Screening was estimated to prevent 63,837 (43,878 to
94,540) cancer-related DALYs, reducing the total cancer
burden in the population by 3.5% (2.3-5.2%). Preconception
carrier screening was estimated to reduce the number of
disease cases of CF/SMA/FXS by 24.8% (17.6-34.1%) to avert
491 (344 to 692) cases (Table 1).

Cost-effectiveness of population genomic screening

We calculated the cost-effectiveness of population genomic
screening using a per-test cost of AUD$400 and WTP
threshold of $50,000/DALY, compared with targeted testing.
We first investigated whether population screening for any
one of the seven conditions alone was cost-effective in
isolation, above targeted testing (Table S5). Preconception
carrier screening for any single condition was not found to be
cost-effective (Table 1).
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Fig. 3 Preventive genomic screening of young adults becomes increasingly cost-effective as more conditions are screened for concurrently.
Probability sensitivity analysis was used to calculate the cost-effectiveness of preventive genomic screening in early adulthood at a fixed per-test cost of AUD
$400, versus targeted testing. Population cancer gene testing was modeled for four familial cancers—breast, ovarian, colorectal, and endometrial—
attributable to BRCAT, BRCA2, MLH1, and MSH2 variants, plus preconception carrier screening (PCS) for three severe rare genetic conditions (cystic fibrosis
[CF], spinal muscular atrophy [SMA], and fragile X syndrome [FXS]). Cost-effectiveness was calculated for each condition independently and then in
combinations. Y-axis shows differences in investment (cost) in $AUDM, and X-axis shows changes in disability-adjusted life years (DALYs). Cost-effectiveness
is represented as the incremental cost-effectiveness ratio (ICER), or cost/DALY prevented. ICER under the willingness-to-pay threshold of AUD$50,000/DALY
is considered cost-effective. Models were run iteratively using 2000 simulations for each scenario, with £25% uncertainty ranges, each iteration represented
as a separate dot. (a) Independent population screening for each of the seven conditions. (b) Combined level 1: population cancer gene testing (breast and
ovarian, Lynch syndrome); and population PCS (CF 4+ SMA + FXS) separately. () Combined level 2: population testing for all cancer genes together (BRCA1/
2, MLH1, MSH2); and population PCS (CF 4+ SMA + FXS). (d) Combined level 3: concurrent population genomic screening for all seven conditions combined.

However, consistent with others'> we found population-
based BRCAI/2 testing for breast cancer alone was cost-
effective, above prevention currently achieved by targeted
testing (ICER = AUD$12,973 [$8532 to $19,759]/DALY
prevented). Population-based BRCA1/2 testing for ovarian
cancer alone was found to be less cost-effective (ICER = AUD
$38,350 [$23,288 to $66,717]/DALY prevented). Screening for
colorectal or endometrial cancer alone (MLHI/MSH2) was
not cost-effective (Fig. 3a).

Secondly, we combined models to investigate the cost-
effectiveness of screening for multiple groups of conditions
concurrently, including combined testing for hereditary breast
and ovarian cancer, combined testing for Lynch syndrome,
and combined carrier screening (CF 4+ SMA + FXS) (Fig. 3b).
We found all three of these combined scenarios to be cost-
effective, demonstrating the efficiency of combined screening.
We found population testing for all four cancers combined
would be highly cost-effective, independently of carrier

1964

screening (ICER AUDS$10,656 [$7470 to $15,237]/DALY
prevented) (Fig. 3¢).

Finally, we considered the total health impact and cost-
effectiveness of combining all seven models, maintaining a
combined test cost of AUD$400 (Fig. 3d). This scenario, using
conservative intervention estimates, was found to be highly
cost-effective (ICER = AUD$4038 [$4 to $7740]/DALY).
Screening for all seven conditions at AUD$400 would require
an additional health system investment of AUD$622 million
($433 to $819 million), above the current cost of targeted
testing in Australia. This would include costs of initial
screening, plus subsequent confirmatory testing and genetic
counseling, for all identified PV carriers and at-risk couples in
the target population. Screening would prevent an estimated
73,728 (53,303 to 104,266) DALYs and save AUD$311 million
($168 to $517 million) in treatment costs through prevention,
for a net health system cost of AUD$302 million ($0 to $573
million), above current expenditure (Table 1).
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Fig. 4 Preventive genomic screening of young adults at a per-test
cost of AUD$200 would potentially be cost-saving to the health
system. Probability sensitivity analysis was used to calculate the cost-
effectiveness of preventive genomic screening in early adulthood for seven
conditions concurrently, at a per-test cost of AUD$200, versus targeted
testing. Y-axis shows differences in investment (cost) in $AUDM, and X-axis
shows changes in disability-adjusted life years (DALYs). Cost-effectiveness is
represented as incremental cost-effectiveness ratio (ICER), or cost/DALY
gained. ICER under the willingness-to-pay threshold of AUD$50,000/DALY is
considered cost-effective; under AUD$O/DALY is considered cost-saving.
Models were run iteratively using 2000 simulations for each scenario, with
+25% uncertainty ranges, with each iteration represented as a separate dot.

Probably sensitivity analysis and cost-effectiveness
acceptability
Cost-effectiveness of population screening would be highly
dependent on the per-sample test cost. Therefore, we
calculated cost-effectiveness at per-test costs ranging from
AUDS$200 to $1200 (Table S6, Figure S3.1-3.4). Combined
cancer gene testing alone was found to be cost-effective in all
scenarios, up to and including AUD$1200 per test, demon-
strating the efficiency of population-based cancer testing.
Combined screening for all seven conditions together was
found to be cost-effective up to and including AUD$1200
(Figure S3). Notably, if a combined per-test cost of AUD$200
could be achieved, the cost of up-front screening, counseling
and ongoing surveillance would reduce to AUD$324 million
(8225 million to $418 million). This is roughly equivalent to
the total saved medical costs through prevention in
the population lifespan (AUD$315 million [$168 million to
$519 million]), making screening extremely cost-effective,

approaching cost-saving, for the health-care system
(ICER = AUD$22 [$—3450 to $2622]/DALY prevented)
(Fig. 4).

To assess impact on cost-effectiveness, we conducted one-
way sensitivity analyses on the uptake of genomic screening
(50-90%); risk-reducing surgeries (90%); prenatal diagnosis
(70-90%); reimbursement of SMA drug nusinersen (AUD
$976,000 per year, per SMA patient); and reimbursement of
breast reconstruction (per risk-reducing mastectomy). In each
scenario, the ICER of screening never exceeded AUD$50,000/
DALY. In most cases, changes made the ICER more cost-
effective (Table S7).
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DISCUSSION

Offering population genomic screening for disease prevention
is an emerging consideration for single-payer or state-funded
health-care systems. For the first time, we calculated
the impact and cost-effectiveness of offering health
system-funded preventive genomic screening for multiple
conditions to all young adults. Our results demonstrated that
population screening could significantly reduce the incidence
and mortality of hereditary cancers, and the burden of severe
childhood-onset genetic disease, compared with targeted
testing. Screening at a cost of AUD$400 was found to be
highly cost-effective. However, if AUD$200 per-test could be
achieved, screening could become cost-saving for the health
system, providing a significant platform for the consideration
of health system-funded screening.

Our model consistently demonstrated cost-effectiveness at
per-test costs up to AUD$1200, despite all estimates being
purposely conservative. We modeled screening of only four
genes for two cancer syndromes, excluding many less
penetrant genes (e.g., RAD51C, RAD51D, BRIP1, PALB2,
MSH6, PMS2, EPCAM). Future model iterations will expand
to include other genes and conditions. We also excluded rarer
types of cancer associated with BRCAI/2 (e.g., peritoneal,
male breast, prostate, pancreatic) and MLHI/MSH6 (e.g.,
stomach, intestine, liver, gallbladder).

We also excluded many conditions potentially amenable to
population screening, such as Tay-Sachs, thalassemia, sickle
cell anemia, and hereditary hemochromatosis (carrier screen-
ing), and familial hypercholesterolemia, long QT syndrome,
and cardiomyopathies (adult gene testing). Many factors
contributed to this decision, such as reduced penetrance and
prevalence of some conditions, lack of available population
health data, and existing screening programs in some cases.
Over time, as the availability of information improves, further
modeling may incorporate these conditions and screening
scenarios.

Many of the secondary or added benefits of population
screening were not modeled. These include, most notably, the
impact of cascade testing of at-risk relatives after the initial
screening and returning BRCA1/2 results to males. The
uptake of cascade testing in Australia has been estimated at
around three relatives per index case,”* which if applied at the
population level, would have considerable preventive impact.
The increases in economic output as a result of prevention,
were also not modeled.

Conservative health cost estimates were used throughout,
particularly for cancer treatment, averaged to AUD$33,400/
year for simplicity across all invasive cancers. This likely
underestimated the cost of cancer treatments, and cost-
savings associated with early intervention and prevention. The
costs of CF/SMA/FXS treatment were also estimated con-
servatively, likely understating the health economic cost of
these conditions, which are difficult to estimate.*

Use of preimplantation genetic diagnosis (PGD) was not
modeled, despite its potential to avoid the implantation of
embryos affected by genetic conditions, or predisposed to
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cancer. PGD is not currently reimbursed by the Australian
system, and insufficient data exist to inform uptake rates of
PGD for at-risk couples.

With regard to pregnancies affected by a genetic condition
identified through population carrier screening, we modeled
the decision to terminate affected pregnancies conservatively
(0.50). This is despite the literature suggesting rates above 0.90
for elective TOP for conditions such as Down syndrome™ and
SMA.>* We recognize this issue is controversial, and that laws
and ethical positions vary considerably between countries/
jurisdictions. Variations in population attitudes based on age,
religion, and other factors, as well as the criticality of
preserving individual choice, were acknowledged in adopting
this highly conservative estimate.

A number of additional ethical implications must be
considered. Associating financial investments with the pre-
vention of disease, especially where reproductive decisions
are involved, requires sensitivity, caution, and ethical rigor.
Funding decisions based on imputed cost-savings must not
result in implicit pressure on individuals to violate personal
ethics to reduce financial burden on society. As discussions
regarding prenatal testing have demonstrated,” there is risk
that “routinization” of testing may lead to social or medical
expectations of testing in all eligible individuals. These
expectations, if linked with financial incentives for the health
system, could risk applying implicit pressure on serious, and
potentially irreversible, personal decisions. Such expectations,
if applied at the population level, could risk becoming
normalized, compromising the values of informed consent
and individual autonomy.

To acknowledge these considerations, we used highly
conservative intervention uptake estimates, especially around
reproductive decisions. We strongly believe that any decision
regarding individual health interventions should be grounded
in informed consent and personal autonomy, without
presumed obligation or implicit pressure. This should be a
fundamental principle of screening, especially when personal
decisions are involved in reproductive planning or prophy-
lactic surgery.

In addition to the potential for encroaching on individual
autonomy, population screening may also risk increasing the
propensity for genetic discrimination, marginalization, or
stigmatization. Appropriate regulatory protection, community
education, and policy must be in place prior to consideration
of screening. Other issues, such as increasing out-of-pocket
costs and compromising access to life insurance products,”®*’
are also concerns.

The model does not consider the costs and challenges of
achieving informed consent at scale through public education,
online resources, or other mechanisms. This would be
essential. Increasing education and genomic literacy is one
of the most significant challenges regarding the feasibility and
appropriateness of population genomic screening. A detailed
discussion of this complex and emerging challenge is beyond
the scope of this CEA, yet we acknowledge its importance and
consideration elsewhere.’®
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Our CEA has a number of limitations. First, the model was
complex, with over 150 variables, meaning sections were
necessarily simplified. For example, all stage 1-4 cancers were
classified as “invasive,” with equivalent treatment costs across
all cancer types. The vast majority of model parameters were
based on published literature (Table S1-S3). However, a small
number (5 variables), were based on expert opinion, due to
lack of available data. For these variables, estimates were kept
conservative, informed by clinical practice and modeled using
2000 repeating simulations with wide uncertainty ranges
(£25%).

We assumed 71% screening uptake based on one of the few
randomized controlled trials involving population-based
testing.”> The same figure, taken from a study in the
Ashkenazi Jewish population, was recently used in CEA for
population-based breast cancer testing in the UK/US general
female population.'” Given population screening is not yet
common, it remains to be seen whether this figure is
representative. To address this uncertainty, we modeled
uptake using one-way sensitivity analysis down to 50%
(Table S7). We found that even at 50% uptake, the ICER
for population screening remained highly cost-effective. In
fact, cost-effectiveness increased as uptake decreased (ICER =
AUD$3980/DALY at 50%, versus $4038/DALY at 71%). We
also assumed cancer risk in PV carriers without family history
was equivalent (equal penetrance) to those identified through
targeted clinical testing with family history, which is
uncertain. Uptake of preventive interventions may also vary
in the general population compared with affected families
with disease history.

We excluded breast reconstruction following risk-reducing
mastectomy. Currently, the provision and funding of breast
reconstruction in Australia is inconsistent. Differences exist in
access, uptake, and availability between the public and private
health systems. For all aspects of this study, we made the
decision to exclude data where significant disparities in access
or potential for inequity exist. We modeled the cost of breast
reconstruction in sensitivity analysis, and the impact on cost-
effectiveness was minimal (Table S7).

Resourcing and scalability of clinical services is another
significant challenge with the prospect of population-based
screening. Amongst the many related challenges of service
delivery, we highlight training of the medical workforce,
expanding clinical genetic services, achieving genetic counsel-
ing and informed consent at scale, ensuring availability of
ongoing surveillance/interventions, and reducing wait times
for elective procedures (ie., colonoscopy, prophylactic
surgery). Addressing these and other practical challenges
would require a substantial increase in the resourcing and
efficiency of genetic and other health services.

Despite many challenges related to the implementation,
ethics, and feasibility of population genomic screening, our
model demonstrates significant cost-effectiveness and pre-
ventive potential for this approach. We demonstrated this
using only a limited set of genes and conditions, using
conservative intervention uptake estimates, following current
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standard of care and publicly funded health services. There-
fore, if population-based testing for a single genetic condition
or application is undertaken in the future, careful considera-
tion should be given to expanded screening for multiple
conditions concurrently, to maximize cost-effectiveness and
preventive impact.

Single-payer or public health-care systems, such as
Australia's, have the unique opportunity to consider offering
genomic screening to adults for disease prevention. Screening
could follow established principles and frameworks.*” Con-
sidering population genomics from the context of public
health screening could help to deliver a level of quality
control, standardization, and equity of access that may not be
achievable in other health systems. However, the many
possible benefits of prevention will only be achievable with
adequate health service scalability, public education, and
ethical oversight.
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