
Modeling Protein Destiny in Developing Fruit1[OPEN]

Isma Belouah,a Christine Nazaret,b Pierre Pétriacq,a Sylvain Prigent,a Camille Bénard,a Virginie Mengin,c

Mélisande Blein-Nicolas,d Alisandra K. Denton,e Thierry Balliau,d Ségolène Augé,a Olivier Bouchez,f

Jean-Pierre Mazat ,g Mark Stitt,c Björn Usadel,e Michel Zivy,d Bertrand Beauvoit,a Yves Gibon,a and
Sophie Colombiéa,2,3

aUnité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche
Agronomique, Université Bordeaux, F33883 Villenave d’Ornon, France
bInstitut de Mathématiques de Bordeaux, Ecole Nationale Supérieure de Technologie des Biomolécules de
Bordeaux-Institut Polytechnique de Bordeaux, 33400 Talence, France
cMax Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
dLa Plateforme d’Analyse Protéomique de Paris Sud Ouest, Génétique Quantitative et Évolution-Le Moulon,
Institut National de la Recherche Agronomique, Université Paris-Sud, Centre National de la Recherche
Scientifique, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
eInstitute for Botany and Molecular Genetics, BioEconomy Science Center, Rheinisch-Westfälische Technische
Hochschule Aachen University, Aachen 52074, Germany
fInstitut National de la Recherche Agronomique, US1426, Service Génome et Transcriptome, Plateforme
Génomique, Genotoul, 31326 Castanet-Tolosan, France
gInstitute for Cellular Biochemistry and Genetics-Centre National de la Recherche Scientifique, F-33077
Bordeaux Cedex, France

ORCID IDs: 0000-0001-8151-7420 (P.P.); 0000-0002-4958-4209 (V.M.); 0000-0002-7832-7455 (J.-P.M.); 0000-0002-4900-1763 (M.S.);
0000-0003-0921-8041 (B.U.); 0000-0002-9814-3792 (M.Z.); 0000-0002-9810-4339 (S.C.).

Protein synthesis and degradation are essential processes that regulate cell status. Because labeling in bulky organs, such as
fruits, is difficult, we developed a modeling approach to study protein turnover at the global scale in developing tomato
(Solanum lycopersicum) fruit. Quantitative data were collected for transcripts and proteins during fruit development. Clustering
analysis showed smaller changes in protein abundance compared to mRNA abundance. Furthermore, protein and transcript
abundance were poorly correlated, and the coefficient of correlation decreased during fruit development and ripening, with
transcript levels decreasing more than protein levels. A mathematical model with one ordinary differential equation was used to
estimate translation (kt) and degradation (kd) rate constants for almost 2,400 detected transcript-protein pairs and was
satisfactorily fitted for .1,000 pairs. The model predicted median values of ;2 min for the translation of a protein, and a
protein lifetime of ;11 d. The constants were validated and inspected for biological relevance. Proteins involved in protein
synthesis had higher kt and kd values, indicating that the protein machinery is particularly flexible. Our model also predicts that
protein concentration is more strongly affected by the rate of translation than that of degradation.

Protein stability has been reported to play an im-
portant role in fine-tuning protein levels in cells
(Hinkson and Elias, 2011; Vogel and Marcotte, 2012).
The enormous complexity of the shape of protein ex-
pression profiles has motivated the search for regula-
tory factors at the level of transcription, translation, and
degradation. One way to better understand time-
dependent changes in protein abundance is to search
for simple relationships between the contributing pro-
cesses of protein synthesis and degradation. In other
words, the first goal would be to find out how many
and what protein abundances can be deduced directly
from transcript profiles, without considering specific
regulation mechanisms (e.g. posttranslational modifi-
cations such as phosphorylation and ubiquitination). A
simple description of protein stability, especially when
applied to enzymes, would help in understanding the
contribution of the reprograming of metabolism to

growth and developmental events in plants and fruits
(Beauvoit et al., 2018). Establishing a full understanding
of the processes that underpin changes in protein a-
bundance under various physiological and develop-
mental scenarios would increase our ability to model
and rationally engineer plants (Nelson and Millar,
2015).
A systems-level understanding based on well-

defined models is necessary to elucidate the mecha-
nisms and functions that go beyond mRNA translation
and protein synthesis. In the last 50 years, and partic-
ularly in recent years with the development of systems
and synthetic biology, mathematical and computa-
tional models have been used to investigate translation
and to shed light on the relationship between the vari-
ous reactions in the translational system (von der Haar,
2012). One approach employs Totally Asymmet-
ric Simple Exclusion Process-type models. These are
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largely based on statistical analyses of the behavior of
ribosomes on mRNA. They have been developed to
quantitatively understand the particle transport in a
one-dimensional lattice and to evaluate the movement
of ribosomes along the mRNA with a simplified
transport problem. Totally Asymmetric Simple Exclu-
sion Process-based models have been used to obtain
steady-state information such as the average occupancy
of each codon on themRNA and translation rate, which
are key in understanding mRNA translation. However,
although this approach provides detailed prediction
about translation, it does not directly address the issue
of protein degradation.

An alternative approach uses ordinary differential
equations (ODEs)-based models (Zhao and Krishnan,
2014). This approach tends to conceptualize reactions
where the process of mRNA translation (equivalent to
protein synthesis) is the outcome of several transitions
that are described in a comprehensive fashion. It also
addresses the issue of degradation. Changes in protein
abundance may be described as a function of two main
terms: (1) the rate of protein synthesis, which depends
on mRNA abundance coupled to its translation effi-
ciency; and (2) the disappearance of protein via both
protein degradation and dilution of protein abundance
by growth, when relevant. In the simplest form, the
protein synthesis rate is proportional to the amount of
mRNA, whereas the protein degradation rate is pro-
portional to the amount of protein. Such an approach
was used in a study targeting the ethylene biosynthesis
pathway in tomato (Solanum lycopersicum) fruit (Van de
Poel et al., 2014). However, to our knowledge, there has
not yet been any study of this kind in plants at the ge-
nome level. On the other hand, protein turnover in the
bacterium Lactococcus lactis (Dressaire et al., 2009) and
in yeast (Saccharomyces cerevisiae; Tchourine et al., 2014)
has been studied globally. Of note, the latter studies
were performed under steady-state conditions but not

during developmental sequences. However, modeling
protein turnover would be particularly useful for
studying developing plant organs such as fruits.
Indeed, whereas degradation rate constants can be
experimentally measured in plant tissues via isotope-
labeling strategies (Nelson andMillar, 2015), estimating
protein turnover by isotopic labeling is a tedious task,
whether labeling, sampling, or data processing, and to
date only few publications have reported such mea-
surements in plants. In this work, quantitative tran-
scriptomic and proteomic data collected during tomato
fruit development and ripening were used to solve an
ODE-based model for estimating the translation and
degradation rate constants of .1,100 proteins. These
constants, which could be validated with the literature
data, provide new systems-level information about
protein turnover in plants.

RESULTS AND DISCUSSION

Transcriptomic and Proteomic Profiles during Tomato
Fruit Development

The tomato fruit used in this study were obtained
from S. lycopersicum var Moneymaker plants grown
under optimal production practices in a greenhouse
located in the southwest of France (Sainte-Livrade sur
Lot) during the summer of 2010 (see Biais et al., 2014 for
details). Transcriptomics and proteomics analyses were
performed on three replicates of pericarp samples col-
lected at nine developmental stages, each replicate
resulting from the pooling of at least 15 fruit of a given
truss (trusses 5, 6, or 7). For the transcriptome analysis,
Illumina-sequenced libraries were mapped on the
ITAG 2.4 version of the tomato genome (S. lycopersicum
var Heinz assembly v2.40, Sol Genomics Network;
https://solgenomics.net/). To obtain absolute quanti-
tative values, spikes were added at the beginning of the
extraction procedure (see Supplemental Appendix S1).
From 34,725 possible transcripts, 8,403 were not
detected in any of the samples, probably because they
were not expressed or their levels were too low. Sub-
sequently, 3,445 transcripts were removed that were
not detected in all three replicates of at least one de-
velopmental stage, leaving a total of 22,877 quantified
transcripts. For the proteome analysis, label-free liquid
chromatography tandem mass spectrometry (MS/MS)
was used. Peptide ions, and subsequently the proteins
from which they were derived, were quantified by in-
tegrating the signal intensities obtained from extracted
ion currents with the MassChroQ software (http://
pappso.inra.fr/bioinfo/masschroq/; Valot et al., 2011).
Absolute quantification was achieved for 2,375 proteins
using a mixed effects model from log10-transformed
intensities followed by a normalization using the “Total
Protein Approach” developed by Wi�sniewski et al.
(2014). In this approach, the individual protein abun-
dance, considered by its MS signal, is a fraction of
the total protein content considered as the total of MS
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signals. To do this, it was assumed for a sample that the
sum of protein abundances was equal to the total
amount of proteins (Fig. 1). This normalization could,
however, overestimate protein abundance, because all
individual proteins were not quantified.
The 2,375 quantified proteins represent 11% of the

detected transcriptome. Taken individually, mRNAs
corresponding to the detected proteins were among
the most abundant transcripts, with a ratio of ;7.5
between the respective medians of mRNA abundances
(Fig. 1A). mRNA concentrations ranged from;0.001 to
3,500 fmol.gFW21 when considering the full dataset
and from 0.01 to 440 fmol.gFW21 when considering the
subset encoding the detected proteins (Supplemental
File S1). Based on average values calculated during fruit
development, the individual protein concentration
ranged from 0.2 to 3,800 pmol.gFW21 with an average
of 26.3 and a median of 4.21. This is in agreement with
data previously obtained in Arabidopsis (Arabidopsis
thaliana) leaves that had been cross-validated with en-
zyme activity data (Piques et al., 2009). It is likely that
nondetected proteins were less abundant, poorly
extracted, highly unstable, and/or difficult to detect
due to the low ionization efficiency of their peptides
(Schulze and Usadel, 2010).
The most abundant protein found in this dataset is

encoded by the gene Solyc07g007750.2.1, which is an-
notated as a “defensin.”During fruit development, this
protein represented more than 6% of the detected pro-
teome and up to 8.6% at the initial stages of fruit
development (Supplemental Fig. S1). Many plant de-
fensins have been reported and they can harbor Cys-
rich antimicrobial peptides that are classified into plant
antifungal peptides (see Parisi et al., 2018 for review).
Studies on this class of peptides presently concern its
activity on microorganisms, in particular on the mo-
lecular features of the mechanism of action against
bacteria and fungi (Lacerda et al., 2014). Among the
other four most abundant proteins, two are annotated
as “nonspecific (plant) lipid-transfer proteins.” On av-
erage, their respective concentrations were of 1,900 and
1,300 pmol.gFW21. The lipid-transfer proteins are
known to be small but abundant and capable of ex-
changing lipids between membranes, with several
other biological roles including antimicrobial defense,
signaling, and cell wall loosening (see Yeats and Rose,
2008). Interestingly, each lipid-transfer protein dis-
played a unique profile with a higher abundance either
at the beginning of fruit growth (Solyc10g075090.1.1) or
at the end of development (Solyc10g075070.1.1). The
third most abundant protein was annotated as “histone
3” (Solyc01g073970.2.1). Its average concentration was
1,800 pmol.gFW21. In eukaryotic cells, histone 3, to-
gether with other histone proteins (H2A, H2B, and H4),
contributes to wrapping DNA before compaction of
DNA strands in assemblies leading to nucleosomes (see
Müller and Muir, 2015). Histone 3 represented 2.9%
of the average total protein content, decreasing pro-
gressively to 1%. The fifth most abundant protein
was a superoxide dismutase (Solyc01g067740.2.1), with

Figure 1. Distribution of transcript and protein concentrations. A,
Transcripts, all (22,877) in gray and the ones corresponding to the
proteins (2,375) in black. B, Transcripts (gray) versus proteins (red) for all
stages combined and at each of the nine stages of tomato fruit devel-
opment identified by time (in days post anthesis [DPA]). Dashed green
lines symbolize medians in all panels. Median values are shown in
black for mRNA and in red for protein. FW, fresh weight.
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900 pmol.gFW21 (i.e. 1.4% of the detected proteome). In
plants, superoxide dismutase catalyzes the production
of O2 and H2O2 from superoxide, thus protecting cel-
lular components from oxidative stress. O2

.2 is known
to denature enzymes, oxidize lipids, and fragment
DNA (Smirnoff, 1993). Interestingly, the superoxide
dismutase concentration remained constant during
fruit development (ranging from800 to 1,000pmol.gFW21)
whereas the total protein concentration decreased,
thus leading to a higher abundance at ripening
(.2.5% of the detected proteome; Supplemental Fig.
S1). Furthermore, three ribosomal proteins (40S and
60S) were found among the 10 most abundant pro-
teins in this dataset (Supplemental File S1).

To assess whether some functional categories are
overrepresented in the protein subset, we next analyzed
the enrichment of the MapMan categories that were
assigned usingMapMan4 (Schwacke et al., 2019; Fig. 2).
In line with previous results obtained in tomato fruit
(Szymanski et al., 2017), the highest proportions were
found for “gluconeogenesis/glyoxylate cycle” and
“OPP,” and “TCA/org. transformation,” whose en-
richments exceeded 50%. Relatively high propor-
tions (.30%) were also found for “C1-metabolism,”
“glycolysis,” “fermentation,” “amino acid metabolism,”
“S-assimilation,” and “major CHO metabolism.” The

lowest proportions were found for the bins “not
assigned,” “RNA,” “transport,” and “development”
(,5%). Although several enzymes involved in secondary
metabolism were highly abundant, this category was
underrepresented compared to primary metabolismwith
only 11% enrichment. However, the enrichment of the
“protein” category (including protein synthesis, process-
ing, transport, modification, and degradation) was only
13%, the highest number of detected proteins was found
for this category (.500). In contrast, individual protein
concentrations in this category were significantly lower
than in the other categories (P value 4.3.10210 according to
Benjamini-Hochberg–corrected Wilcoxon sum rank test),
with an average concentration of 18.3 pmol.g-1FW versus
26.3 for all detected proteins. However, this category also
represented .16% of the detected proteome (based on
concentrations), indicating that protein synthesis, matu-
ration, and degradation involve numerous genes and
represent a massive investment in terms of energy and
nitrogen (Li et al., 2014).

The median ratio between protein and mRNA a-
bundance increased from ;1,000 in the early stages to
;3,000 at ripening. The analysis was further restricted
to genes that were identified at bothmRNA and protein
levels, i.e. 2,375 mRNA-protein pairs. In this dataset,
proteins were on average 2,636 times more abundant

Figure 2. Enrichment of MapMan cate-
gories. A, Number of genes corresponding
to proteins detected within each functional
category. B, Ratio between detected
and nondetected proteins (enrichment
expressed in %). TCA, tricarboxylic
acid cycle; OPP, oxydative pentose
phosphate; CHO, carbohydrate.
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than the corresponding transcripts, as illustrated by
the median of the protein/mRNA ratio (Fig. 1B).
Considering the order of magnitude, this result is in
agreement with previously reported ratios for eukar-
yotic cells like mouse fibroblasts (2,800; Schwanhäusser
et al., 2011) and yeast (748; Lahtvee et al., 2017). This
ratio also progressively increased during fruit devel-
opment before stabilizing, with median values rising
from ;1,200 to 3,000. This is the result of a larger de-
crease in transcript concentration than in protein
concentration.

Clustering Analysis Shows that Proteins Change More
Gradually than Their Encoding mRNA

As reported previously, the large expansion of the
vacuole at the expense of the cytoplasm during the
initial stages of tomato fruit development has a strong
effect on the data structure (Beauvoit et al., 2014; Biais
et al., 2014). Thus, transcript and protein data were
normalized before multivariate and univariate statisti-
cal analyses (median normalization, cube root trans-
formation, and Pareto scaling).
Global impacts of the growth stages on the tran-

scriptome and the proteome were visualized by prin-
cipal component analysis (PCA), and score plots were
constructed using MetaboAnalyst (v4.0; Xia et al., 2015;
median normalization, cube-root transformation, and
Pareto scaling). Of the total variance, PC1 and PC2
captured 78.2% for transcripts (Fig. 3A) and 71.5% for
proteins (Fig. 3B). For transcripts, stages 1–6 grouped
quite closely but with a clear trajectory in PC1 and PC2
that recapitulated the developmental stage. Stages 7–9
also grouped together but were strongly separated in
PC1 from stages 1 to 6 (Fig. 3A). This suggests two
clear-cut phases of gene expression during tomato fruit
development. Conversely, PC analysis of the proteomic
data pointed rather to a stage-specific response with
stages 1 and 2 distinctly separated, stages 3–6 sub-
stantially aligned across PC2, stage 7 separated, and
stages 8 and 9 grouped (Fig. 3B). Thus, these data in-
dicate that protein profiles fit better to fruit develop-
ment than transcript abundances, with possibly three
main phases. This was confirmed for both transcripts
and proteins using dendrograms (distance shown
as Pearson’s correlation after complete clustering in
MetaboAnalyst) that showed relationships between
samples (Fig. 3, C and D). Further analysis by bidi-
mensional clustering (Pearson’s correlation after com-
plete clustering using MeV v4.9.0; http://mev.tm4.
org/#/welcome) also highlighted different patterns for
transcripts and proteins (Fig. 3, E and F). Whereas the
mRNA heatmap distinguished two main clusters
(stages 1 to 6, and 7 to 9), the protein heatmap produced
a gradual shift during fruit development. This suggests
that fruit growth is accompanied by a strong shift in
transcript accumulation but also by a harmonious
change of protein profiles that follows the develop-
mental stages over time.

We next wondered which metabolic functions might
be linked to the changing protein profile during fruit
development. We filtered the 2,375 proteomics features
by stringent univariate statistics (analysis of variance
[ANOVA] P , 0.01) with adjusted Bonferroni correc-
tion for false positive removal. Using the resulting sig-
nificant markers (1,363), we performed bidimensional
clustering (Pearson’s correlation) and identified three
clusters that mapped to the “Early,” “Mid,” and “Late”
phases of fruit development (see Supplemental Fig. S2;
Supplemental File S1). Mercator4 v1.0 (https://
plabipd.de/portal/mercator4) was used to map the
metabolic functions that are presented as absolute and
relative abundances in Figure 3G. Protein metabolism,
especially protein synthesis, peaked in the “Early”
phase at the beginning of fruit growth and was negli-
gible in the later phases (Fig. 3G). This fits with the idea
that production of the machinery for protein synthesis
is a prerequisite to allow subsequent production of
proteins of anymetabolic function. Protein degradation
and modification were high at ripening. Redox ho-
meostasis was represented by an early peak and a sec-
ond peak at ripening, in the “Early” and “Late” clusters,
respectively (Fig. 3G). A very energy-consuming turbo
metabolism underpins the development of young fruit
(Beauvoit et al., 2014) and may ultimately lead to oxida-
tive stress (Geigenberger and Fernie, 2014). To counter
this, several cellular systems maintain the redox poise by
detoxifying accumulating reactive oxygen species, as in
pineapple (Ananas comosus) where catalase and ascorbate
peroxidase mRNA accumulate in the early stages of fruit
growth while the expressions of glutathione reductase
and monodehydroascorbate reductase gene are upregu-
lated in the later stages (Léchaudel et al., 2018). Abundant
redox proteins included superoxide dismutase and as-
corbate peroxidase in the “Early” phase, and mono-
dehydroascorbate reductase and glutathione peroxidase
in the “Late” phase (Supplemental Fig. S3). Further evi-
dence was that alterations in the abundance of redox-
associated proteins coincided coherently with high
values for the primary metabolism, including photosyn-
thesis, cellular respiration, carbohydrates, amino acids,
lipids, polyamines, and coenzymes (Fig. 3G). This pattern
was observed not only during the initial phases of fruit
growth but also at ripening. This suggests that the pri-
mary metabolism is required to provide the initial build-
ing blocks for fruit growth and becomes damped during
the expansion phase. At ripening, the central metabolism
again increases. This is in agreementwith the idea that the
climacteric crisis is a characteristic of the phase between
expansion and ripening (Colombié et al., 2017). In stark
contrast, the expansion phasewas associatedwith smaller
proteomic changes, e.g. higher abundance in vesicle
trafficking (Fig. 3G).

Correlation between Gene Expression and Proteins

With data expressed on a gram basis and log-
transformed to minimize the contribution of the most
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Figure 3. Multi- and univariate statistical analyses reveal differential induction patterns for transcript and protein abundances
during fruit development. Abundance data of transcripts and proteins that paired together (2,375) were normalized before sta-
tistical analyses (median normalization, cube-root transformation, Pareto scaling). A and B, Global overview of unfiltered
transcriptomic (A) and proteomic (B) profiles by PCA (n = 3; max variance explained is shown in brackets) indicates stage-specific
responses during fruit growth. C and D, Dendrograms showing relationship between transcript (C) and protein (D) samples
(Pearson’s correlation) confirmed multivariate outputs from PCA. E and F, Bidimensional clustering analysis of transcript (E) and
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abundant proteins (extreme values), mRNA and pro-
tein datasets showed significant correlations be-
tween mRNAs and their encoded proteins (Futcher
et al., 1999; Griffin et al., 2002; Maier et al., 2009;
Schwanhäusser et al., 2011; Lahtvee et al., 2017) with a
correlation coefficient of R2 = 0.37 for all developmental
stages (Fig. 4A). Note that the correlation coefficient
decreased (R2 = 0.20) when the regression was per-
formed without log-transformed data. These values
indicate only a moderate relationship between mRNA
and protein concentrations. Interestingly, R2 decreased
during fruit development, indicating that the relation
between mRNA and protein concentrations weakened
over time (Fig. 4B). However, a significant correlation
between log-transformed data indicates a power rela-
tion between mRNA and protein contents, as

logðpÞ ¼ a:logðrÞ þ b ð1Þ

where p is the protein content; r is the mRNA content;
a is slope of the linear regression; and b is the intercept,
which gives

p ¼ eb:ra ð2Þ

Thus, according to Equation (2), there is no linear
relation between p and r except when a = 1 (in this case,
the relation would be strictly linear, so a logarithmic
transformation of the data would not increase the cor-
relation coefficient). According to Figure 4A, awas less
than one in this study, which suggests that protein
synthesis becomes less effective as the mRNA concen-
tration increases. We conclude that this type of correl-
ative model is not appropriate for studying time-series
or for observations in which there are pre-existing
proteins (e.g. a developed organ), probably because
the protein stability exceeds the mRNA stability.
Another approach to evaluate the relation between

mRNA and proteins is to perform a regression analysis
during fruit development for each transcript–protein
pair. When a linear regression analysis was performed
with data expressed on a fresh weight basis, R2 ranged
between 0 and 1, with a median value of 0.52
(Supplemental Fig. S4). However, this somewhat
tighter correlation was mostly due to dilution by
growth, which affects protein and transcript abundance
in parallel, leading to a secondary correlation that fal-
sifies the actual relationship between transcript and
protein abundance. Indeed, in most cases both mRNA
and protein concentrations were much higher at the

earliest developmental stage. Removing the first time
point from the analysis had a relatively strong effect
(the median value for R2 dropped to 0.43), whereas
removing any other time point had less effect.
Taken together, these observations led us to use a

protein turnover model to estimate protein translation
and degradation rates, taking into account protein
translation, its stability and its dilution by growth.

Model Describing Protein Translation and Degradation

As mentioned in the introduction, protein and
mRNA data can be linked using an ODE describing the
time course of protein concentration, resulting from
two terms—one for translation and the other for re-
moval by degradation and/or dilution by growth. The
processes and terms in the model are summarized in
Figure 5A. Estimation of the rate of protein translation
and degradation during development was based on the
assumption that, on a fruit-basis, protein translation
rate and protein degradation rate are proportional to
transcript abundance and protein abundance, respec-
tively. The calculation was performed according to
Equation (3):

dpðtÞ
dt

¼ ktrðtÞ2 ðkd þ mðtÞÞpðtÞ ð3Þ

where p(t) is the protein concentration in fmol.gFW21

at t; r(t) is the transcript concentration in fmol.gFW21 at
t; kt is the translation rate constant (day21); kd is the
degradation rate constant (day21); and m(t) is the rela-
tive growth rate at t.
To solve the model, each of the 2,375 mRNA–protein

pairs was described using a polynomial regression after
log transformation for the mRNA concentrations and
using Equation (3) for protein concentrations. Hence,
fruit weight was fitted using a double sigmoid and a
relative growth rate was deduced (Supplemental Fig.
S5). To improve the numerical accuracy of the compu-
tations, mRNA and protein data were normalized on
their respective averages calculated over the nine
stages. Then, the values of the rate constants kt and kd
were calculated using the least square method: For each
protein concentration, the squared difference between
the predicted value obtained by solving the ODE and
the experimental value was minimized. Three criteria
were used to evaluate the quality of the resolution au-
tomatically: (1) the score for each mRNA fit, (2) the
score for each protein fit, and (3) a statistical evaluation

Figure 3. (Continued.)
protein (F) profiles (Pearson’s correlation) revealing distinct abundance patterns. G, Protein profiles were filtered by ANOVA
(P , 0.01 with adjusted Bonferroni) yielding 1,363 proteins, then subsequently clustered by Pearson’s correlation (see
Supplemental Fig. S2), which revealed three main clusters: “Early” (514 proteins), “Mid” (117), and “Late” (330). Proteins that
pairedwith transcripts, or belonging to the different clusters, weremapped tometabolic function usingMercator4 (v1.0). For each
metabolic function, absolute (left bars, light colors) and relative (right bars, dark colors) abundances are shown on the left and
right axes, respectively.
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of constant quality; simulations were also performed to
test whether the time windows used in the study were
adequate to describe protein turnover (see “Materials
and Methods” and Supplemental Appendix S2). The
model could be validated for 888 transcript-protein
pairs using these criteria. Because criteria 2 and 3
appeared ambiguous for some pairs, a manual inspec-
tion was subsequently performed. This process allowed
kt and kd to be satisfactorily solved for 1,103 mRNA–
protein pairs, representing.46% of the total number of
pairs (Supplemental File S1). For the remaining 1,272
pairs, (1) a high number of missing values could have
penalized the resolution, especially for the protein
dataset (clearly the case for 119 pairs); (2) mRNA and/
or protein data were too noisy; (3) each individual pa-
rameter could not be estimated due to the high corre-
lation between them (unclosed confidence region for
criteria 3; and (4) proteins cannot comply to this
mathematical model.

As alreadymentioned, the model assumes that kt and
kd are constant during fruit development. It is therefore
not possible to describe specific events such as the
degradation of a given protein that might occur at a
precise moment. Such events would likely lead to the
model failing to provide a solution. Thus, for the
transcript–protein pairs that could not be modeled
satisfactorily, we manually inspected the protein data
for time courses that pointed to time-dependent
changes in degradation rate (i.e. a sharp decay at rip-
ening). Fewer than 50 proteins were found that were
strongly degraded at the beginning of ripening
(Supplemental File S1). Within this group, a defensin

and a small subunit of Rubisco were the two most
abundant ones, based on concentration (respectively,
the 69th and 102nd most abundant proteins found
when averaging protein content over all developmental
stages). However, these 50 proteins represented only a
small fraction of the proteome, i.e. ,1% based on con-
centrations, suggesting that ripening was not charac-
terized by massive targeted proteolysis.

We next calculated the proportions of proteins for
which the model could be satisfactorily solved within
the three protein clusters shown in Figure 3B. The
model performedwell with clusters “Early” and “Mid,”
but not so well for cluster “Late,”which corresponds to
ripening (53%, 44%, and 34%, respectively, of the pro-
teins could be solved; Table 1). This might be because
the duration of the experiment does not cover the life-
time of a large proportion of the proteins that are syn-
thesized at ripening.

Together, these results indicate that for most of the
abundant proteins (i.e. proteins quantified here), a
specific regulation of protein synthesis or degradation
cannot be postulated. It is striking that the changes in
abundance of nearly one-half of the proteins that were
quantified can be modeled on the assumption that kt
and kd do not vary during fruit development and rip-
ening. The proportion is likely to be higher because,
under the above hypothesis, model resolution is more
difficult when a substantial amount of protein synthesis
and degradation occur outside the time interval of the
experiment. Using an analogous approach with yeast,
Tchourine et al. (2014) investigatedwhich types of time-
dependent expression profiles the cell could achieve

Figure 4. Correlation between 2,375 protein
and transcript abundancies during fruit devel-
opment. A, Correlation plot obtained for all
stages. B, Correlation plots obtained at each of
the nine stages identified by stage of fruit de-
velopment. Correlation coefficients (R2) are given
below each plot. Data were log-transformed
before analysis.
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without using regulatory factors, i.e. by assuming
simple linear relationships between the contributing
synthesis and degradation rates. Using the same linear
differential equation to model time-dependent protein
expression changes in yeast cells, they found that one-
third of the genes were successfully modeled. As in our
study, prediction quality was linked to low measure-
ment noise and to the shape of expression profiles.

A better predictability was obtained when both protein
andmRNA levels increased, while sudden and singular
shifts of expression led to low predictability.

Protein Translation Rate

The translation rate constant (kt) gives the number of
protein copies synthesized from a given mRNA

Figure 5. Mathematical model of protein
translation and degradation. A, Scheme of
the main processes described in the math-
ematical model. B, Distribution and box-
plot of both rate constants for translation (kt)
and degradation (kd) that were satisfactorily
fitted with the model for 1,103 proteins. C,
Three satisfactorily fitted profiles of tran-
scripts and proteins, for which protein peaks
occurred at early, mid, and late stages of
fruit development. Symbols correspond to
transcript (red) and protein (blue) normal-
ized experimental data. The red lines rep-
resent the fitting of the mRNA data and the
blue line the fitting of the protein data.

Table 1. Protein clustering and turnover during fruit development

The number of mRNA-protein pairs, for which protein translation and degradation rate constants (kt and kd, respectively) could be satisfactorily
estimated from the model, was compared with the number of proteins found peaking within three clusters corresponding to early growth (cluster
“Early”), fruit expansion (cluster “Mid”), and ripening (cluster “Late”).

Feature Before Clustering Cluster “Early” Cluster “Mid” Cluster “Late”

Number of mRNA–protein pairs 2,375 514 117 330
Number of mRNA–protein pairs solved

satisfactorily
1,103 271 51 113

Median of kt (day21) solved satisfactorily 772 766a 593 553a

Median of kd (day21) solved satisfactorily 0.09 0.12a 0.09 0.04a

aSignificance: Cluster 1 was significantly different for kt (P value = 9.1025) and kd (1.10214), and cluster 3 for kt (2.1023) and kd (2.10216);
Wilcoxon rank sum test with Benjamini-Hochberg correction.
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template per day. It encompasses initiation, elongation,
and termination rates (Gingold and Pilpel, 2011). Esti-
mation of protein translation rate constants has been
performed here at large-scale. It is worth mentioning
that Li et al. (2017) have, for a large number of genes,
calculated a so-called “synthesis rate constant” that
encompasses mRNA concentrations and translation.

Validation

To validate this dataset, the literature was mined for
protein translation rate constants obtained in eukary-
otes, assuming that protein translation is a universal
process that is highly conserved among eukaryotes.
Unfortunately, to date only a few articles have reported
protein translation rate constants on a comparable
scale. There are two reports of translation efficiencies
for ;4,200 and 1,115 proteins, respectively, in mam-
malian fibroblast cultured cells (Schwanhäusser et al.,
2011) and in yeast at steady state (Lahtvee et al., 2017).
Superimposing the distributions of the kt values indi-
cates that the values found here were lower but within
the same orders of magnitude (Fig. 6A). The median kt
value found for tomato fruit, 655 d21, which corre-
sponds to ;2 min to synthesize one protein copy, is
lower than for yeast (4,930 d21) and for mammalian
cells (2,981 d21). Although many species-dependent
factors (e.g. temperature, substrate concentrations, etc.)

and parameters (initiation efficiency, ribosome con-
centration, polysome density, codon usage, etc.) might
explain these differences, it should be noted that the
proteins under study may also differ considerably re-
garding their properties. It can nevertheless be con-
cluded that the kt values obtained here are plausible. To
be able to compare these estimates with protein syn-
thesis rate constants obtained in Arabidopsis (Li et al.,
2017), we used the following equation with transcript
and protein values averaged over the whole fruit
development, as

kt∗ ¼ kt
rðtÞ
pðtÞ ð4Þ

As shown in Figure 6B, the distributions of the kt* (in
d21) found in tomato and Arabidopsis were largely
superimposed, with similar profiles and closed median
values, i.e. 0.23 d21 for Arabidopsis leaves and 0.31 d21

for tomato fruit.
Further important parameters for studies dealing

with protein metabolism are polysome density, which
results from the distance between ribosomes within
polysomes, and elongation rate, which is expressed as
the number of amino acids attached per second (Piques
et al., 2009). Studies in yeast and mammalian cells have
reported a distance of 200–300 nucleotides between two

Figure 6. Comparison of rate constants between organisms. A, Distribution of 1,103 translation rate constants kt* calculated for
proteins of tomato fruit (gray, median 0.31 d21) superimposedwith 1,228 values from Arabidopsis leaf (blue, median 0.23 d21; Li
et al., 2017). B, Distribution of 1,103 translation rate constants kt calculated for proteins of tomato fruit (gray, median 772 d21)
superimposed with 1,115 values of yeast (green, median 4,930 d21; Lahtvee et al., 2017) and 4,247 values of mammal cells
(yellow, median 2,981 d21; Schwanhäusser et al., 2011). C and D, Distribution of 1,103 degradation rate constants kd calculated
for proteins of tomato fruit (gray median 0.113 d21) superimposed with (C) 1,228 values from Arabidopsis leaf (blue, median
0.113 d21; Li et al., 2017) and 505 values from barley leaf (purple, median 0.076 d21; Nelson et al., 2014) and with (D) 1,384
values of yeast (green, median 1.03 d21; Lahtvee et al., 2017) and 5,028 values of mammal cells (fibroblast cells yellow, median
0.347 d21; Schwanhäusser et al., 2011). All rate constant values were log10-scaled.
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ribosomes within polysomes and a translation rate
ranging from 3 to 10 amino acids per second (Iwasaki
and Ingolia, 2016). To obtain an estimation of the
elongation rate (Velong), i.e. the overall rate of ribo-
some progression/elongation for the three major
steps—initiation, elongation, and termination, and thus
the number of amino acids added per second and per
ribosome—we used a simplified version of the equation
reported by Piques et al. (2009)

Velong ¼ 1000ks
3:Drib

ð5Þ

whereVelong is expressed in (amino acids.ribosome-1.s-1);
kt is expressed in s21; Drib is the ribosome density
(ribosomes.kb-1); and 3 is the ratio between mRNA
and protein length (kb.amino acids21).
Assuming a ribosomal density of four or six

ribosomes per kilobytes according to Iwasaki and
Ingolia (2016), the elongation rate estimated from the
median kt (770 d21) ranged from 0.4 to 0.6 amino
acids.ribosome21.s21. Although it is in the same order
of magnitude, this estimation is lower than the elon-
gation rates compiled by Iwasaki and Ingolia (2016),
which ranged from 3 to 10 amino acids.ribosome21.s21

for eukaryotic cells. Note that the latter rates were
obtained by directly monitoring nascent peptides via
the use of tandem repeats of epitopes that bind fluo-
rescent antibodies (Iwasaki and Ingolia, 2016 and ref-
erences therein), whereas this estimation includes
initiation, elongation, and termination rates. It is
therefore possible that elongation rates are higher in
tomato fruit. Indeed, although the identity of the rate-
limiting step of translation remains controversial, the
balance seems to be leaning more toward initiation as
having the strongest influence (Gingold and Pilpel,
2011; Shah et al., 2013).

The Translation Rate Constant Is Highly Variable

There was no correlation between transcript con-
centration and kt, confirming the results of Piques et al.
(2009) who concluded that ribosomal occupancy de-
pends more on individual features of transcripts than
on transcript concentration. Indeed, the 1,103 kt values
that we found covered four orders of magnitude and
the coefficient of variation (;1,000%) was nine times
higher than the coefficient of variation found for the
corresponding kd values. This is in line with the finding
that initiation probabilities inferred for yeast genes vary
by many orders of magnitude (Shah et al., 2013). Nev-
ertheless, most values in our study lie in a narrower
range. Almost 70% of the values for ktwere between 100
and 1,000, and 30% were between 1,000 and 10,000.
Among the 10 proteins with the highest kt values
(.11,873 d21, corresponding to a protein being syn-
thesized in,10 s per transcript), three are annotated for
protein synthesis and two for protein degradation.
Conversely, among the five proteins displaying the

lowest kt values (,117 d21, corresponding to a protein
synthesized slowly in 20 min or more per transcript),
three are annotated for DNA synthesis.

Can Gene Sequence Features Be Used to Predict Protein
Synthesis Rates?

Codon usage is known to influence protein synthesis
rates (Bulmer, 1991). We computed the number and
proportion of each different codon in each sequence to
check whether rare codons are overrepresented in
proteins with slower synthesis rates, and vice versa. No
such correlation was found, indicating that codon us-
age does not have a strong influence on kt, using either
Partial Least Square algorithms or generalized linear
models. An in-depth analysis of 59-UTR structures
might give more insights into translation rates.

Protein Degradation Rate

We next investigated the estimated degradation rate
constants (kd) of the 1,103 mRNA–protein pairs for
which the model resolution was considered as valid.
The kd median value obtained was 0.087 d21 (Fig. 5),
which corresponds to a lifetime of ;11 d and a half-life
of ;7.5 d.

Validation

To cross-validate the results, we compared the kd
calculated for tomato with degradation rate constants
obtained by 15N labeling experiments for proteins of
barley (Hordeum vulgare; 508 values; Nelson et al., 2014)
and Arabidopsis (1,228 values; Li et al., 2017) leaves.
The three distributions of kd were in the same range
(Fig. 6C). The median kd value found here (0.087 d21) is
also in accordance with a 3H20-labeling study per-
formed in barley leaves, in which the kd of the leaf
proteome ranged from 0.065 to 0.154 d21 (Dungey and
Davies, 1982), as well as with a 13CO2-labeling study
performed in rosettes of various Arabidopsis acces-
sions, in which the degradation rate of the total protein
pool ranged from ;0 to 0.09 d21 (Ishihara et al., 2017).
The distributions of degradation rate constants of

tomato fruit showed a larger deviation from those of
other eukaryotes, i.e. mammal cells (fibroblasts,.4,200
values; Schwanhäusser et al., 2011) and yeast (1,384
values Lahtvee et al., 2017; Fig. 6B). The lower me-
dian values in yeast (1.03 d21) and mammal cells
(0.35 d21) indicate that plant proteins are more stable.
It is not known whether the turnover kinetics of indi-
vidual proteins are highly conserved or if they have
evolved to meet the physiological demands of indi-
vidual species (Swovick et al., 2018). By conducting
systematic analyses of proteome turnover kinetics in
fibroblasts isolated from eight species, these authors
found (1) a decrease in cross-species correlation of
protein degradation rates as a function of evolutionary
distance, and (2) a negative correlation between global
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protein turnover rates and maximum lifespan of the
species. A comparable study including micro-
organisms and plant cells could help to better under-
stand the difference in turnover between organisms.

To further validate the results, the SD calculated for
the kd of subunits of protein complexes that are
known or hypothesized to turnover in a coordinated
manner was compared with the SD calculated for
100,000 randomly sampled same-sized groups of
proteins, as in Li et al. (2017). The SD appeared sig-
nificantly smaller for the proteasome (n = 29, P
value = 0.04), plastidial ribosome (n = 9, P
value = 0.03), and PSII (n = 3, P value = 0.04) but not
for the mitochondrial electron transport chain (n = 14,
P value = 0.4) and the cytosolic ribosomal proteins
(Supplemental Fig. S6), the latter having also been
found to be nonsignificant in Arabidopsis leaves (Li
et al., 2017).

Additionally, kd values calculated here were com-
pared with those found in other species for various
proteins or groups of proteins. Comparisons per-
formed between tomato fruit and leaves of barley
and Arabidopsis kd (homologs with .60% homol-
ogy) were inconclusive. No significant correlation
was found for a hundred homologous barley and
Arabidopsis proteins whose kt had been previously
found (Supplemental Fig. S7; Supplemental File S1).
This result is not surprising because the correlation
found between homologs of barley and Arabidopsis
leaves was weak (0.38 when three outliers were re-
moved; Li et al., 2017). More generally, conservation
of the protein degradation rate constant between
organisms is not especially expected because it can
be different even for cells of two tissues of the same
organism. For instance, Price et al. (2010) performed
large-scale studies of protein dynamics to see if
turnover kinetics of individual proteins are highly
conserved or if they have evolved to meet the
physiological demands of individual species. These
turnover rates measured for ;2,500 proteins in
three mouse tissues (brain, liver, and blood) using
organism-wide isotopic labeling were spanning
four orders of magnitude and were significantly
lower in the brain than in the liver and blood, with
respectively 9, 3, and 3.5 d. In contrast, values found
in human HeLa cells for 60S and 40S ribosomal
proteins (Doherty et al., 2009) ranged from 0.11 to
0.74 d21 and from 0.02 to 2.64 d21, respectively. The
ranges found for these two subgroups were very
similar for 60S (0.04–0.58), and slightly less for 40S
(0.04–0.44).

Finally, among the highest kd corresponding to un-
stable proteins (kd. 0.8 d21), four are not assigned, two
are respectively annotated as “RNA, regulation tran-
scription” and “nucleotide metabolism,” and one is the
large subunit of ADP-Glc pyrophosphorylase (AGPase)
involved in the starch pathway. Interestingly, AGPase
has already been described as unstable in Arabidopsis
leaves (Gibon et al., 2004) and in tomato fruit (Schaffer
et al., 2000).

Proteins Involved in Protein Synthesis Are Less Stable

When considering genes with validated kd, two
“MapMan” functional categories were found with
consistently higher kd for “protein synthesis and RNA,”
with Wilcoxon rank sum test P values of 4.2.1022 and
2.7.1023, respectively (after Benjamini-Hochberg false
discovery rate correction).

Can Protein Features Be Used to Predict Protein Stability?

It has been widely hypothesized that the protein
degradation rate is directly linked to protein sequence.
For example, it has been proposed that the N-terminal
residue of proteins (Gibbs et al., 2016), hydrophobicity
(Mann et al., 1984), enrichement in proline, glutamic
acid, serine, and threonine domains (Rechsteiner and
Rogers, 1996), or the presence of specific dipeptides
(Ding et al., 2004) might have a direct effect on protein
stability. To validate this assumption, we calculated
instability indexes and aliphatic indexes, looked for
proline, glutamic acid, serine, and threonine domains
and generated 1,103 numerical features representing
protein features such as physico-chemical information
or amino acid composition. Using simple regression
analyses, we found that some variables were signifi-
cantly linked to kd. For example, the P values found for
the aliphatic and instability indexes were 6.10210 and
7.1024, respectively. However, the corresponding R2

were ,0.1. We then tried to build generalized linear
models that would predict kd based on combinations of
descriptors. None of the combinations of predictors
satisfactorily correlated with kd values. From this anal-
ysis, it appears that the primary sequence is not enough
to predict protein stability, at least on a global scale for
this dataset. This result matches studies in yeast in
which Tchourine et al. (2014) did not find any signifi-
cant associations between any features for the rate
constants of translation and degradation.

The Translation Rate has a Major Impact on
Gene Expression

Strikingly, the translation rate constants were highly
correlated with the protein–mRNA ratio calculated at
the first stages of tomato fruit development, when
protein degradation can be neglected (Supplemental
Fig. S8). This result is in agreement with Li et al. (2014),
who performed an absolute quantification of pro-
tein synthesis rates based on ribosome profiling in
Escherichia coli. These authors showed that the synthesis
rate, which is the product of mRNA and kt, was pro-
portional to protein abundance. Conversely, no corre-
lation was found between the degradation rate
constants and the protein–mRNA ratio. This result
suggests that in growing organs the synthesis process
controls protein abundancies much more efficiently
than protein degradation, the former being much faster
than the latter.
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We then examined whether genes grouped in clus-
ters “Early,” “Mid,” or “Late,” which encode proteins
peaking during early growth, fruit expansion, and
ripening stages, respectively (see Fig. 3), would differ
regarding kt and kd values. As shown in Table 1, the
cluster “Early” was significantly enriched with genes
having higher kt and kd whereas the cluster “Late” was
significantly enriched with genes having lower kt and
kd. We next investigated whether very closely related
isoforms would differ for kt and kd by selecting groups
of putative paralogs (Supplemental File S1). Surpris-
ingly, within most groups identified, there was a rela-
tively strong variation for both constants, with a
significant trend for both constants to be higher for
paralogs belonging to the cluster “Early.” One inter-
pretation is that genes with higher translation rates
could have been selected for early fruit growth, which is
a very fast phase of development. Alternatively, the
trend to higher kt during early growth could be because
the protein synthesis machinery was more abundant
and/or that metabolic activity was higher. As men-
tioned above, high metabolic activity is likely to result
in higher reactive oxygen species production, which
could in turn explain the higher kd found for proteins
peaking during early growth.

Concluding Remarks and Future Perspective

Quantitative transcriptomics and proteomics data
can be used to model protein content as a function of
mRNA content. This study suggests that suchmodeling
is valid when performed over a developmental time
course during which the modeled proteins are subject
to both synthesis and degradation. In a simple model,
we assumed that the rate of protein synthesis (amino
acids added per time unit and transcript copy) is pro-
portional to transcript abundance, and the rate of pro-
tein degradation (protein degraded per time unit and
protein molecule) is proportional to protein abundance.
For each transcript–protein pair, kt and kd can have
different values, but these do not change during fruit
development. Depending on when the transcripts and
proteins peaked during fruit development, this simple
model gave solutions for 34% to 53% of all transcript-
protein pairs. The highest proportion of valid model
resolutions was found for the proteins that accumulate
during early growth, i.e. for the proteins that were es-
sentially synthesized and degraded during the sam-
pling period. The lower proportion of solutions for
proteins that accumulate later in fruit ripening may be
because the data set did not contain enough time points
to estimate their degradation rates. Thus, it is likely that
the proportion of proteins that obey this simple law is
even higher.
It is striking that it was possible to estimate kt and kd

constants for such a large proportion of proteins
quantified, whereas high sophistication is often in-
voked in literature dealing with protein degradation
(Hinkson and Elias, 2011). These results suggest that

besides dilution by growth, transcription and transla-
tion are the most important points of control of protein
concentration in developing tomato fruit. This view is
reinforced by the fact that proteins involved in protein
synthesis, and more generally those expressed in the
early stages of growth, tend to have higher rate con-
stants for both translation and degradation. On the
other hand, ;1,000 proteins were not successfully
modeled, suggesting that the use of fixed-rate constants
cannot be solved for any time course, for example be-
cause of the occurrence of more complex mechanisms
such as delayed translation, regulation of translation, or
regulation of protein degradation. A more detailed
model describing regulations could estimate the rate
constants with more experimental data to fit. Also, it
will be important to design experiments with higher
sampling frequency and seek for more sensitive pro-
teomics to be able to catch less abundant proteins with
higher turnover rates.
Whereas protein turnover has often been studied

under steady-state conditions, for example in fully
developed leaves (Dungey and Davies, 1982) or in ro-
settes, which are a mix of leaves at various develop-
mental stages (Ishihara et al., 2017), this study
emphasizes the importance of sampling during a de-
velopmental series. Indeed, many proteins in the de-
veloping tomato fruit can last for days or even weeks
once synthesized, and there is no evidence of massive
and targeted protein degradation that is specific to
ripening (Sorrequieta et al., 2010; Ré et al., 2012). It
seems rather that ripening coincides with the lifetime
running out for a range of proteins that have been
synthesized in the early stages of growth. Furthermore,
ripening was also characterized by the de novo syn-
thesis ofmany proteins (“Late” cluster), including those
in primary metabolism. It is also likely that ethylene,
the major orchestrator of ripening in climacteric fruits
such as tomato (Liu et al., 2015), triggers protein syn-
thesis rather than protein degradation. This view is
supported by the observation that high CO2, which
inhibits ethylene-driven ripening, induces a substantial
loss of protein in tomato fruit (Rothan et al., 1997). Thus,
the question ariseswhether protein lifetime represents a
major constraint in terms of the timing of shifts between
developmental stages. It is indeed striking that tomato
fruit need .50 d to grow and ripen. Furthermore, it
seems obvious that protein stability represents a major
issue for synthetic biology and that modeling of protein
turnover will be of great help to support the engineer-
ing of cellular processes.
Future work must also focus on a deeper under-

standing of the rates of protein production and turno-
ver and on the principles that govern their regulation.
Especially, morework will be needed to understand the
different processes governing protein synthesis in
growing plant tissues. For instance, more detailed in-
formation about ribosome abundance will be needed to
assess whether it influences kt. Indeed, decreased ribo-
some abundance would probably lead to decreased kt
unless overall mRNA abundance falls in parallel with
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ribosome abundance. Then, ribosome footprinting with
the identification of ribosomal binding sites on mRNA
through ribosome stalling and sequencing the bound
RNA fragments could improve the estimation of
translation rates. It will certainly be useful to compare kt
values obtained with total mRNA and polysomal
mRNA datasets to better apprehend the influence of
initiation and elongation. It will also be important to
extend the number of mRNA–protein pairs as only a
relatively small fraction of the proteome could be
quantified here.

Finally, no sequence-based features were found that
could be used to predict kt or kd in this dataset. This may
in part reflect the specificity of such mechanisms for
small groups of proteins, whichmeans they are difficult
to detect in current datasets that contain only a small
proportion of the total proteome. In addition, various
physical and chemical factors (pH, temperature, etc.)
that may potentially influence synthesis and degrada-
tion rates should be considered. Larger sets collected
under various growth conditions, organs, and species
would also make it possible to perform nontargeted
machine-learning approaches and ultimately unravel
novel features that impact protein synthesis and
stability.

MATERIALS AND METHODS

Plant Material

The experimentation was conducted with Solanum lycopersicum var Mon-
eymaker plants as described in Biais et al. (2014). Briefly, plants were grown
under production conditions in a glasshouse in southwest France (44°23ʹ56ʹʹN,
0°35ʹ25ʹʹE) from June to October. The nutrient solutions used were adapted to
plant growth and the water supply was adjusted to the climate using a drip
irrigation system tomaintain 20% to 30%drainage (pH adjusted to 5.9, electrical
conductivity to 2.2 mS.cm21). On trusses 5, 6, and 7, flower anthesis was
recorded and fruit were harvested at nine developmental stages, at ;8, 15, 21,
28, 34, 42, 48, 50, and 53 days post anthesis. Samples were prepared by first
removing seeds, jelly, and placenta, and then cutting the pericarp into small
pieces, which were immediately frozen in liquid nitrogen. Samples were
ground and stored at 280°C until analysis.

mRNA Extraction and Quantification

Total RNAwas isolated from frozen tissue powder of tomato pericarp using
Plant RNA Reagent (PureLink kit; Invitrogen) followed by DNase treatment
(DNA-free kit, Invitrogen) and purification over RNeasy Mini Spin Columns
(RNeasy Plant Mini kit; Qiagen), according to the manufacturer’s instructions.
Total RNA concentration was determined by spectrophotometry. RNA integ-
rity was assessed using the RNA 6000 Nano Kit with a Bioanalyzer 2100 System
(Agilent Technologies). For each extract, a subsample of at least 5 mg of total
RNA was used as the input material for RNA sample preparations. Transcripts
were quantified absolutely using eight internal standards spiked in at the be-
ginning of the total RNA extraction (in mole, 3.97.10214 [spike 1], 4.01.10215

[spike 2], 4.01.10216 [spike 3], 4.02.10217 [spike 4], 4.08.10218 [spike 5],
4.04.10219 [spike 6], 3.82.10220 [spike 7], and 3.82.10221 [spike 8]). Spike se-
quences are given in Supplemental Appendix S1.

RNA sequencing (RNA-seq) was performed at the GeT-PlaGe core facility,
INRA Toulouse. RNA-seq libraries were prepared according to Illumina’s
protocols using the TruSeq Stranded mRNA Sample Prep Kit to analyze
mRNA. Library quality was assessed using a Bioanalyzer (Agilent Technolo-
gies) and libraries were quantified by quantitative PCR using the Kapa Library
Quantification Kit (Kapa Biosystems). RNA-seq experiments were performed
on a HiSeq2000 or HiSeq2500 (2 3 100 bp; Illumina).

Genes were mapped to the S. lycopersicum var Heinz assembly v2.40,
concatenated with the chloroplast (gi|544163592 ref|NC_007898.3) and mi-
tochondrial genomes (gi|209887431|gb FJ374974.1), and an “artificial chro-
mosome” containing the eight spike sequences. Genome data were from
S. lycopersicum 2.5 and the corresponding ITAG2.4 gene models were down-
loaded from https://solgenomics.net/ (34,725 entries). The quality of libraries
was checked with FastQC (Andrews, 2010). Quality and adapter trimming
were performed with Trimmomatic v0.32 (Bolger et al., 2014). Trimmed reads
were mapped to their respective genomes with Star v2.4.2a (Dobin et al., 2013)
and the unique counts per locus were quantified with HTSeq (v0.6.1; Anders
et al., 2015). Normalized fragments per kb per million (FPKM) mapped reads
was calculated with the software Cufflinks v2.2.1 (http://cole-trapnell-lab.
github.io/cufflinks/). Briefly, quantification based on FPKMs corresponds to
the normalization of data by depth sequencing (summed fragment per sample)
divided per one million, followed by normalization by gene length. FPKMs
were then converted in transcripts permillion quantification. For each sample, a
standard curve performed with the spikes was used to estimate the concen-
tration (fmol.gFW21) from the transcripts per million values. Nondefault pa-
rameters used for Trimmomatic (v0.32) and Star (v2.4.2a) are presented in
Supplemental Appendix S1. All mRNA datasets are available via the GEO re-
pository (Barrett et al., 2013) with the accession number GSE128739.

Protein Extraction and Quantification

Total tomato proteins were extracted as in Faurobert et al. (2007). Liquid
chromatography MS/MS analyses were performed with a NanoLC-Ultra
System (nano2DUltra; Eksigent) coupled with a Q-Exactive Mass Spectrome-
ter (Thermo Electron) as in Havé et al. (2018). For each sample, 800 ng (4 mL
from a 0.200-ng/mL solution) of protein digest were loaded onto a Biosphere
C18 Precolumn (0.1 3 20 mm, 100 Å, 5 mm; Nanoseparation) at 7.5 mL min21

and desalted with 0.1% (v/v) formic acid and 2% (v/v) Acetonitrile. After
3 min, the precolumn was connected to a Biosphere C18 Nanocolumn (0.0753
300 mm, 100 Å, 3 mm; Nanoseparation). The raw MS output files and identi-
fication data were deposited on-line using the PROTICdb database (http://
moulon.inra.fr/protic/tomato_fruit_development). The MS proteomics data
have also been deposited to the ProteomeXchange Consortium via the PRIDE
(Perez-Riverol et al., 2019) partner repository with the dataset identifier
PXD012877. Protein identification was performed using the protein sequence
database of S. lycopersicum var Heinz assembly v2.40 (ITAG2.4) downloaded
from https://solgenomics.net/ (34,725 entries). A contaminant database,
which contains the sequences of standard contaminants, was also interrogated.
Database search was performed with X!Tandem (v2015.04.01.1; http://www.
thegpm.org/TANDEM/). Identified proteins were filtered and sorted by using
X!TandemPipeline (v3.3.4; Langella et al., 2017). Criteria used for protein
identification were (1) at least two different peptides identified with an E-value
smaller than 0.01, and (2) a protein E-value (product of unique peptide
E-values) smaller than 1025. Using reversed sequences as a decoy database, the
false discovery rate for peptide and protein identification were, respectively,
0.05% and 0%. Peptide ions were quantified based on extracted ion currents
using the software MassChroQ (v2.2; Valot et al., 2011). Peptide intensities of
each sample were normalized by using a method taking retention time into
account, as described in Millan-Oropeza et al. (2017). Before protein quantifi-
cation, peptides shared by several proteins were removed. In addition, peptides
showing an unstable retention time across samples were considered as unre-
liable and removed. Protein abundancies were calculated with the “model”
method based on peptide intensity modeling and described in Belouah et al.
(2019). Briefly, this method is based on a linearmodel that takes into account the
variable responses of peptide intensities to protein concentration.

Data Analysis

The mRNA–protein paired data (2,375) were preprocessed using the soft-
ware MetaboAnalyst (v4.0; Xia et al., 2015; median normalization, cube-root
transformation, and Pareto scaling; http://www.metaboanalyst.ca/) before
multi- and univariate statistical analyses, thus providing normally distributed
data. PCA and dendrograms (Pearson’s correlation, complete clustering) were
constructed with MetaboAnalyst. MeV (v4.9.0) was used for bidimensional
clustering (Pearson’s correlation, complete clustering; http://mev.tm4.org/),
and subsequent filtering ofmRNA-protein data (ANOVA P, 0.01 corrected for
multiple testing by adjusted Bonferroni) to identify the Early, Mid, and Late
clusters. Solycs belonging to each cluster were listed and converted to protein
sequences (FASTA), which were subjected to Mercator4 (v1.0) for metabolic

1722 Plant Physiol. Vol. 180, 2019

Belouah et al.

http://www.plantphysiol.org/cgi/content/full/pp.19.00086/DC1
https://solgenomics.net/
http://cole-trapnell-lab.github.io/cufflinks/
http://cole-trapnell-lab.github.io/cufflinks/
http://www.plantphysiol.org/cgi/content/full/pp.19.00086/DC1
http://moulon.inra.fr/protic/tomato_fruit_development
http://moulon.inra.fr/protic/tomato_fruit_development
https://solgenomics.net/
http://www.thegpm.org/TANDEM/
http://www.thegpm.org/TANDEM/
http://www.metaboanalyst.ca/
http://mev.tm4.org/


function annotation (Schwacke et al., 2019; http://www.plabipd.de/portal/
web/guest/mercator4). Data were expressed as absolute abundance of pro-
teins as well as relative abundance according to the bin size for each metabolic
function.

A generalized linear model was built using the “glmnet” package
(Friedman et al., 2010) under the “R” environment (R Core Team, 2017) to find
correlations between kd and protein features based on their sequence. A
quantity of 1,926 were computed using the softwares protr (Xiao et al., 2015),
ProtParam (Gasteiger et al., 2005), and biopython (Cock et al., 2009). The list
of features and the values associated with each sequence are available in
Supplemental File S2.

The software OrthoMCL (Li et al., 2003) was used to find groups of paral-
ogous proteins in the list of well-modeled proteins. Tominimize the risk of false
positives, the following parameters were used: percentMatchCutoff = 75 and
evalueExponentCutoff = 225. Annotation of proteins present in the clusters
was performed using the software MapMan. Raw results are available in
Supplemental File S1.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers of the cited proteins, the five most
abundant ones: Solyc07g007750.2.1 (defensin); Solyc10g075090.1.1 and
Solyc10g075070.1.1 (lipid-transfer proteins); Solyc01g073970.2.1 (Histone
3); and Solyc01g067740.2.1 (superoxide dismutase). All mRNA datasets are
available via the GEO repository (Barrett et al., 2013) with the accession
number GSE128739. Proteomics data are available via ProteomeXchange
with identifier PXD012877.

Supplemental Data

The following supplemental information is available.

Supplemental Figure S1. Time course of protein and mRNA abundancies
for the five most abundant proteins.

Supplemental Figure S2. Clustering analysis reveals three waves of pro-
tein abundances during fruit development.

Supplemental Figure S3. Profiles of selected redox protein markers during
fruit development.

Supplemental Figure S4. Correlation analysis performed with each
mRNA–protein pair.

Supplemental Figure S5. Growth of tomato fruit.

Supplemental Figure S6. The protein degradation rates of the protein sub-
units of five major protein complexes.

Supplemental Figure S7. Comparison of common degradation rate con-
stants (kd) annotated in plant tissues.

Supplemental Figure S8. Translation rate constants (kt) versus the
protein–mRNA ratio.

Supplemental Appendix S1. RNA-seq parameters and spikes.

Supplemental Appendix S2. Modeling: Structural identifiability of the pa-
rameters, numerical simulation, and results analysis.

Supplemental File S1. Abundance data for the 2,375 protein and mRNA
pairs, calculated translation and degradation rate constants, clusters 1, 2,
and 3 (early, mid, and late developmental stages, respectively), proteins
specifically degraded at ripening, paralogs, Barley-versus-Tomato pro-
teins, and Arabidopsis-versus-Tomato proteins.

Supplemental File S2. List of features and values associated with each
sequence for the 1,103 genes for which the model was solved
satisfactorily.
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