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Segregation and potential 
functional impact of a rare stop-
gain PABPC4L variant in familial 
atypical Parkinsonism
Muhammad Aslam1, Anwar Ullah1,2,3, Nagarajan Paramasivam4, Nirosiya Kandasamy1, 
Saima Naureen1,5, Mazhar Badshah6, Kafaitullah Khan7, Muhammad Wajid8, Rashda Abbasi2, 
Roland Eils   9,10, Marc A. Brockmann11, Matthias Schlesner   12, Nafees Ahmad2 & 
Jakob von Engelhardt1

Atypical parkinsonian disorders (APDs) comprise a group of neurodegenerative diseases with 
heterogeneous clinical and pathological features. Most APDs are sporadic, but rare familial forms have 
also been reported. Epidemiological and post-mortem studies associated APDs with oxidative stress and 
cellular protein aggregates. Identifying molecular mechanisms that translate stress into toxic protein 
aggregation and neurodegeneration in APDs is an active area of research. Recently, ribonucleic acid (RNA) 
stress granule (SG) pathways were discussed to be pathogenically relevant in several neurodegenerative 
disorders including APDs. Using whole genome sequencing, mRNA expression analysis, transfection 
assays and cell imaging, we investigated the genetic and molecular basis of a familial neurodegenerative 
atypical parkinsonian disorder. We investigated a family with six living members in two generations 
exhibiting clinical symptoms consistent with atypical parkinsonism. Two affected family members 
suffered from parkinsonism that was associated with ataxia. Magnetic resonance imaging (MRI) of these 
patients showed brainstem and cerebellar atrophy. Whole genome sequencing identified a heterozygous 
stop-gain variant (c.C811T; p.R271X) in the Poly(A) binding protein, cytoplasmic 4-like (PABPC4L) gene, 
which co-segregated with the disease in the family. In situ hybridization showed that the murine pabpc4l 
is expressed in several brain regions and in particular in the cerebellum and brainstem. To determine 
the functional impact of the stop-gain variant in the PABPC4L gene, we investigated the subcellular 
localization of PABPC4L in heterologous cells. Wild-type PABPC4L protein localized predominantly to the 
cell nucleus, in contrast to the truncated protein encoded by the stop-gain variant p.R271X, which was 
found homogeneously throughout the cell. Interestingly, the wild-type, but not the truncated protein 
localized to RasGAP SH3 domain Binding Protein (G3BP)-labeled cytoplasmic granules in response to 
oxidative stress induction. This suggests that the PABPC4L variant alters intracellular distribution and 
possibly the stress granule associated function of the protein, which may underlie APD in this family. In 
conclusion, we present genetic and molecular evidence supporting the role of a stop-gain PABPC4L variant 
in a rare familial APD. Our data shows that the variant results in cellular mislocalization and inability of the 
protein to associate with stress granules.

1Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 
Germany. 2Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan. 3Department of 
Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan. 4Heidelberg Center for Personalized Oncology 
(DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany. 5Department of Zoology, PMAS-Arid 
Agriculture University Rawalpindi, Rawalpindi, Pakistan. 6Department of Neurology, Shaheed Zulfiqar Ali Bhutto 
Medical University, Islamabad, Pakistan. 7Department of Zoology, University of Balochistan, Quetta, Pakistan. 
8Department of Biological sciences, University of Okara, Okara, Pakistan. 9Center for Digital Health, Berlin Institute 
of Health and Charité Universitätsmedizin Berlin, Berlin, Germany. 10Health Data Science Unit, Bioquant, Medical 
Faculty, University of Heidelberg, Heidelberg, Germany. 11Department of Neurology, Neuroradiology section, 
University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany. 12Bioinformatics and Omics 
Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany. Correspondence and requests for 
materials should be addressed to M.A. (email: muhaslam@uni-mainz.de) or J.E. (email: engelhardt@uni-mainz.de)

Received: 20 May 2019

Accepted: 3 September 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-50102-6
http://orcid.org/0000-0002-0034-4036
http://orcid.org/0000-0002-5896-4086
mailto:muhaslam@uni-mainz.de
mailto:engelhardt@uni-mainz.de


2Scientific Reports |         (2019) 9:13576  | https://doi.org/10.1038/s41598-019-50102-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Atypical parkinsonian disorders (APDs) comprise a heterogeneous group of neurodegenerative diseases that 
share clinical features with idiopathic Parkinson’s disease, but generally do not respond well to antiparkinsonian 
medications1. Most cases of APDs are sporadic but rare familial forms have also been reported2,3. Epidemiological 
studies have previously associated stressors such as environmental toxins and oxidative stress with the etiology 
of APDs4–6. Post-mortem studies have grouped APDs as protein accumulation disorders (e.g. proteinopathies) 
based on cellular protein aggregates7–9. Notably, the molecular and cellular processes that translate stress into 
protein aggregation and neurodegeneration in most APDs remain poorly understood.

Stress granules (SGs) are cytoplasmic foci formed in response to cellular stress mainly to minimize 
stress-related RNA damage and to promotes cell survival10. Recently, several reports suggested that defective 
stress granules play a pathogenic role in several proteinopathies11–16. Observations such as elevated levels of oxi-
dized RNA products in the cerebrospinal fluid and protein aggregates colocalizing with stress granule markers in 
some APDs indirectly support their involvement6,14,15,17. In this study, we investigated the genetic basis of a famil-
ial APD segregating as autosomal dominant condition and found a rare stop-gain variant in the stress granule 
associated protein PABPC4L as an underlying cause.

Materials and Methods
Study participants.  Research procedures were performed in accordance with the Declaration of Helsinki. 
Approval of the study was obtained from the Institutional Review Board of the Institute of Biomedical and 
Genetic Engineering Islamabad. Written informed consent was obtained from all participants. A family with 
six members (Fig. 1A; III:1, III:3, IV:4, IV:7, IV:9 and IV:11) exhibiting a progressive neurodegenerative disease 
manifesting primarily as atypical parkinsonism was identified by M.B. who diagnosed and treated the patients at 
Pakistan Institute of Medical Sciences Islamabad. The MRI of patients with ataxia (III:1 and IV:7) were examined 
by M.A.B. A team of neurologists headed by M.B. examined the patients and provided the clinical records.

Whole genome sequencing and quality control.  Whole genome sequencing was performed for two 
affected (III:1, IV:11) and two unaffected family members (III:6, IV:12). Genomic DNA was isolated from periph-
eral blood cells using standard methods18. Libraries were prepared using the TruSeq Nano DNA PCR-free kit 
(Illumina San Diego CA USA). Paired-end sequencing (2 × 150 bp) was performed at >30× coverage per sample 
on Illumina HiSeqX TEN (Illumina San Diego CA). Raw reads were aligned to the human reference genome (ver-
sion build GRCh37, version hs37d5) using bwa mem (version 0.7.8)19 with minimum base quality threshold set 
to zero [-T 0] and remaining settings left at default values. Duplicates were marked using Picard version (1.125)20. 
Single nucleotide variants (SNVs) were called using SAMtools (version 0.1.19)21 and short indels were called 
using Platypus (version 0.7.4)22. Functional classifications of the variants were done using ANNOVAR23 with gene 
model definitions from Gencode (version v19).

Variant filtering and selection.  Variants with base quality Q score <20, minimum coverage <10X, or a 
minor allele frequency MAF >0.001 in ExAC (version 0.3) or MAF >0.01 in the 1000 genomes were removed. 
Thereafter all functional mutations including: nonsynonymous SNVs; frameshift and non -frameshift indels; and 
stop-gain or stop-loss or splice-site SNVs or Indels were carried forward and were evaluated for deleteriousness 
using CADD [24] and a set of prediction tools including SIFT, PolyPhen2, LRT, Mutation Taster, FATHMM, 
PROVEAN, MetaSVM and MetaLR [25–31]. The WGS variants complying with the autosomal dominant mode 
of inheritance and segregating in the patients and not in controls were prioritized for Sanger sequencing valida-
tion and co-segregation testing in the extended pedigree.

Sanger validation and co-segregation analysis.  The genomic regions harboring prioritized vari-
ants were amplified using predesigned commercially obtained M13-tailed primer pairs [Primer ID (Gene_ID) 
Hs00253986_CE (PABPC4L), Hs00278134_CE (ZNF292), Hs00278167_CE (C6orf163), Thermo Fischer 
Scientific Inc.]. Thermocycling conditions used were as follows: 3 min at 94 °C, 30 cycles of 94 °C for 30 s, 60 °C for 
30 s, and 72 °C for 45 s, and the final extension for 5 min at 72 °C. The PCR products were resolved on 1.5% aga-
rose gel and amplified genomic fragments were purified using MinElute Gel Extraction Kit (Qiagen, Germany). 
Bi-directional Sanger sequencing was performed with M13 forward (TGTAAAACGACGGCCAGT) and reverse 
(CAGGAAACAGCTATGACC) primers (StarSEQ GmBH, Mainz, Germany).

Plasmid preparation.  Full length cDNA of wild-type human PABPC4L (NCBI Reference Sequence: 
NM_001114734.2) was amplified from human adult brain cDNA using forward primer containing XhoI site
:5′-CACCCTCGAGACATGAATGTAGCAGCCAAGTACC-3′ and reverse primer containing XmaI site
5′-ATATCCCGGGCTAGTGTCTCTGGGCCAAGG-3′ (PABPC4L specific sequence is underlined). PCR prod-
uct was digested with XhoI and XmaI and inserted into pmCherry-C1 vector (Clontech). PABPC4L cDNA clone 
carrying the c.C811T variant encoding p.R271X was generated using Phusion Site-Directed Mutagenesis Kit 
(Thermo Fischer Scientific Inc.) and mutagenic primer AGAAAGTCGAGTGACAGGCTGAG (variant position 
is underlined) according to manufacturer’s instructions. Flag-tagged PABPC4L constructs was generated with 
PCR using forward primer containing the FLAG tag encoding sequence GACTACAAAGACGATGACGACAAG 
containing HindIII site. Construct encoding G3BP1 (peGFP-C1-G3BP1) was kindly provided by Nancy Kedersha 
(Brigham and Women’s Hospital, Boston, MA)24. Plasmids were purified with GeneJET Plasmid Midiprep Kit 
(Thermo Fischer Scientific Inc.). Clones generated by PCR were confirmed by direct sequencing.

Cell culture and transfection.  Human embryonic kidney 293 (HEK293) cells were cultured in Dulbecco’s 
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin–streptomycin 
(all from Gibco, Paisley, UK). Cells were cultured at 37 °C in a humidified atmosphere with 5% CO2. The medium 
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Figure 1.  Clinical characteristics and genetic analysis of the family. (A) Pedigree of the family showing co-
segregation of the stop-gain variant p.R271X in PABPC4L with atypical Parkinsonism. Squares represent 
males, and circles females. Shaded symbols indicate individuals that received a clinical diagnosis (see Table 1 
for details of clinical information). The arrow indicates index patient. Individuals selected for WGS are 
marked with an asterisk. Deceased individuals are marked with diagonal lines. The family members provided 
retrospective information of affection status of the deceased individuals (II:3, II:6, III:11 and IV:2). Affection 
status of individuals in the first generation (I:1 and I:2) could not be ascertained. Question marks in the first 
generation indicate unknown affection status. Genotypes: +/+, homozygous for wild-type allele; and +/p.
R271X, heterozygous. (B) MRI of brain of patient III:1 (top panel) and IV:7 (bottom panel). Both patients 
show comparable cerebellar atrophy with dilation of the fourth ventricle. In the patient III:1 (top panel) a 
retrocerebellar arachnoid cyst can be seen as an incidental finding, whereas the atrophy of the cerebellum 
is obvious. (C) Left panel: Analysis pipeline used in the identification of the candidate variants. Right panel: 
Representative Sanger sequencing chromatograms of an unaffected and affected family member illustrating 
the stop-gain variant c.C811T; p.271X in the PABPC4L. Grey highlighting indicates the variant position. 
Predicted consequence at the translational level is also shown. Sanger sequencing of additional affected and 
unaffected family members showed that the c.C811T; p.271X variant in PABPC4L segregated with the disease 
(Supplementary File 1).

Sex

III:1 III:3 IV:4 IV:7 IV:9 IV:11

Male Male Female Male Female Female

Age at onset, year 47 42 34 38 37 35

Current age, year 55 65 38 47 43 40

Initial Symptoms Ataxia Akinesia Tremor Ataxia Tremor Tremor

Neurologic findings

Akinesia + + + + + +

Spasticity + − − + − −

Rigidity + + + + + +

Deep tendon reflex Brisk Normal Normal Brisk Normal Normal

Ataxia + − − + − −

Tremor − − + + + +

Other Symptoms

Autonomic disturbance + + − + + −

Depression − − − + − −

Sleepdisorder − + − + − −

Table 1.  Clinical characteristics of the affected family members.
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was changed every 2–3 days. Cell cultures were tested for mycoplasma contamination prior to experiments using 
PCR Mycoplasma Test Kit I/C (PK-CA91-1024, PromoCell GmbH, Germany). For transient transfections, cells 
were plated either in 12 well plates or on glass covers slips coated with 200 μl of 0.01% poly-L-Lysine solution 
(sigma). Transfections were performed using Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA). For 
induction of oxidative stress, cell culture medium was replaced with fresh complete Dulbecco’s Modified Eagle’s 
Medium (DMEM) growth media one hour prior to stress induction. Cells were stressed with sodium arsenite 
(0.5 mM, Sigma-Aldrich) for 45 min at 37 °C in an incubator with 5% CO2.

Western blotting.  HEK293 cells were washed twice with phosphate buffer saline (PBS) and lysed thirty-six 
hours post-transfection. Western blotting was performed with cell lysates containing 30 μg of proteins. After 
sodium dodecyl sulfate polyacrylamide gel electrophoresis, the proteins were transferred to polyvinylidene dif-
luoride (PVDF) membrane, which was blocked in 10% skimmed milk for one hour. The membranes were then 
incubated with mouse anti-Flag (Sigma) overnight at 4 °C, followed by incubation with peroxidase-linked second-
ary antibodies (1:10,000) for one hour. Bands were detected on a ChemiDoc XRS+ imaging system (Bio-Rad). 
After Flag tag detection, PVDF membrane was stripped, and then subjected to detect beta-Actin expression using 
Rabbit anti-Actin antibody (1:1000, Abcam).

Cell imaging,quantification and analysis.  HEK293 cells grown and transfected on glass coverslips were 
washed three times with phosphate buffer solution (PBS) and were fixed in 4% paraformaldehyde for 10 minutes. 
Cells were washed again three times with PBS and nuclei were stained with 4′, 6′-diamidino-2-phenylindole 
(DAPI; Sigma, St Louis, MO, USA). Coverslips were then mounted onto slides with ProLong Gold Antifade 
Mountant (Thermo Fischer Scientific Inc.). Images were obtained with a 63x objective on a TCS SP5 confocal 
imaging system (Leica Microsystems, Heidelberg GmbH). The PABPC4L localization was quantified by calcu-
lating a nuclear to cytoplasmic ratio using Fiji software as described previously25,26. Briefly, cells were imaged 
for mCherry (expressed as a fusion protein with wild-type or PABPC4L:p.R271X variant) and DAPI fluores-
cence. The nuclear area was identified by DAPI and cytoplasmic area as total mCherry signal minus nuclear area. 
We determined the integrated fluorescence intensity ratio of nuclear/cytoplasmic mCherry signal. Twenty-four 
cells for each condition from triplicate coverslips were processed and ratios were plotted using QtiPlot software. 
Stress granules (SGs) were identified by green fluorescent protein tagged RasGAP SH3 domain Binding Protein 
(G3BP-GFP) expression as described previously27. Only cells with at least three G3BP-GFP positive foci with 
a size of 0.5–2.5 μm were included. Fiji software was used to quantify the integrated intensity of mCherry flu-
orescence (i.e PABPC4L) overlapping with GFP signal (i.e G3BP). At least thirty cells for each condition from 
triplicate coverslips were analyzed.

In situ hybridization.  Animal care and experimental procedures were performed in agreement with the 
German law on the use of laboratory animals (animal welfare act; TierSchG). All procedures involving mice were 
performed according to the protocols approved by the German Cancer Research Center institutional animal 
care and use committee and by the local responsible government department (Regierungspräsidium Karlsruhe). 
Brains from embryonic, developing and adult C57Bl/6 mice were frozen on dry ice and 15 μm sections were cut 
on a cryostat (Leica Microsystems, Germany). In situ hybridization experiments were carried out as described28 
with the radiolabeled oligodeoxyribonucleotide probes targeting the exon-exon junction region of the mouse 
pabpc4l mRNA transcript (NM_001101479):

[5′-CTGCAGTCCATAACCTGGAAGCTACAGCCTTGAGAGCTGCAGGCTTGTA-3′].
The probe was 3′ end-labeled with (a)-33P-dATP (Hartmann Analytic, Germany) using terminal deoxynu-

cleotidetransferase (Roche, Basel, Switzerland). Brain sections were then incubated overnight in ahybridization 
mix containing 4 × SSC (0.6 M NaCl, 0.06 M sodium citrate), 50% formamide, 10% dextrane and 1 pg/μl labeled 
oligodeoxyribonucleotide probe at 42 °C and were subsequently washed three times at 56 °C for 30 min. Brain 
sections were then dehydrated and exposed to Kodak R X-omat AR film for 1 week. Control in situ hybridization 
was performed by adding excess amount (10x) of cold competitor (unlabeled probe) to the hybridization mix.

Statistical analysis.  Data were plotted as mean and SD using QtiPlot. Shapiro-Wilk-test and Student’s t-test 
were used for assessing normality of data and to compare means, respectively. P-values of less than 0.05 were 
considered statistically significant.

Results
The index patient III:1 (Fig. 1A, arrowhead), 47-year-old male, presented with two years history of walking dif-
ficulty, trouble in dressing and writing and problems with right hand coordination. On the neurological exam-
ination, spasticity on his left side and gait ataxia were noticed. His tendon reflexes in lower limbs were brisk 
and plantar responses were bilateral absent. During the next two years, he developed Parkinson-like symptoms 
comprising rigidity and bradykinesia as well as progression of his ataxia and downbeat nystagmus. In addition, 
his voice weakened, he suffered of dysarthria and dysautonomia with constipation and nocturia. His cognitive 
abilities were intact (MMSE score 28/30). Neuroimaging studies showed an atrophy of cerebellum, middle cer-
ebellar peduncles and brainstem (Fig. 1B, top panel). There were no abnormalities in striatum, globus pallidus, 
corpus callosum and thalamus. Cerebrospinal fluid and serological investigations with a complete thyroid panel 
and B12 level were unremarkable. Patient III:3 (Fig. 1A), brother of index patient III:1, was diagnosed with par-
kinsonism, dysautonomia and insomnia at slightly younger age (42 years). He did not exhibit ataxia or tremor at 
the time of his diagnosis. His daughter (IV:4; Fig. 1A) exhibited unilateral tremor and rigidity in her right arm at 
the age of thirty-four. Patient IV:7(male) was first noticed at an age of 38 years with ataxic gait during his training 
as a soldier. He developed parkinsonian symptoms similar to patient III:1 with additional intention tremor and 
depression. He died during the course of this study at the age of 45 apparently due to cardiopulmonary arrest. His 
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family members retrospectively informed us that he had developed difficulty breathing during sleep, forcing him 
to sleep upright to avoid dyspnea. Neuroimaging of IV:7 showed cerebellar atrophy with dilation of the fourth 
ventricle (Fig. 1A,B bottom panel). Two sisters of the patient IV:7 (Fig. 1A, IV:9 and IV:11) exhibited parkinson-
ism at the age of 37 and 35, respectively. Patients described here received levodopa for their parkinsonian symp-
toms, which did not improve symptoms even at high doses. Demographic and clinical description of all cases is 
summarized in Table 1.

Family-based analyses of the WGS data obtained for two affected and two unaffected members (asterisks in 
Fig. 1A) assuming an autosomal dominant mode of inheritance prioritized heterozygous variants in PABPC4L, 
ZNF292 and C6orf163 for sanger validation and disease co-segregation testing in the extended pedigree (Fig. 1C; 
left panel and Supplementary Table). Sanger sequencing of the three prioritized variants in four additional 
affected (Fig. 1A, III:3, IV:4, IV:7 and IV:9) and eleven unaffected biological relatives excluded ZNF292 and 
C6orf163 variants and identified the stop-gain variant c.C811T; p.R271X in the PABPC4L gene as the possible 
cause of parkinsonian disorder in the family (Supplementary Table). The c.C811T;p.R271X variant in PABPC4L is 
absent in the south Asian control cohort in the GnomAd29 and in-house datasets. This variant was ranked among 
the top 0.1% most deleterious possible substitutions (CADD score 38).

PABPC4L gene is previously uncharacterized. Thus, we examined the spatiotemporal expression pattern of 
pabpc4l in the mouse brain. The level of pabpc4l transcript was low at embryonic day 15 (Fig. 2A; E15.5). There 
was a developmental upregulation of the pabpc4l transcript in the cerebellum with moderate signal intensity at 
P14 (Fig. 2A; P14) and strong intensity in the adult brain. The pabpc4l transcript was also detected in cortex, hip-
pocampus, presubiculum, and regions of the brainstem of adult mice (Fig. 2A; Adult). In the adult human brain 
PABPC4L transcript was detected at higher levels in the hindbrain particularly in cerebellum whereas moderate 
expression was also detected in regions of midbrain and forebrain (Supplementary Fig. 2, credit: Human microar-
ray data from the Allen Brain Atlas)30.

The human PABPC4L transcript encodes a 370 amino acids protein (UniProt: P0CB38) predicted to contain 
four non-identical RNA recognition motifs (RRMs) (RRM1: 10–88, RRM2: 98–174, RRM3: 190–267 and RRM4: 

Figure 2.  Expression, subcellular localization and function of PABPC4L. (A) Distribution of pabpc4l mRNA in 
the developing and adult mouse brain. Sections were examined for pabpc4l mRNA expression at embryonic day 
15.5 (E15.5), postnatal day 14 (P14) or at adult stage (ctx; cortex, cb; cerebellum, bs; brainstem). (B) Predicted 
structure of the PABPC4L protein. RRM; RNA recognition motifs. The variant position is indicated in red. 
(C) Left panel: Cellular distribution of mCherry-tagged wild-type and p.R271X variant containing PABPC4L 
in HEK293 cells. Wild-type PABPC4L-mCherry shows a nuclear distribution, whereas PABPC4L (p.R271X)-
mCherry shows a uniform nucleo-cytoplasmic distribution in HEK293 cells. Red: mCherry fluorescence, Blue: 
DAPI nuclei. The panel on the right shows the nuclear to cytoplasmic ratio of the mCherry signal in HEK293 
cells transfected with either wild-type PABPC4L-mCherry or p.R271X PABPC4L-mCherry plasmids. Right 
panel: Western blot analysis of FLAG-tagged wild-type and p.R271X variant containing PABPC4L in HEK293 
cells. The p.R271X variant reduces the molecular weight of PABPC4L. (D) Wild type but not p.R271X variant 
PABPC4L localizes to G3BP-GFP-positive stress granules in Na-arsenite treated HEK293 cells. Red: PABPC4L-
mCherry, green: G3BP-GFP. A region including G3BP-GFP positive foci is enlarged. The graph indicates the 
line scan analysis of the cytoplasmic region (green line: G3BP-GFP signal, red line: PABPC4L-mCherry signal) 
and shows the extent of colocalization. The bar graph on the right panel shows the quantification of red signal 
intensity overlapping with G3BP-GFP signal. t-test, Means ± S.D. ***p = 0.0001.
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293–369) characteristic of cytoplasmic type I polyadenylate-binding proteins (PABPs) i.e PABPC1, PABPC4 and 
PABPC531. The identified stop-gain variant p.R271X results in a shorter PABP4CL protein lacking the C-terminal 
RRM motif (RRM4: 293–369).

To investigate functional consequences of the PABPC4L variant p.R271X, we expressed wild-type and the 
truncated PABPC4L in HEK293 cells as mCherry or flag-tag fusion proteins. Since RRM motifs influence 
the subcellular localization of PABP proteins32, we examined the subcellular localization of the wild-type and 
p.R271X variant PABPC4L proteins in HEK293 cells. Wild-type PABPC4L-mCherry fusion protein showed a 
predominantly nuclear localization in HEK293 cells. In stark contrast, the truncated PABPC4L variant exhibited 
a uniform nucleo-cytoplasmic localization with no aggregation in the nucleus, suggesting that the stop-gain var-
iant impairs nuclear import or retention (Fig. 2C, Left panel).Detection of the truncated protein 48-hours post 
transfection at comparable levels with wild-type PABPC4L protein suggests that the variant does not result in 
increased degradation of the protein (Fig. 2C, right panel).

Cytoplasmic PABPs PABPC1 and PABPC4 have recently been identified to associate with RasGAP SH3 
domain Binding Protein (G3BP) labeled stress granules33,34. To test similar association of PABPC4L with RNA 
stress granules we exposed PABPC4L-mCherry transfected HEK293 cells to sodium arsenite induced oxidative 
stress and found a redistribution of wild-type PABPC4L from a predominantly nuclear to a focal cytoplasmic 
pattern. Moreover, PABPC4L-mCherry co-localized with the stress granule marker G3BP-GFP, indicating that 
PABPC4L associates with stress granules (Fig. 2D). The truncated protein PABPC4L(p.R271X)-mCherry also 
formed cytoplasmic foci in some cells, but showed significantly less co-localization with G3BP-GFP, suggesting 
that the p.R271X variant alters the function of the protein (Fig. 2D).

Discussion
We identified a rare variant (c.C811T; p.R271X) in PABPC4L segregating in a family with atypical parkinso-
nian disease (Fig. 1). Parkinsonism in the family shows peculiar features e.g. rapidly progressing heterogeneous 
Levodopa unresponsive motor disturbances, early autonomic dysfunction, and additional presence of ataxia, 
cerebellar atrophy and depression in some affected family members (Figure B and Table 1). Our data together 
with a previous report of an association of a genomic deletion affecting PABPC4L with treatment resistant depres-
sion35 indicate that genetic abnormalities at PABPC4L locus may cause detrimental changes in brain function. 
Collectively the data presented in this report extend the genetic and molecular landscape of APDs.

Mouse pabpc4l transcript is expressed in several brain areas including cerebellum, hippocampus, cortex and 
brainstem. The transcript is comparably low prenatally and shows postnatal upregulation with a particularly high 
expression in the cerebellum of adult mice. Given the regional gene expression in mouse and human brains is 
generally conserved36, the postnatal upregulation of cerebellar expression may explain the onset of symptoms 
in early to middle adulthood (onset between 34 to 47 years) and presentation of disease with cerebellar symp-
toms and cerebellar atrophy in PABPC4L (c.C811T; p.R271X) variant carriers. Furthermore in the human brain 
PABPC4L transcript was detected in several brain regions with motor and autonomic functions (Supplementary 
Fig. 2, image credit: Human microarray data from the Allen Brain Atlas30. Taken together the expression pattern 
of PABPC4L in brain support the involvement PABPC4L (c.C811T; p.R271X) variant in the clinical outcome 
observed in the family.

Molecular functions and cellular roles of PABPC4L are currently not known. We here show that wild-type 
PABPC4L redistributes from a predominantly nuclear to focal cytoplasmic pattern and co-localizes with G3BP 
upon stress induction (Fig. 2C,D). This suggests that PABPC4L may associate with stress granules similar to 
cytoplasmic PABP family members PABPC1 and PABPC433,34. Unlike PABPC1 and PABPC4, PABPC4L has not 
been shown to bind poly(A) RNA as yet and PABPC4L lacks an extended carboxy-terminus shared by PABPC1 
and PABPC437,38. However, since the additional carboxy-terminal sequence is dispensible for viability in yeast 
or PABP function in Xenopus, PABPC4L may thus share stress granule associated function with PABPC1 and 
PABPC439,40. Our observations also corroborate data from an interactome study, which reported PABPC4L as 
an interacting partner of the two core stress granule proteins CSDE1and PQBP1, both of which are indispensa-
ble for functional G3BP containing stress granules41–43. More importantly, the truncated PABPC4L protein due 
to the p.R271X variant shows altered subcellular localization in unstressed cells and diminished stress granule 
association upon stress induction which may result in functional haploinsufficiency of PABPC4L in the c.C811T; 
p.R271X carriers and thus may be the cause of disease in the patients.

Our study adds to the growing information supporting a role of stress granule associated proteins and RNA 
metabolism in neurodegenerative pathologies. Stress granules protect cellular RNAs from oxidative damage and 
promote selective translation of stress response proteins10,44,45. Formation of stress granules also protects cells 
from stress-induced apoptosis by promoting the activity of the antioxidant enzyme USP1046,47. Moreover, defec-
tive stress granules may promote protein aggregation and contribute to formation of intracellular inclusions48.
The findings of this study should however be treated with caution due to the use of heterologous expression 
model such as HEK293. We selected HEK293 cells primarily because they express major stress granule proteins 
endogenously including PABP family members (https://www.proteinatlas.org) and stress granules can robustly 
be induced in HEK293 cells. Thus HEK293 cells are frequently used for investigating stress granule associated 
proteins49–51. Predominant exclusion of the truncated PABPC4L protein from stress granules upon induction of 
stress in HEK293 cells as observed in our study warrants further investigation in more sophisticated, tractable 
and accurate cellular disease models such as patient-derived iPSCs or neuronal cells to understand a link between 
neurodegeneration and altered cellular distribution of PABPC4L in p.R271X variant carriers.
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Conclusions
In conclusion, a truncating variant in RNA stress granule associated protein PABPC4L was identified as the 
potential cause for familial atypical parkinsonism. Our data indicate cytosolic mislocalization of truncated 
PABPC4L in unstressed and stressed cells. Future studies focusing on the role of stress granule recruitment of 
PABPC4L and its relevance to the cellular stress responses may unravel novel mechanism of neurodegeneration.
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