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Optimized CRISPR guide RNA design for two
high-fidelity Cas9 variants by deep learning
Daqi Wang1,6, Chengdong Zhang1,6, Bei Wang1, Bin Li1, Qiang Wang1, Dong Liu2, Hongyan Wang1,3, Yan Zhou1,

Leming Shi1,4, Feng Lan 5 & Yongming Wang 1

Highly specific Cas9 nucleases derived from SpCas9 are valuable tools for genome editing,

but their wide applications are hampered by a lack of knowledge governing guide RNA

(gRNA) activity. Here, we perform a genome-scale screen to measure gRNA activity for two

highly specific SpCas9 variants (eSpCas9(1.1) and SpCas9-HF1) and wild-type SpCas9

(WT-SpCas9) in human cells, and obtain indel rates of over 50,000 gRNAs for each

nuclease, covering ~20,000 genes. We evaluate the contribution of 1,031 features to gRNA

activity and develope models for activity prediction. Our data reveals that a combination of

RNN with important biological features outperforms other models for activity prediction. We

further demonstrate that our model outperforms other popular gRNA design tools. Finally, we

develop an online design tool DeepHF for the three Cas9 nucleases. The database, as well as

the designer tool, is freely accessible via a web server, http://www.DeepHF.com/.
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The CRISPR/Cas9 system derived from Streptococcus pyo-
genes (SpCas9) is currently considered a state-of-the-art
tool for genome editing, and is used in a wide variety of

organisms and cell types1–6. Despite significant advances in our
understanding of the CRISPR/Cas9 system, concerns remain over
the potential for off-target effects, which enormously impede
clinical application of the technology7–14. One solution to
address off-target limitations is to engineer SpCas9 with higher
specificities. In a search for better genome editing, two SpCas9
variants, enhanced SpCas9 (eSpCas9(1.1)) and Cas9-High
Fidelity (SpCas9-HF1), have been first generated by hypothesis
that amino acid substitutions predicted to weaken nonspecific
interactions between a Cas9-RNA complex and its substrate
DNA would reduce off-target cleavage in cells15,16. By analysis
of crystal structures of Cas9 variants, Chen et al. have generated
a new hyper-accurate Cas9 variant (HypaCas9)17. There are
now three additional highly specific Cas9 nucleases that have
been developed using mutational library or directed evolution
strategies18–20.

The CRISPR/Cas9 system consists of a Cas9 nuclease and a 100
nucleotides guide RNA (gRNA), which form a Cas9-gRNA
complex, recognizing a 20 nucleotides target sequence with an
NGG downstream protospacer adjacent motif (PAM, N20NGG)
and induces a site-specific double-strand break (DSB)1–3. The
success of genome editing depends on the choice of the gRNA
sequence. Some gRNAs are capable of disrupting almost every
target allele in a population of cells, while others display no
detectable activity. This has led to development of several gRNA
design tools for wild-type SpCas9 (WT-SpCas9) by using various
algorithms, including linear regression model21, penalized linear
regression model22, support vector machine (SVM) model23,24,
and gradient-boosted regression model25. Intriguingly, two
groups have recently shown that a convolutional neural network
(CNN), a class of deep learning, improves gRNA design26,27.

The extensive applications of highly specific SpCas9 variants
have been limited by the lack of knowledge that governs gRNA
activity. Existing evidence reveals that some highly active gRNAs
for WT-SpCas9 are poorly active for the highly specific Cas9
variants15,16,18. A recent genome-wide activity profiling study in
bacteria reveals the differences in the profile of important features
between WT-SpCas9 and eSpCas928. In this study, we perform a
genome-scale screen in human cells to measure gRNA activity for
WT-SpCas9, eSpCas9(1.1), and SpCas9-HF1 by using a high-
throughput method and obtain an activity data set of over 50,000
gRNAs, covering ~20,000 genes. Finally, we develop a deep-
learning-based online design tool for the three Cas9 nucleases.

Results
A mouse U6 (mU6) promoter expands genomic targeting sites.
An optimal gRNA library design requires a large number of
accessible genomic target sites. The gRNA transcription is com-
monly driven by human U6 (hU6) promoter that is believed to
require guanine (G) as the first nucleotide of its transcript1–3. In
the event that the first nucleotide is not a G, it is possible to
replace the first nucleotide with a G or add an extra G to the 5′
end of gRNA, resulting in a gRNA–DNA mismatch at 5′ end.
WT-SpCas9 can tolerate gRNA–DNA mismatches at 5′ end, so it
can target any N20NGG sequence with hU6 promoter1–3. How-
ever, highly specific Cas9 nucleases such as eSpCas9(1.1) and
SpCas9-HF1 are sensitive to gRNA–DNA mismatches at 5′ end29.
They can only target GN19NGG sequence when the hU6 pro-
moter is used, limiting target site selection.

A previous study has shown that the mouse U6 (mU6)
promoter can initiate either adenine (A) or G transcript30, which
could potentially expand target selection. We compared the

activity of mU6 promoter and hU6 promoter by transient
expression of gRNAs for genome editing in WT-SpCas9-
expressing HEK293T cells (Fig. 1a). The mU6 promoter showed
activity similar to hU6 promoter for 12 tested gRNAs initiated
with G (Fig. 1b, c, Table 1; Supplementary Fig. 1a). We tested
nine gRNAs initiated with A but free of G at 1–4 nucleotides,
avoiding functional truncated gRNAs transcribed from G
(Table 1). To our surprise, both promoters could promote
genome editing with gRNAs initiated with A (Fig. 1d, e;
Supplementary Fig. 1b). Among all nine tested gRNAs, only
one gRNA (A8) driven by hU6 displayed low efficiency. We
tested additional nine gRNAs initiated with A, but contained G at
1–5 nucleotides. In this case, mU6 promoter showed generally
higher activity than hU6 promoter (Supplementary Fig. 2a–c).
Next, we compared the activity of mU6 promoter and hU6
promoter in HeLa cells, and they showed similar activity
(Supplementary Fig. 3a–f). Furthermore, we compared the
activity of mU6 promoter and hU6 promoter in a lentivirus
vector, and they showed similar activity at two time points, day 3
and day 5, after transduction (Supplementary Fig. 4a, b). Our
results are consistent with a very recent study that hU6 promoter
can transcribe small RNAs initiated with A31.

Next, we tested the activity of the mU6 promoter for genome
editing with gRNAs initiated with C or T, but changed them to A
or G (Table 1). After 3 days of genome editing, gRNAs initiated
with G showed higher activity for three of five tested gRNAs
(Fig. 1f; Supplementary Fig. 5a), but the difference was eliminated
after 5 days (Fig. 1g; Supplementary Fig. 5b). The mU6 promoter
was chosen in the following study.

A strategy for high-throughput test of gRNA activity. A recent
study has shown that a guide RNA–target pair strategy enables
high-throughput test of gRNA activity for Cpf132. In this strategy,
the synthesized guide RNA–target sequences are delivered into
Cas9-expressing cells by lentiviruses (Fig. 2a). After genome
editing, the target sequences are PCR-amplified for deep
sequencing, allowing direct measurement of insertion/deletion
(indel) rates induced by Cas9 nucleases. An additional advantage
is that lentiviruses preferentially integrate into transcriptionally
active regions which are much more accessible for the CRISPR/
Cas9 machinery32–34, minimizing the influence of genome editing
by chromatin accessibility. Therefore, the data set obtained by this
strategy provides the opportunity to elucidate the inherent
activity of gRNAs based exclusively on their sequence features.

Doench et al. developed an online tool that allows designing
gRNAs for gene knockout with WT-SpCas925. This tool scans a
whole gene-coding sequence and ranks all gRNAs based on
activity and off-target effects. We used this tool to design gRNAs
for the library screening. Four top-ranked gRNAs initiated with
either A or G were selected for each gene (Fig. 2b). We also
designed gRNAs targeting microRNAs. As the lengths of
microRNA coding sequences are much shorter than the gene-
coding regions, we typically designed three gRNAs for each
microRNA. A total of 80,263 oligonucleotides that contain
gRNAs and corresponding target sequences (75,312 gRNAs for
19,037 coding genes; 4951 gRNAs for 1549 microRNAs) were
synthesized by microarray (Supplementary Data 1). The oligo-
nucleotides were PCR amplified and cloned into the lentivirus
vectors via Gibson assembly. Analysis of the plasmid library by
deep sequencing revealed that the error rate (A read contains any
mutation was considered as an error) induced by oligonucleotide
synthesis or PCR amplification at guide RNA–target sequence
region was 36.5%. This plasmid library was used in the following
pooled screening experiments to profile gRNA activity for WT-
SpCas9, eSpCas9(1.1), and SpCas9-HF1.
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The library was packaged into lentiviruses and transduced into
HEK293T cells expressing WT-SpCas9, eSpCas9(1.1), or SpCas9-
HF1 at an MOI of 0.3. After 5 days of genome editing, genomic
DNA was extracted, and the integrated target regions were PCR
amplified for deep sequencing (Fig. 2b). The mutations at guide
RNA–target sequence regions can be induced either by Cas9
nucleases or by library construction. If a mutation can be found
in the original library, it was considered as a mutation induced by
library construction and excluded from indel analysis. Indels
could be detected by deep sequencing at the integrated target sites
(Supplementary Fig. 6a). We obtained valid gRNA indel rates
(reads number > 100) of 55,604 (covering 20,211 genes), 58,167

(covering 20,315 genes), and 56,888 (covering 20,270 genes) for
WT-SpCas9, eSpCas9(1.1), and SpCas9-HF1, respectively (Sup-
plementary Data 2). To the best of our knowledge, this is the
largest gRNA on-target activity sets reported so far in
mammalian cells.

The screening assay was experimentally repeated twice, and
two independent replicates showed a high level of correlation for
indel rate (R= 0.92 for WT-SpCas9; R= 0.89 for eSpCas9(1.1);
R= 0.91 for SpCas9-HF1, Fig. 2c). The indel rate of individual
gRNAs also has a strong correlation among three Cas9 nucleases
(Fig. 2c), indicating that some sequence features are favored for
these three Cas9 nucleases. The distribution of gRNA activities
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Fig. 1 Both mU6 promoter and hU6 promoter enable to transcript gRNAs initiated with A or G for genome editing. a Schematic diagram of mU6 and hU6
comparison. These two promoters were used to transcript gRNAs initiated with A or G nucleotide. b, c Comparison of mU6 and hU6 promoters for genome
editing with gRNAs initiated with G. The data are shown as mean ± s.d. (n= 2). d, e Comparison of mU6 promoter for genome editing with gRNAs initiated
with A. The data are shown as mean ± s.d. (n= 2). f Comparison of the mU6 promoter for genome editing with gRNAs initiated with A or G three days post
transfection. g Comparison of the mU6 promoter for genome editing with gRNAs initiated with A or G 5 days post transfection. The data are shown as
mean ± s.d. P > 0.05; P < 0.05 by two-way ANOVA (n= 2). Source data are provided as a Source Data file
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varied remarkably, from no activity to 100% indel rates for these
three Cas9 nucleases (Fig. 2d). WT-SpCas9 showed higher
efficiency of editing than eSpCas9(1.1) and SpCas9-HF1 in our
screening (Supplementary Fig. 6b). Since these were single-cell-
derived clones that could influence efficiencies, we selected five
gRNAs and transfected them together with individual Cas9
nuclease into cells. WT-SpCas9 and SpCas9-HF1 showed similar
activity, but eSpCas9(1.1) showed lower activity at day 3
(Supplementary Fig. 6c), consistent with previous studies15,16.

It has been reported that residual plasmid DNA from viral
packaging procedures can contaminate transduced cells35, result-
ing in potential inaccuracies in measurement of gRNA activity.
We designed a pair of primers specific for the backbone of
plasmids to detect residual plasmids, and a pair of primers
specific for the lentivirus genomic DNA to detect both residual
plasmids and lentiviruses integrated into the genome (Supple-
mentary Fig. 7a). These two pairs of primers displayed similar
efficiency of amplification when plasmid DNA was used as
templates (Supplementary Fig. 7b). The residual plasmid DNA
could be detected in both unconcentrated viruses and concen-
trated viruses during virus packaging (Supplementary Fig. 7b).
We transduced HEK293T cells and extracted genomic DNA at
day 1 and day 5 after transduction, respectively. The residual
plasmid DNA could be detected in both samples, but the PCR
bands were very weak at day 5 with primer specific for backbone,
indicating that the residual plasmid degraded over time
(Supplementary Fig. 7b). In contrast, very strong bands could
be detected with primers specific for the viruses at day 5,
indicating that the more and more lentiviruses integrated into
genome. These results suggested that the residual plasmid DNA
only had minimal influence on the library screen.

Sequence features associated with gRNA activity. Character-
ization of sequence features associated with gRNA activity
is crucial for the development of gRNA design tools. This

large-scale data set generated here allows us to better evaluate
which features contributed most to gRNA activity. Algorithms
including gradient-boosted regression trees and lasso regression
have been used to assess feature importance36. However,
gradient-boosted regression trees provide Gini importance scores
that only reflect the absolute value of feature contribution,
causing the loss of information regarding the direction of the
effect; lasso regression displays poor descriptive ability. For-
tunately, a recently developed algorithm SHAP (SHapley Additive
exPlanation), a unified approach to explain the output of any
machine-learning model, can potentially address these
limitations37.

We connected XGBoost with SHAP (called Tree SHAP) to
evaluate the importance of 1031 features, including features
identified by Doench and Wong et al.25,38, and all of the position
accessibilities of gRNA secondary structure features (Supplementary
Data 3, 4). Overall, the predicted scores were strongly influenced by
position-dependent nucleotide composition for three Cas9
nucleases (Fig. 3a–c; Supplementary Data 4). The most favored
nucleotide was G at position 20 (G_20), the nucleotide immediately
adjacent to the PAM sequence. Other important features over-
lapped in the top 20 for three nucleases are melting temperature
(Tm, favored), number of TT dimers (disfavored), C_18 (favored),
self-folding free energy (favored), and G_14 (disfavored).

We next evaluated position-dependent nucleotide composition
of the highest 25% active gRNAs versus lowest 25% active gRNAs.
The results revealed that G was generally favored, and T was
generally disfavored (Fig. 4a–c; Supplementary Data 5). G_20 was
strongly favored for all three Cas9 nucleases, consistent with Tree
SHAP analysis. The differences of nucleotide preference between
WT-SpCas9 and SpCas9 variants were also observed. The
differences of favored nucleotide at position 3 (C/G vs G), 9 (G
vs C/G), 10 (A/G vs A/C), 14 (C vs A/T), 16 (A/C vs C), 17 (G vs
A), and 18 (C/G vs C) were observed between WT-SpCas9 and
eSpCas9(1.1). The differences of favored nucleotide at position 3
(C/G vs G), 5 (G vs C/T), 7 (C/G vs G), 9 (G vs C/G), 10 (A/G vs
C), 12 (A/G vs A), 14 (C vs A/T), 17 (G vs A/C), and 18 (C/G vs
C) were observed between WT-SpCas9 and SpCas9-HF1. In
addition, we analyzed position-independent nucleotide composi-
tion with top 20% active gRNAs (Fig. 4d–f). G (favored) and T
(disfavored) content strongly influenced gRNA activity, while A
and C content mildly influenced gRNA activity for three Cas9
nucleases, consistent with Tree SHAP values.

Performance of conventional algorithms. In addition to gen-
erating data sets of gRNA activity, another goal of this work was
to develop prediction tools for gRNA design. We evaluated the
performance of four conventional gRNA activity prediction
algorithms, including Linear regression, L2-regularized linear
regression (Ridge regression), XGBoost regression, and multilayer
perceptron (MLP) models with data sets generated in this study.
To prevent over-fitting, we randomly separated the data set into
two subgroups with 85% of the data used as the training data set
to train the models, and the remaining 15% held out used to test
the generalization capacity of the trained models (Fig. 5a). To
achieve optimal performance, the features with high Tree SHAP
values were modeled in the algorithms (Supplementary Data 4).

Of four algorithms tested here, MLP is the most predictive,
with Spearman correlation coefficients of 0.8416, 0.8457, and
0.8440 for WT-SpCas9, eSpCas9(1.1), and SpCas9-HF1, respec-
tively (Fig. 5c–e; Supplementary Data 6–8). XGBoost is the
second most predictive, with Spearman correlation coefficients of
0.8454, 0.8310, and 0.8184 for WT-SpCas9, eSpCas9(1.1), and
SpCas9-HF1, respectively. Linear regression and ridge regression
also performed well, but with relatively lower correlation score.

Table 1 gRNAs used in Fig. 1

Name Sequences

AN19 A1 ACCTTCACCTGGGCCAGGGA
A2 ACCCACGGCTACAAAGCGCA
A3 ACTACAGAAAGCCAAACAAA
A4 ACCTGGCCTACTGTACACCG
A5 AACCGCTCTATGTCCAGCTG
A6 ATCTGGACTTTCACAATCAG
A7 ACCTTGGCTTGGCTTTGCTG
A8 ACACAGTGGGCCAGAGAGAA
A9 ATTCACAGAAGGGGATGGCA

C/TN19 S1 a/gTCTTCTTCTGCTCGGACTC
S2 a/gTCCCCATTGGCCTGCTTCG
S3 a/gCCAGCTTGGGCCCACGCAG
S4 a/gCACCTCCAATGACTAGGGT
S5 a/gAAACGGCAGAAGCTGGAGG

GN19 G1 GACACAGTGGGCCAGAGAGA
G2 GTAGCCTCAGTCTTCCCATC
G3 GCTCCCATCACATCAACCGG
G4 GTACAAACGGCAGAAGCTGG
G5 GAGGCCCCCAGAGCAGCCAC
G6 GCACAGATGAGAAACTCAGG
G7 GAGTCCGAGCAGAAGAAGAA
G8 GGGTTAGGGGCCCCAGGCCG
G9 GTCACCTCCAATGACTAGGG
G10 GCCTCCCCAAAGCCTGGCCA
G11 GCCCCGGGCTTCAAGCCCTG
G12 GCTTGTCCCTCTGTCAATGG
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We also tried lasso regression and SVM regression. But the
penalty coefficient for lasso regression is nearly zero, which made
it equivalent to linear model. SVM regression failed to finish the
benchmarking on the current scale of data set within a reasonable
time (3 weeks). They were dropped in the final comparison.

Performance of deep-learning algorithms. Recent studies have
shown that two deep-learning-based algorithms, convolutional
neural network (CNN) and recurrent neural network (RNN),
are powerful tools for DNA/protein sequence-related analy-
sis39–43. They could obtain useful features from raw DNA/
protein sequence automatically without requirement of feature
engineering. CNN has been used to predict gRNA activity for
Cpf1 and WT-SpCas926,27, while RNN has not been used for

gRNA activity prediction so far. We trained both CNN and
RNN for gRNA activity prediction. To prevent over-fitting, we
randomly separated the data set into three subgroups with
76.5% of the data used as the training data set to train the
models, 8.5% used as validation data set, and the remaining
15% held out used to test the generalization capacity of the
trained models (Fig. 5b).

RNN outperformed CNN and other algorithms for gRNA
activity prediction with Spearman correlation coefficients of
0.8555, 0.8491, and 0.8512 for WT-SpCas9, eSpCas9(1.1), and
SpCas9-HF1, respectively (Fig. 5c–e; Supplementary Data 6–8).
CNN obtained similar performance to XGBoost with Spearman
correlation coefficients of 0.8455, 0.8313, and 0.8343 for WT-
SpCas9, eSpCas9(1.1), and SpCas9-HF1, respectively.
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An integrated model improves predictive power. The backbone
of the deep-learning algorithms (CNN or RNN) can only exploit
k-mer composition or its dependencies39,44. Recent studies on
protein-related prediction have shown that the prediction ability
of deep-learning models could be boosted by addition of other
features, such as molecular weight, hydrophobicity, and absolute
charge, which could not be automatically obtained by deep-
learning models45,46. In our work, indirect sequence features
including position accessibilities of secondary structure,
stem–loop of secondary structure, melting temperature, and GC
content are strongly associated with gRNA activity (Supplemen-
tary Data 4), but they could not be obtained by deep learning.
Considering that the RNN model achieved the best performance
of all the algorithms, we thus combined these biological features
with RNN for gRNA activity prediction. Interestingly, addition of
these features to RNN increased prediction power, with Spearman
correlation coefficients of 0.8670, 0.8624, and 0.8603 for WT-
SpCas9, eSpCas9(1.1), and SpCas9-HF1, respectively (Fig. 5c–e).
Therefore, RNN integrated with biological features (hereafter
referred to as RNN+ Biofeature) was used as the final model for
gRNA activity prediction (Fig. 6).

To further test the performance of seven models used in this
study, we generated a list of gRNA indel rates for endogenous
sites (85 sites for WT-SpCas9, 81 sites for eSpCas9(1.1), and
82 sites for SpCas9-HF1) (Supplementary Data 9). All seven
models worked considerably well, but linear regression and ridge
regression were less predictive based on Spearman correlation
metrics (Supplementary Figs. 8–10). Due to the limited data set
here, we could not conclude which algorithm was statistically
better than other algorithms on endogenous sites. We also
investigated the correlation of the indel frequency at the synthetic
targets with that at the corresponding endogenous targets. The
Spearman correlation is 0.722, 0.767, and 0.730 for WT-SpCas9,
eSpCas9(1.1), and SpCas9-HF1, respectively (Supplementary
Fig. 11a–c).

Comparison of the RNN+ Biofeature model with existing
models. There are several publicly available data sets of gRNA
efficiency for WT-SpCas9, which allows us to compare the per-
formance of the RNN+ Biofeature model for WT-SpCas9
(hereafter referred to as DeepWt) with existing prediction mod-
els. We tested DeepWt against 18 endogenous data sets collected
by Haeussler et al.47, and obtained Spearman correlation coeffi-
cients varied from 0.129 to 0.594 (Supplementary Data 10). It has

been reported that the prediction model strongly depends on
whether the gRNA is expressed from a U6 promoter in cells or
from a T7 promoter in vitro47,48. Therefore, the transfer learning
strategy was used to improve the prediction ability of our model
under different expression conditions. For U6 promoter expres-
sion, the performance was improved by fine-tuning of the last
hidden layer of DeepWt with XuKBM data set (Supplementary
Data 10). Our final optimized model, named DeepWt_U6, out-
performed other seven popular gRNA design tools (Fig. 7a).
Notably, since our gRNA library was designed, in part, by Rule-
Set2 which was developed by Doench data sets, this comparison
may had a bias for DeepWt_U6 on Doench datasets. For T7
promoter expression, we developed another model named
DeepWt_T7 by fine-tuning of RNN+ biofeature algorithm with
Moreno-Mateos2015 data set. This model outperformed other
models for design of gRNAs expressed in vitro (Fig. 7b).

It has been reported that integration of target site accessibility
metrics into the model could improve prediction power26,27. For
WT-SpCas9, we fine-tuned the DeepWt_U6 model with DNase I
data of KBM-7 cell line obtained from ENCODE, resulting in the
DeepWt_Chromatin model. Wang/Xu HL60 and Hart Hct116-2
Lib 1 data sets as well as the corresponding DNase I data were
used to test the performance of DeepWt_ Chromatin. However,
the Spearman correlation scores were not improved (Supple-
mentary Data 11). We also retrieved DNase I data of
HEK293T cells from ENCODE database and tested whether
integration of metrics into the models could improve prediction
power for eSpCas9(1.1) and SpCas9-HF1. The DNase I data were
processed following the method described by Kim et al.26.
However, incorporation of these data could not significantly
increase the prediction ability (tenfold shuffled validation) for
eSpCas9(1.1) and SpCas9-HF1 (Supplementary Data 12).

Nucleotide contributions revealed by Deep SHAP. In addition
to the prediction accuracy, we are also interested in under-
standing the mechanisms of the deep-learning model. Lundberg
and Lee49 developed an algorithm called Deep SHAP, which is a
high-speed approximation algorithm for SHAP values in deep-
learning models. We used Deep SHAP to estimate the position-
dependent nucleotide contribution to the deep-learning model.
The contribution of each position-dependent nucleotide to gRNA
activity was computed from the average value of that position
across all the training gRNAs. To make the contribution of
nucleotides comparable among WT-SpCas9, eSpCas9(1.1), and
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SpCas9-HF1, Deep SHAP values were rescaled by the Z-score
(i.e., standardization). The nucleotide with a Z-score above 1 or
below −1 was considered to have a significant contribution to
gRNA activity (Supplementary Fig. 12a).

There were 16, 21, and 26 significant nucleotides in WT-
SpCas9, eSpCas9(1.1), and SpCas9-HF1, respectively. The result
revealed that G typically had a positive contribution and T
typically had a negative contribution, in agreement with previous
observation that Cas9 preferentially binds gRNAs containing
purines but not pyrimidines50. In addition, multiple Ts in the

spacer caused low gRNA expression51. We found that most of the
significant nucleotides had the same direction of contribution to
gRNA activity in all three Cas9 nucleases. Consistent with several
previous reports38,52, the most influential was the nucleotides at
position 20, where G_20 had a strong positive contribution and
C_20/T_20 had a strong negative contribution. Compared with
WT-SpCas9, eSpCas9(1.1)-specific motifs included A_15
(favored), A_17 (favored), G_6-8 (favored), G_14 (disfavored),
G_16 (disfavored), T_6 (disfavored), T_11-12 (disfavored);
SpCas9-HF1-specific motifs included A_11 (favored), A_13
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(disfavored), A_14-15 (favored), A_19-20 (disfavored), G_6-7
(favored), G_14 (disfavored), G_16 (disfavored), T_4 (disfa-
vored), T_6 (disfavored), and T_11 (disfavored) (Supplementary
Fig. 12a).

In addition, the difference of Z-score between Cas9 variants
and WT-SpCas9 was calculated to assess changes in nucleotide
contributions. The difference above 1 or below −1 was
considered to have a significant change (Supplementary Fig. 12b).
Several differences in the contribution direction of the significant
nucleotides were observed. Specifically, A_13 contributed nega-
tively to SpCas9-HF1 but not to WT-SpCas9, G_17 contributed
positively to WT-SpCas9 but not to eSpCas9(1.1) and HF1-
SpCas9, G_18 contributed positively to WT-SpCas9 but con-
tributed negatively to eSpCas9(1.1) (also to HF1-SpCas9, but not
significant).

The contribution of repetitive nucleotides to gRNA activities
were also investigated based on the sum of Deep SHAP values.
For WT-SpCas9, previous study has shown that a stretch of
adjacent identical nucleotides (repetitive nucleotides, such as
GGGG or TTTT) could be associated with poor efficiency of a
sgRNA38. However, they did not consider position effects.
Therefore, we calculated the average Deep SHAP values of the
four repeat nucleotides including AAAA, CCCC, GGGG, and
TTTT from position 1 to 18 (Supplementary Data 13). Our
results demonstrated that the repetitive nucleotides generally
decreased indel efficiency, consistent with Wong et al.’s study38.
However, the positive contribution of repeat nucleotides at some
positions were observed, including GGGG starting from position
1–5 and 16–18, AAAA starting from position 14, CCCC starting
from position 1–2 and 15–18 (Supplementary Data 13). The

positive contribution of repeat nucleotides at some positions was
also observed for eSpCas9 (1.1) and SpCas9-HF1. For example,
AAAA starting from position 14–15 contributed positively to
gRNA activities for both Cas9 nucleases (Supplementary
Data 13).

The correlation of indel frequency to phenotype. In this study,
we used indel rate as the gRNA activity label, which is not equal
to real gene knockout efficiency. We tested the correlation
between indel frequency and actual gene disruption with a
protein-based assay. We designed a total of nine gRNAs targeting
SIRT1, SIRT2, and SIRT6 with three gRNAs for each. The gRNAs
and Cas9 nucleases were introduced into HEK293T cells with an
episomal vector which allowed long-term genome editing5. The
indel frequency and protein expression was analyzed at day 9
after transfection. The results revealed that indel frequencies had
a good correlation to protein expression (r= 0.82; Supplementary
Fig. 13a, b). In addition, the correlation between indel frequency
and actual gene disruption was tested by a luciferase reporter
assay. We designed a total of 11 gRNAs targeting luciferase gene.
Five days after genome editing, indel frequency and luciferase
activity was analyzed. The results revealed that indel frequencies
had a good correlation to luciferase activity (r= 0.70, Supple-
mentary Fig. 13c–e).

The correlation between on-target and off-target efficiency.
The goal of this work is to design gRNAs with better on-target
activity, but such gRNAs may be greater tolerance for mismatches
and thus induce higher off-target mutations. To test this
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Fig. 5 Performance of different algorithms for gRNA activity prediction. a Schematic of data set and conventional algorithms. Four conventional algorithms
including linear regression, ridge regression, XGBoost regression, and MLP were constructed, respectively. In all, 85% of the relevant data set was used as
the training set, and the reserved 15% of the data set in each set as the test set to measure the generalization ability of each model to predict unseen data.
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hypothesis, we selected three sgRNAs with different activity and
designed guide–target pairs with double mismatches (Supple-
mentary Fig. 14a). Off-target cleavage occurred efficiently with
target sequences containing mismatches at position 1–8 for WT-
SpCas9 (Supplementary Fig. 14b). As expected, higher on-target
activity generally led to higher off-target activity. For eSpCas9
(1.1) and SpCas9-HF1, however, the off-target cleavage was at
background level except mismatches at position 7–8, where site1-
gRNA displayed high off-target cleavage (Supplementary
Fig. 14b). Similar mismatch tolerance was also observed by
Slaymaker et al.15. Site2-gRNA had comparable activity to site1-
gRNA, but its off-target cleavage was at the background level,
indicating that mismatch tolerance depends on gRNA sequences.

Online service. We finally developed an online tool called
DeepHF (Deep learning for High-Fidelity Cas9) based on RNN
+ biofeature model for gRNA design for WT-SpCas9, eSpCas9
(1.1), and SpCas9-HF1. The online tool contains three functional
modules, namely prediction module, verified gRNAs module, and
design module. Prediction module allows users to get predicted
activities for all gRNAs with an input DNA sequence. Verified
gRNAs module provides all gRNA indel rates generated in this
study. Design module provides gRNAs that are suitable for gene
knockout with eSpCas9(1.1) and SpCas9-HF1 in human cells. In
this module, gRNAs were chosen from common transcripts of

each gene (Genome Reference Consortium Human Build 38).
The off-target information (1–3 mismatches considered as off-
target) and targeting location (whether in the 5–65% of coding
sequence) were also annotated. Users can obtain the predesigned
gRNAs by inputting a gene ID or a gene symbol. The website is
freely available at http://www.DeepHF.com/.

Discussion
Broader application of highly specific Cas9 nucleases has been
hampered by lack of knowledge for gRNA design. Our study filled
the gap by generating a database of over 50,000 gRNAs covering
~20,000 human genes for eSpCas9(1.1) and SpCas9-HF1. Users
can pick efficient gRNAs from the database for gene knockout. In
addition, we have shown here that the Tree SHAP algorithm is a
powerful tool for evaluation of feature importance. Based on large
data set and important features, we optimized seven models for
gRNA activity prediction. Importantly, we have demonstrated
that RNN+ biofeature is to the best of our knowledge, a state-of-
the-art model for activity prediction for the three Cas9 nucleases.
These useful clues will facilitate the development of optimal
computer models for gRNA design for other Cas9 nucleases. We
finally developed an online tool for gRNA design for WT-SpCas9,
eSpCas9(1.1), and SpCas9-HF1. Taken together, our study will
facilitate application of highly specific cas9 nucleases for genome
editing.
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Methods
Cell culture and transfection. HEK293T and HeLa cells (ATCC) were maintained
in the Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% FBS
(Gibco), 100 U/ml penicillin, and 100 mg/ml streptomycin at 37 °C and 5% CO2.
For transfection, HEK293T or HeLa cells were plated into 24-well or 12-well plates,
DNA mixed with Lipofectamine 2000 (Life Technologies) in Opti-MEM according
to the manufacturer’s instructions. HEK293T and HeLa cells were used to test the
indel efficiency and tested negative for mycoplasma; and cells identities were
validated by STR profiling (ATCC).

Plasmid construction. To compare the activity of hU6 and mU6 promoters for
genome editing, plasmids expressing gRNAs were modified from epiCRISPR
vectors5. Briefly, the EF1-Cas9 fragment (AgeI-NheI) on epiCRISPR was replaced
by a CMV promoter, resulting in epiCRISPR-hU6-gRNA vector; the hU6 promoter
was replaced by an mU6 promoter using Gibson Assembly (NEB), resulting in
epiCRISPR-mU6-gRNA vector. The gRNA oligonucleotide pairs were annealed
and cloned into BspQI sites.

To compare the activity of hU6 and mU6 promoters in lentivirus system, we
replaced the hU6 promoter (linearization by PCR) on lentiGuide-Puro vector
(addgene # 52963) with mU6 promoter by using Gibson Assembly (NEB), resulting
in lentiGuide-Puro-mU6. The gRNA oligonucleotide pairs were annealed and
cloned into BsmBI sites.

Lenti-gRNA–target vector constructed as follows. First, we replaced the EF1a
promoter (AsiSI-XbaI site) on pCDH_EF1_MCS_T2A_Puro vector (SBI, Palo
Alto, CA, USA) with CMV promoter, resulting in pCDH_CMV_MCS_T2A_Puro
(pCP); second, the mU6 promoter was cloned into XbaI-BstBI site of pCP,
resulting in pCP-mU6 (pCmP); third, the eGFP coding sequence was cloned into
the BstBI-BamHI site of pCmP, resulting in pCmP-eGFP (pCmeP); finally, the
“Filler” fragment was PCR amplified from plentiCRISPR53 and cloned into pCmeP
(BstBI-XhoI site), resulting Lenti-gRNA–target vector (Supplementary Fig. 15).

Lentivirus production. For individual sgRNA packaging, HEK293T cells were
seeded at ~40% confluency in a six-well dish the day before transfection. For each
well, 1.2 μg of gRNA expressing plasmid, 0.9 μg of psPAX2, and 0.3 μg of pMD2.G
(Addgene) were transfected using 5 μl of Lipofectamine 2000 (Life Technologies).
Media was changed 8 h after transfection. After 48 h, virus supernatants were
collected and filtered with a 0.45 μm polyvinylidene fluoride filter and stored at
−80 °C.

For library packaging, HEK293T cells were seeded at ~40% confluency in five
10-cm dishes the day before transfection. For each dish, 12 μg of plasmid library, 9
μg of psPAX2, and 3 μg of pMD2.G (Addgene) were transfected with 60 μl of
Lipofectamine 2000 (Life Technologies). Virus was harvested twice at 48 h and 72 h
post transfection. The virus was concentrated using PEG8000 (no. LV810A-1, SBI,
Palo Alto, CA) dissolved in PBS and stored at −80 °C.

Cell line expressing Cas9 generation. We introduced mutations on Cas9
nucleases on the LentiCas9-blast54 plasmid and generated plasmid expressing
eSpCas9 (1.1) and SpCas9-HF1, respectively. LentiCas9-blast plasmid was pack-
aged and transduced into HEK293T and HeLa cells. After 24 h, cells were selected
with 10 μg/ml of blasticidin for 14 days. Single cells were sorted into 96-well plates
for colony formation. Western blot with Anti-flag antibody was performed to
screen cell clones with high levels of Cas9 expression (Supplementary Fig. 16).
Western blots were incubated overnight at 4 °C with anti-FLAG antibody (14793 S,
CST) at 1:1000 dilution.

The gRNA library design. The gRNAs targeting microRNAs were designed using
an in-house Python script. The gRNAs were selected if they satisfied the following
criteria: (1) initiated with either A or G; (2) without four consecutive thymines (T).
For each microRNA, we chose four gRNAs if possible or all of them if the number
of gRNAs was less than four. Consequently, we designed a total of 4951 gRNAs
covering 1549 human microRNAs.
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The gRNAs targeting coding sequences in the library were designed by an
online tool (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-
design) developed by Doench et al.25. We selected ~four top-ranked gRNAs for
each gene. A total of 75,312 gRNAs covering 19,037 human coding genes was
designed. DNA oligonucleotides were synthesized and purchased from
CustomArray, Inc. (Bothell, WA). The sequences of the oligonucleotides are listed
in Supplementary Data 1.

The gRNA library construction. Full-length oligonucleotides were PCR-amplified
using Q5 High-Fidelity 2X Master Mix (NEB), size-selected using a 2% agarose
EGel EX (Life Technologies, Qiagen), and purified using MinElute Gel Extraction
Kit (Qiagen). PCR products were cloned into Lentiviral vector (Supplementary
Fig. 15) by Gibson Assembly (NEB) and purified with Agencourt AMPure XP SPRI
beads according to the manufacturer’s instructions (Beckman Coulter). The Gibson
Assembly products were electroporated into MegaX DH10BTM T1R Electro-
compTM Cells (Invitrogen) according to the manufacturer’s protocol using a
GenePulser (BioRad) and grown at 32 °C, 225 rpm for 16 h. The bacterial clones
covered the library at least 25-fold. The plasmid DNA was extracted from bacterial
cells using Endotoxin-Free Plasmid Maxiprep (Qiagen).

Screening experiments in human cells. HEK293T cells were plated into 15 cm
dish at ~30% confluence. After 24 h, cells were infected with gRNA library with at
least 1000-fold coverage of each gRNAs. After 24 h, the cells were cultured in the
media supplemented with 2 µg/ml of puromycin for 4 days. Cells were harvested
and the genomic DNA was isolated using Blood & Cell Culture DNA Kits (Qiagen)
following the manufacturer’s instructions. The integrated region containing the
gRNA coding sequences and target sequences were PCR amplified using primers
Deep-seq-library-F/R with Q5 High-Fidelity 2X Master Mix (NEB). We performed
66 PCR reactions using 10 µg of genomic DNA as a template per reaction for deep-
sequencing analysis; we took eight independent PCR reactions using 20 ng of
plasmid DNA as a template per reaction. The PCR conditions: 98 °C for 2 min, 25
cycles of 98 °C for 7 s, 67 °C for 15 s, and 72 °C for 10 s, and the final extension, 72 °
C for 2 min. The PCR products were mixed and purified using the Gel Extraction
Kit (Qiagen). The purified products were sequenced on Illumina HiSeq X by 150-
bp paired-end sequencing.

PCR assay to detect residual plasmid. A pair of primers were designed in the
outer and inner regions of the lentivirus packaging sequence to detect the residual
plasmids and the integration of lentivirus (PF1: gtcggggctggcttaactat, PR1:
taatcgccttgcagcacatc; LF1: tttccgggactttcgctttc, LR1: aagggacgtagcagaaggac). Then
seven different templets were tested (H20; Blank genome DNA, 200 ng; pasmid, 10
ng; unconcentrated virus, 2 µl; concentrated virus, 2 µl; isolated genomic DNA, 1
day after lentivirus transduction, 200 ng; isolated genomic DNA, 5 day after len-
tivirus transduction, 200 ng). PCR conditions: 98 °C for 2 min, 25 cycles of 98 °C
for 7 s, 65 °C for 15 s, and 72 °C for 15 s, and the final extension, 72 °C for 2 min.
The PCR products were detected using a 2% agarose EGel EX (Life Technologies,
Qiagen).

Analysis of indel frequencies from deep-sequencing data. Illumina sequencing
raw reads were processed using in-house Python scripts which combine a series of
analysis tools. To avoid the influence of low-quality reads, FASTQ Masker
(FASTX-Toolkit Version 0.0.13) was used to mask nucleotides with character “N”
based on a quality score <10. Reads exactly matching scaffold sequence (gtttta-
gagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgcttttt) were
extracted using AWK. Designed gRNA sequences were used as barcodes to
demultiplexed the validated reads (reads contain less than 4 “N” nucleotides,
barcode, and target region contains no “N”). Target regions were then extracted,
and aligned to the index which was built from the designed gRNA sequences using
Bowtie (version 1.2). For the plasmid library without genome editing, the target
sequences not identical to the corresponding gRNA sequence were considered as
synthesis/PCR errors. The target sequences in the edited library identical to the
synthesis/PCR errors were removed from the edited library data. The remaining
sequences not identical to the corresponding gRNA sequence were considered as
edited sequences. Thus, the indel frequency of a gRNA was calculated by the
following formula:

indel frequency ¼ Number of edited reads per gRNA
Number of total reads per gRNA

Model summary of deep learning. The task of gRNA indel frequency prediction
can be phrased as a regression problem. A mapping function was built to input the
representations of gRNA sequence and outputs the indel frequency score in the
range [0,1]. The mapping function here is Bidirectional long short-term memory
neural network (BiLSTM) (a particular subclass of RNN, i.e., recurrent neural
network). Unlike convolutional neural network (CNN) which treats DNA input as
a grayscale image with only two possible values for each pixel rather than on real
continuous-valued images in computer vision field, RNN is a special type of neural
network designed for ordered sequence problems55. RNN is considered more
natural to regard one DNA sequence as a sentence with four types of characters,

namely A, C, G, and T, rather than an image, and thus related research work in
natural language processing has offered valuable experience for DNA sequence
modeling56. RNN have connections that have loops, adding feedback and memory
to the networks over time or spatial sequences. This memory allows this type of
network to learn and generalize across sequences of inputs rather than individual
patterns. LSTM further takes the advantage of “gates” to control the degree of
influence from the previous sequence features, which made it more flexible in
controlling the memory. A BiLSTM exploits the order sensitivity of RNNs: it
consists of using two LSTM layers, each of which processes the input sequence in
one direction (chronologically and anti-chronologically), and then merging their
representations. By processing a sequence both ways, a BiLSTM can catch patterns
that may be overlooked by a unidirectional RNN. Borrowed from the natural
language processing applications57, the gRNA sequence input was transformed to a
matrix x = (x1, x2, …, xi, xl), which was a l × 4 matrix (l= 21 means gRNA
sequence length is 21 here, and xi means binary vector of four A, T, C, G
nucleotides).

Embedding. Embedding is quite useful for mapping a sparse matrix from input
vector to a dense real-valued high-dimensional space, which can facilitate the
training process. In natural language processing problems, typical model uses a
word as its smallest input entity or a character level uses the character of alphabets
as the smallest entity. Thus, we can consider the nucleotides in the gRNA sequence
as word (naturally a character, too), and the gRNA sequence itself as a sentence.
For this research, the input matrix x 2 R

L ´ 4 (L here is 21, the sequence length of
gRNA) is projected to the dense real-valued space E 2 R

L ´m (E is embedding
matrix, m is a hyperparameter corresponds to the embedding dimension) by the
lookup matrix (embedding weight matrix) Wm (i.e., E= xWm). Then, the
embedding matrix E will be the input matrix of RNN.

BiLSTM. As a de facto standard of RNN architectures, LSTM has achieved a very
significant results in a variety of sequence-based tasks. However, the recently
proposed Gated Recurrent Unit (GRU) architecture (a simplified LSTM archi-
tecture) mostly used in the context of machine translation58, did not show any
significant improvement upon standard LSTM. The difference between the stan-
dard LSTM and simple RNN is the hidden layer. For example, given the input
matrix E 2 R

L ´m , a simple RNN produces matrix H of size L × n (where n is the
RNN units). At each time step l, let el 2 R

m as the input column vector, hl�1 2 R
n

as the previous hidden state vector, the current state hl by the following way:

hl ¼ σ elWþ hl�1Uþ bð Þ ð1Þ
where W, U, and b are the trainable parameters, and σ is the nonlinear

activation function. However, in LSTM, a well-designed gating mechanism avoids
the “vanishing gradients” problem which made it more applicable on relatively
long sequences. These gates can be trained to control the information flow of
hidden neurons. The LSTM unit used in this research is implemented by replacing
the aforementioned Eq. (1), which contains el, hl−1, cl−1 as input, and produce hl, cl
(cl is candidate state,):

il ¼ σ elW
i þ hl�1U

i þ bi
� � ð2Þ

f l ¼ σ elW
f þ hl�1U

f þ bf
� � ð3Þ

cl ¼ f l � cl�1 þ il � tanh elW
c þ hl�1U

c þ bcð Þ ð4Þ

ol ¼ σ elW
o þ hl�1U

o þ boð Þ ð5Þ

hl ¼ ol � tanhðclÞ ð6Þ
where W, U, V, and b are the trainable parameters, σ(·),tanh(·), and ⊙ are element-
wise sigmoid, hyperbolic tangent, and multiplication functions, respectively. il, fl,
and ol are the input, forget, and output gates.

Due to the bidirectional reason, the model processes input data both in the
forward and backward orders, allowing to combine the 5′ and 3′ gRNA sequence
information in every time step. In parallel, one output is in forward order which is

defined as h
*

, the other output is in reverse order which defined as h
 
. Then, two

hidden states are combined and generates an output vector hbi_l:

hbi l ¼ Bidirectional ðh
*

l ; h
(

lÞ ð7Þ
where Bidirectional(·) is a function used to combine the two output sequences. It
can be a concatenating function, a summation function, an average function or a
multiplication function. In this research, a concatenating function was adopted to
get a 2n output vector hbi_l as the learned feature representation of gRNA sequence.

Hand-crafted biological features. A lot of studies have shown that hand-crafted
features may provide complementary information with CNN or RNN, which may
give improved performance than only using the features automatically generated
from the representation learning process. Motivated by this, we combined the
secondary structural feature, GC content features, and thermodynamics features
together with feature representations obtained from RNN to enhance the predictive
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capability of LSTM. Detailed hand-crafted features are shown in Supplementary
Table 1. Here, we concatenate the biological feature vector hbio 2 R

p , with hbi_l
from the previous BiLSTM stage and get hnew= concat ([hbio, hbi_l]) as the final
representations of the gRNA sequence. The dimension of hnew is l × 2n + p.

Fully connected layers. The previous concatenated feature representation hnew is
the input of the fully connected layers. The number of layers, the hidden units, the
activation function, and the dropout rate of each layer were determined by
hyperparameter searching (described in the following Model training section).
These layers are used to create final nonlinear combinations of features and for
making predictions by the network.

Model training. The number of validated deep-sequencing gRNAs is 55,604,
58,167, and 56,888 for eSpCas9(1.1) and SpCas9-HF1, respectively. Because of
lacking appropriate third-party validation data sets and in order to get a more
reliable training result, the data set were split into three subsets: 76.5% (42,537 for
WT-SpCas9, 44,842 for eSpCas9(1.1), and 43,518 for SpCas9-HF1) for training,
8.5% (4726 for WT-SpCas9, 4982 for eSpCas9(1.1), and 4835 for SpCas9-HF1) for
validation, and 15% (8341 for WT-SpCas9, 8793 for eSpCas9(1.1), and 8534 for
SpCas9-HF1) for testing, respectively. The training data set was used to tune the
parameters, the validation set was used to avoid over-fitting, and the testing set was
used for the evaluation of the model performance. The performance metrics of the
trained model are mean-squared error and Spearman correlation score. The
hyperparameter searching space included 12 different hyperparameters, formed
more than 237 billion parameter combinations. It is too large for a traditional grid
search manner to get the optimized parameters. We, therefore, implemented a
Bayesian optimization process to reduce the searching time, which has been
confirmed to be more reliable than randomized grid search. The optimization
program GpyOpt was developed by the machine-learning group of the University
of Sheffield59. The number of initial random searching points was 30, which
provided a clue for the best parameter, and then 300 acquisitions were imple-
mented to attempt to get a global optimum within specified iterations. After getting
the optimized hyperparameters of the models, a tenfold shuffled validation was
implemented to evaluate the stability of the performance. The mean and standard
deviation of the performance measures were obtained. The detailed hyperpara-
meters are described in supplementary notes.

Feature engineering and model comparisons. For the benchmark purpose, we
trained simple Linear regression, L1-regularized linear regression (lasso regression),
L2-regularized linear regression (Ridge regression), SVM regression, XGBoost
regression, multilayer perceptron (MLP), CNN, and RNN models as baseline
models. Like the deep-learning models, the hyperparameters were searched and
determined by GpyOpt. The detailed hyperparameter configurations are shown in
Supplementary Data 14–18.

Feature engineering was implemented by a recently developed method called
Tree SHAP (SHapley Additive exPlanations), which combined SHAP value with
XGBoost algorithm. Previously, feature selection for gRNA activity was usually
implemented by tree ensemble methods25,28. However, the metrics of these
methods (such as Gini importance or weight) lack of consistency (their value
should not decrease when the true impact of that feature is increased) and accuracy
(the sum of all the feature importance should sum up to the total importance)49,60.
Tree SHAP addresses it by recent applications of game theory and develop fast
exact tree solutions for SHAP values, which are the unique consistent and locally
accurate additive feature attribution method based on expectations60. The final
features adopted in the conventional algorithms were determined by the top 70% of
the most important features which measured by SHAP value.

Model interpretability. In addition to the prediction accuracy, we are also
interested in the mechanisms of the deep-learning model. However, the multilayer
nonlinear hidden units lead to a trade-off between the complexity and interpret-
ability of deep neural network. The community has made a lot of efforts to
understand the black box nature of the deep-learning model, which can be roughly
divided into perturbation-based methods (suffers from the unacceptable compu-
tation cost) and backpropagation-based methods (may face problems of vanishing
gradient and gradient discontinuity)61. A recently proposed method called Deep-
Lift had proved especially useful in Recurrent Neural Networks where saturating
activations like sigmoid or tanh are popular62, and was adopted by Lundberg and
Lee to adapt DeepLIFT as a compositional approximation of SHAP values
(introduced in the previous section, indicates the feature importance), leading to
Deep SHAP. We use Deep SHAP to calculate the SHAP values to estimate the
feature importance of sequence input into the best model.

Tools used in the study. RNAfold 2.4.563 was used to generate secondary
structure features and thermodynamic features. Scikit-learn 0.19.164 and Keras
2.1.665 (https://github.com/fchollet/keras.) with TensorFlow 1.8.066 as backend
were used for conventional machine-learning algorithms and deep-learning
models, respectively.

Detection of indel frequency on endogenous target sites. To test the perfor-
mance of seven algorithms for endogenous sites, we edited endogenous sites with
randomly selected 100 gRNAs from the library (Supplementary Data 9). The
epiCRISPR plasmid was modified to express gRNAs. Briefly, the EF1-Cas9 frag-
ment (AgeI-NheI) on epiCRISPR was replaced by CMV promoter, resulting in
epiCRISPR-hU6-gRNA vector; then, hU6 promoter from epiCRISPR-hU6-gRNA
vecotor was replaced by mU6 promoter using Gibson Assembly (NEB), resulting in
epiCRISPR-mU6-gRNA vector. The gRNA oligonucleotide pairs were annealed
and cloned into BspQI sites of the epiCRISPR-mU6-gRNA vector. The plasmids
were transfected into HEK293T cells expressing eSpCas9 or SpCas9-HF1, respec-
tively. After 24 h of transfection, cells were selected with 2 µg/ml puromycin for the
4 days.

Analysis of individual gRNA indel frequency. All PCR primers for T7EI and
TIDE analysis are listed in Supplementary Data 20. Genomic DNA was extracted
from cells at suitable time points after transfection or infection using QuickExtract
DNA Extraction Solution (Epicentre) according to the manufacturer’s instructions.
We amplified the target sequence by PCR with Q5 High-Fidelity 2X Master Mix
(NEB) following the manufacturer’s instructions. PCR products were purified with
Gel Extraction Kit (Qiagen) and cleavage by T7EI (NEB). Digested DNA was run
on TBE gel. To calculate the indel efficiency, the intensity of band was analyzed
using the ImageJ software. For TIDE, the purified PCR products were Sanger-
sequenced, and each sequence was analyzed with the online TIDE software
available at http://tide.nki.nl67.

Detection of genotype and phenotype. We selected nine sgRNAs for three genes
(SIRT1, SIRT2, and SIRT6) to examine the relationship between indel frequency
and actual gene disruption. epiCRISPR-mU6-gRNA were transfected into 293T-
SpCas9-HF1 cells, the gDNA and protein were extracted at 9 days after puromycin
screening. The indel frequency detected by TIDE software, the gene disruption
detected by western blot.

Luciferase reporter assay. To establish luciferase reporter cell line,
HEK293T cells in six-wells plates were transfected with 2 μg of mixed plasmids
(pX458-AAVS1-gRNA and pAAVS1-luciferase-donnor) using Lipofectamine 2000
(Life Technologies) based on the manufacturer’s instruction. After 24 h, cells were
selected with 10 μg/ml of blasticidin for 14 days. The cells expressing luciferase
were plated in 48-wells plates and transfected with 0.2 μg plasmids expressing Cas9
nucleases and firefly gRNAs. After 5 days, cells were harvested, and luciferase
activity was measured using Dual-Luciferase® Reporter Assay System (Promega).
Firefly luciferase activity was detected and normalized to renilla luciferase activity
measured in the same samples. The levels of the normalized reporter luciferase
activity were calculated relative to the levels in mock transfected cells expressing
the same reporter.

Statistical analysis. All the data are shown as the mean ± S.D. Statistical analyses
were conducted using Microsoft Excel. Two-tailed, paired Student’s t tests were
used to determine statistical significance when comparing two groups. A value of p
< 0.05 was considered to be statistically significant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The full data sets of the indel rate can also be obtained in Supplementary Data 2. The raw
sequencing data have been submitted to the NCBI Sequence Read Archive (SRA
PRJNA522677 (https://www.ncbi.nlm.nih.gov/bioproject/522677)). The raw read counts
can be obtained in Supplementary Data 19. The source data underlying Fig. 1b–g and
Supplementary Figs. 1–5, 6c, 7b, 13, and 14 are provided as a Source Data file. The other
data for this study are available from the corresponding author upon reasonable request.

Code availability
All software codes of the study are available in GitHub (https://github.com/izhangcd/
DeepHF). We built a website DeepHF for the access of all indel rate data (http://www.
DeepHF.com/). One can input an Entrez Gene ID or official gene symbol to query the
validated gRNA efficiencies for eSpCas9(1.1) and SpCas9-HF1.
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