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Ratiometric Impedance Sensing 
of Fingers for Robust Identity 
Authentication
Hyung Wook Noh   1,2, Chang-Geun Ahn1, Hyoun-Joong Kong2 & Joo Yong Sim   1

We present a novel biometric authentication system enabled by ratiometric analysis of impedance 
of fingers. In comparison to the traditional biometrics that relies on acquired images of structural 
information of physiological characteristics, our biological impedance approach not only eliminates 
any practical means of making fake copies of the relevant physiological traits but also provides reliable 
features of biometrics using the ratiometric impedance of fingers. This study shows that the ratiometric 
features of the impedance of fingers in 10 different pairs using 5 electrodes at the fingertips can reduce 
the variation due to undesirable factors such as temperature and day-to-day physiological variations. 
By calculating the ratio of impedances, the difference between individual subjects was amplified and 
the spectral patterns were diversified. Overall, our ratiometric analysis of impedance improved the 
classification accuracy of 41 subjects and reduced the error rate of classification from 29.32% to 5.86% 
(by a factor of 5).

Biometric authentication relies on the individual unique biological characteristics (fingerprint, vein, iris, ret-
ina, face, etc.) of a person1. Biometric systems play an important role in personal, national, and global security 
by significantly improving personal identification and authentication2. Most current biometric technologies are 
based on the structural features of acquired images, which have many advantages such as convenience and sim-
plicity3. However, the image-based biometrics methods also have their weaknesses4. For example, some image 
features, such as those of the fingerprint and iris, which are used in a wide variety of applications ranging from 
smartphones to immigration identity authentication, could be easily spoofed and its anti-fake performance is 
threatened5. For example, it is possible to spoof the fingerprint scanner by using a printed gelatin mold over a real 
finger because this technology can fail to discriminate an artificial fingerprint6. There are also potential threats for 
iris-based systems. Recently, the feasibility of some attacks have been reported, and it is actually possible to trick 
the iris recognition system with a printed iris, photo iris, and well-made color lens7. Overall, current biometrics 
technologies could not reach a balance between counterfeiting and usability, and therefore, its popularization 
remains limited8.

Under these challenges mentioned above, researchers have been seeking new alternatives to existing methods. 
Many novel and unconventional features, such as ear contour9, palm print10,11, nose pore12,13, vein patterns14,15, 
finger-knuckle-print16,17, and multimodal approaches have been adopted for development as new biometrics 
methods18,19. In recent years, new approaches such as biomedical engineering technologies have been proposed 
to provide non-image-based frequency or time domain information. For example, electroencephalography (EEG) 
and electrocardiogram (ECG) have been considered as new biological features in biometrics research. ECG-based 
technology has been reported as a biometric feature that provides strong liveness evidence20,21. EEG has also been 
studied for its potential for biometrics22, and Fingelkurts et al. has shown EEG oscillations that constituted EEG 
states were characteristic for 13 different groups of conditions in accordance to oscillations’ functional signifi-
cance23. These studies are significant in that non-image-based biological features such as EEG and ECG can be 
adopted to develop new biometric methods, because of their robustness to attacks. However, these biological sig-
nals are still unsuitable for practical applications due to their limited accuracy and long recognition times as well 
as the fact that they are highly dependent on a relaxation or excitability of the subject compared to that required 
in traditional biometric technologies24.
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In contrast, bioelectrical impedance spectroscopy and impedance tomography is a biomedical technique that 
measures the physiological state of living tissue and is less sensitive to emotional conditions25. It could also con-
siderably vary from person to person owing to the intrinsic variability of the passive electrical properties of tissues 
and cells depending on the distribution of intracellular and extracellular fluid (ICF and ECF) as well as the move-
ment of ions within tissues26. In in vivo human applications, the physiological state is typically measured using 
metal electrodes placed on the skin around an anatomic location of interest27. These electrical properties include 
information about the presence of specific tissue types (e.g., blood, muscle, bone, etc.), anatomical configuration 
(i.e., the direction and amount of skeleton and muscle), and tissue status28. There are significant impedance dif-
ferences between various tissue types, anatomical configurations, and tissue states, each of which can provide a 
unique mechanism to distinguish people29. Besides, as the electrical response of body tissues relies on the fre-
quency of the applied signal, impedance analysis can be performed over a broad frequency band30, which helps to 
better identify the characteristics of individuals.

Nevertheless, biological impedance has not been realized as a biometric technology for personal identification 
owing to its low reproducibility31. Compared to other basic criteria for biometric security systems such as unique-
ness, universality, collectability, performance, acceptability and circumvention32, the major obstacle for biological 
impedance is permanence31. Every single characteristic or trait recorded in the database requires to be constant 
over a period. However, no matter how precise a system detects electrical impedance of fingers, the variation due 
to extraneous and inherent factors of normal physiology can inevitably affect the ability of identifying individu-
als. The impedance varies greatly depending on various factors such as skin moisture, body fat, and blood vessel 
expansion due to body temperature33. The temperature-induced change in resistance could be due to alterations 
in cutaneous blood flow or compartmental distribution of body water34. Several previous studies have revealed 
the relationship with the relevant factors. For instance, Deurenberg et al.35 assessed the effect of ingesting a meal, 
drinking normal or beef tea, exercising, and the menstrual cycle on body impedance. Lim et al. mentioned that 
different physiological conditions such as thickened skin, fluid retention, and obesity can affect the impedance 
measurement33. Carton et al.34 found that varying skin temperature by altering ambient temperature significantly 
changes resistance measurements and the estimation of total body water. Liang and Norris36 revealed the effects of 
increased skin blood flow and skin temperature on bioelectric impedance. Gudivaka, D. Schoeller, and Kushner37 
found that impedance varied inversely with a change in skin temperature for the frequency range of 5 kHz to 
500 kHz. These findings indicate that varying skin temperature significantly changes impedance measurements. 
Despite studies on the factors affecting impedance measurements, there has been a lack of a systematic approach 
for removing the associated effects and obtaining consistent data. Therefore, the characteristic of the biological 
impedance itself is not stable and permanent, and therefore, its use as robust biometrics is limited.

To overcome these limitations, we propose a new ratiometric method to extract reliable features based on 
impedance ratios obtained by multi-channel impedance spectroscopy. As a proof of concept, a simplified bioelec-
trical model was used to illustrate the ratiometric features that improve performance for conditions where unde-
sirable factors (e.g., temperature, inherent physiology) change the impedance of underlying biological tissues. 
To obtain multi-channel impedance spectra, we designed a system applying modulated sinusoidal current and 
sensing voltage across different pairs of fingers by electrically switching the five electrode pairs mounted on the 
board. The measurements were carried out for a total of 10 finger pairs. Our human subject test showed that the 
ratiometric impedance spectra improved reproducibility as well as amplified the difference between individual 
subjects. As a result, we confirmed that the ratio characteristics extracted by applying this method and machine 
learning increased classification accuracy and lowered the error rate by a factor of 5 in comparison to using orig-
inal data. Taken together, these demonstrations make multi-channel impedance spectroscopy highly useful and 
important for the future development of extremely secured and high-performance biometrics.

Results and Discussion
Impedance-based identity authentication system.  Human body tissue is composed of conducting 
ionic electrolytes and poorly conducting cells and extracellular matrices (e.g., skin, fatty tissues, bone, cartilages), 
resulting in both resistive and capacitive properties. Therefore, electrical signals transmitted through the fin-
gers provide anatomical information about the fingers and relevant biomaterials and bioelectrical properties. To 
implement identity authentication based on the electrical properties of human body tissues, we designed a system 
that detects electrical impedance between two fingers by applying modulated sinusoidal current (Fig. 1(a)). The 
system comprises a microcontroller, waveform generator, and constant current source that can be switched by a 
multiplexer so that the measuring electrode pairs can be reconfigured. The schematic of our impedance meas-
urement system is illustrated in Fig. 1(b). Figure 1(c) shows an electrical impedance spectrum measured by our 
system; the impedance decreases with increasing frequency.

For identity authentication, a user places five fingers on the multi-sensing system with five pairs of electrodes 
arranged as shown in Fig. 1(d). The electrodes are located at the fingertip and the constant source current is 
passed through the pairs of two fingers being measured. As the current flows through the pairs of fingers, the 
voltage across the pair is measured by a voltage sensing electrode located between electrical paths (Fig. 1(e)). 
Impedances are measured for a total of 10 finger pairs. The electrical impedance spectrum for each finger pair was 
measured in the frequency range of 20 kHz to 500 kHz. We also mounted the infrared temperature sensor on the 
board to obtain the temperature of the subject’s hand (Fig. 1(f)).

Biological Impedance variation by undesirable factors.  As described above for the low reproduci-
bility of impedance measurements of the human body, the impedance of our body varies greatly depending on 
various undesirable factors. For those reasons, we tested the undesirable factors affecting impedance-based iden-
tity recognition. These factors can be classified into two: (i) changes in external environments (e.g., temperature, 
humidity) and (ii) inherent changes of normal physiology. For the external environmental factor, we examined 
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the effect of body temperature on the impedance across fingers. An external temperature chamber (S/SM-3200, 
Thermotron, USA) was used to control the hand temperature between 29 °C and 37 °C for three healthy adults. 
After controlling the temperature of the hand using the chamber, the actual temperature of the hand was obtained 
simultaneously with the impedance measurement using the temperature sensor mounted on the board. In this 
way, we repeatedly changed the temperature of the subject’s hand and performed the impedance measurement. 
To analyze the change in impedance with temperature we used the average of all the impedance values obtained 
in the frequency range from 20 kHz to 500 kHz. As shown in Fig. 2(a), the impedance values of all three subjects 
changed inversely with the measured hand temperature. This result indicates that the change in body temperature 
is an important factor that affects electrical impedance measurement. However, as mentioned in other studies 

Figure 1.  Schematic of electric impedance spectrum identity authentication system. (a) Concept of identity 
authentication system which employs the electrical transfer characteristics through finger bones and tissues. 
(b) Schematic of the finger impedance-based identity authentication system. Sinusoidal current is transmitted 
sequentially to the finger pairs by the operation of the multiplexer and demultiplexer, converted into a DC signal 
by the RMS-DC converter, and digitized by the ADC of the microcontroller. (c) The shape of the electrical 
finger impedance spectrum measured by our system. (d) Our developed system measuring finger impedance 
by placing the hand of the subject on the board with five pairs of electrodes. Eight mechanical relays mounted 
on the left board enable switching of current path lines in sequence to measure ten pairs of finger impedances. 
Numbers 1 to 5 are assigned in order from thumb to index finger. The LED lights on the right boards 2 and 4 
indicate the pair of index-ring finger currently being measured. (e) The separate pairs of current-sourcing (CS) 
and voltage-sensing (VS) electrodes to apply 4-point electrode measurement. (f) The infrared thermometer 
sensor is mounted on the board to measure the temperature of the subject’s hand.
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above, there are several other factors that affect biological impedance. To see the effect of these other factors, we 
performed day-by-day impedance measurement for two subjects at the same hand temperature over three days. 
Figure 2(b) shows that the temperature of the hand was constantly controlled, but the impedance values of the 
two subjects changed according to the date of measurement. It can be seen that the impedance can be changed by 
other undesirable factors, even if the temperature is controlled constantly.

Enhanced ratiometric features reducing undesirable variation.  To remove the effect of undesirable 
factors and obtain consistent data, we devised a method of transforming two raw impedance spectra into rati-
ometric traits. The rationale behind this method is explained by following the electrical model of fingers using 
passive components. The basic electrical model of bio-impedance is designed with the model Z, as shown in 
Fig. 3(a) 38. Rs, Rp, and Cp represent the electrical resistance of liquid outside the cell (in addition to the skin resist-
ance for Z1, Z4), the resistance of intracellular fluid (ICF), and high frequency conductance of the cell membrane, 
respectively. When the current with low frequency less than 10 kHz is applied to the cell, the current only flows 
through the interstitial fluid, i.e. the ECF, but when the current with high frequency above 100 kHz is applied 
to the body, the current flows in both the ECF and the ICF39–42. The overall impedance model we used refers 
to the Equivalent circuit of electrode and the skin proposed for measuring bioelectric impedance39 consisting 
of electrode, epidermis, and subcutaneous layer, and we slightly modified this circuit to model a pair of fingers 
where epidermis is interfaced with a pair of electrodes, one corresponding to the current source and the other 
corresponding to the current drain. We employed a simplified model assuming 4 Z blocks consisting of a resis-
tor in series with a resistor and a capacitor in parallel represent epidermis interfaced with the electrode (Z1, Z4), 
dermis (Z2), and sweat glands and ducts (Z4).We hypothesized that the electrical properties of all finger compo-
nents would change at the same rate when the electrical properties of the hands were varied because of various 
environmental factors such as external temperature, internal and external moisture, and changes in blood flow. 
Z models (Z1 ~ Z’4) constituting Pairs A and B were simulated to vary at a constant rate according to time t, and 
the impedance of three different states (t1 ~ t3) were obtained. It can be seen that the impedance curves of Pair A 
and B in Fig. 3(b) change according to (t1 ~ t3). The ratiometric data obtained by deriving the ratios of different 
impedances for each state (t1 ~ t3) in Pairs A and B are shown in the rightmost graph in Fig. 3(b). It can be seen 
that the ratio curves of the respective state are almost coincident and overlap in the same pattern.

Figure 3(c) shows the impedance data measured for three subjects in total for 10 times per day, and the data 
were expressed by mean and standard deviation. We assigned numbers 1 to 5 in order from thumb to index finger. 
Pairs A and B in Fig. 3(c) represent finger pairs of thumb-middle and index-ring, respectively. The measured data 
for the three subjects also showed impedance variation by the date of measurements. As a result of transform-
ing two raw impedance spectra showing difference by date of measurement into the ratiometric features (ratio 
between the impedances), it was confirmed that highly reproducible curve characteristics for each subject can be 
obtained.

Improved discerning of difference between pairs of fingers by ratiometric features.  As a 
demonstration of the reproducibility enhancement by using ratiometric features, we tested the distinguishability 
of finger pairs. Since the anatomical configuration of each finger is slightly different, it can be expected that the 
impedance tendency will be different in each finger pair. Therefore, we analyzed each impedance data of finger 
pairs in various models. Ten pairs of fingers can be formed by selecting two of five fingers. Thus, we measured the 
impedance of ten pairs of fingers in sequence by electrically switching the five electrodes mounted on the board. 
We performed the impedance measurements for one subject 10 times per day and data were collected on five 
independent days. The raw data of the measured impedance of all finger pairs shows a tendency to decrease with 

Figure 2.  Impedance variation according to temperature. (a) The relationship between finger impedance and 
hand temperature measured in each of three subjects (α1~α3). (b) Impedance variation of two subjects (α4, α5) 
measured on different days with hand temperature controlled. The impedance in Y-axis of (a,b) is an average in 
the frequency range from 20 kHz to 500 kHz.

https://doi.org/10.1038/s41598-019-49792-9


5Scientific Reports |         (2019) 9:13566  | https://doi.org/10.1038/s41598-019-49792-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

frequency, as shown in Fig. 4(a), and since the magnitude and slope of each finger pair are slightly different, it is 
possible to distinguish the finger pairs visually.

Figure 4(b) shows the impedance ratio curve obtained by applying the ratiometric method to the measured 
impedance of the finger pair. The 10 combinations were chosen so that each finger pair was selected only once 
for the numerator and denominator, respectively. To balance the scale of features, we chose the denominators 
that yielded the smallest deviation from the average of ratiometric features among 10 finger pairs. The extraction 
of the ratiometric features is described in detail in Methods. Compared to Fig. 4(a,b) shows that the patterns 
and slopes of the impedance ratio curves for each pair are more varied, which makes it easier to distinguish. To 
visualize the distinguishability of the electrical impedance of each finger pair, principal component analysis was 
conducted among the ten different pairs, and the first three principal components of the spectra for the both raw 
data and ratiometric features are displayed in Fig. 4(c,d), respectively. It can be seen that the principal compo-
nents were more clearly clustered in ratio features than the raw data.

For classification of ten finger pairs, discriminative classification models were exploited. We tested multi-
ple machine learning algorithms of linear support vector machine (LSVM), quadratic SVM (QSVM), k-nearest 
neighbor (KNN), and ensemble-bagged trees (Bag Trees) (Fig. 4(e)). For robust evaluation of classification accu-
racy, leave-one-session-out cross-validation was conducted, so that one session data of a person on a day were 
separated from the original dataset and used as a validation sets and all sessions were evaluated exhaustively. 
Figure 4(e) shows the result of applying various machine learning methods to the both raw data and ratiometric 
features. The experimental results indicate that the performance of the discerning of difference between the pairs 
of fingers can be improved using ratiometric features.

Interpersonal difference of ratiometric impedance features.  We collected data from a group of 41 
subjects to evaluate the identification performance of biological impedance spectroscopy. Subjects participated 
in at least five independent sessions over three months and provided at least 10 measurements per day. The raw 
data of the measured impedance of 10 finger pairs for five subjects are shown in Supplementary Fig. S1. In each 
finger pair, the raw data of all five subjects showed a gradual decrease with increasing frequency and had a similar 
slope. Specifically, Supplementary Fig. 1(a) shows that the raw data for the Pair (1, 5) of subjects S1, S3, and S4 are 
mostly superimposed at all frequencies, making it difficult to visually discriminate clearly. In contrast, ratiometric 
features have distinct patterns and slopes per finger pair (Fig. 5), and visually it is easier to distinguish than the 
raw data. The data for each subject also differs slightly for each finger pair in the patterns and magnitudes. It can 
be expected that a higher number of finger pairs improve the accuracy of discrimination. In this sense, the exper-
iment result has the implication that the ratiometric feature is robust to the influence of environmental factors, 
which improve the discrimination based on reliable properties.

Figure 3.  Effect of ratiometric features and bioelectrical modeling of fingers. (a) The bioelectrical impedance 
model of each finger in Pair A and Pair B designed based on the model Z. (b) The simulation results. The 
variation of each impedance curves of Pair A, B (Two left graphs) and extracted ratiometric features (rightmost 
graph), according to three different states (t1 ~ t3). (c) Variation of the impedance data and ratiometric features 
for three subjects (β1 ~ β3) measured for independent three days. The data is presented as mean ± standard 
deviation (n = 10).
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Identification of individuals.  For the identification of individuals, we applied the discriminative classifi-
cation models of linear support vector machine (LSVM), quadratic support vector machine (QSVM), K-nearest 
neighbor (KNN), and ensemble-bagged trees (Bag Trees) used in the previous experiment to verify the pairs of 
finger classification. The 10 combinations of finger pairs for ratiometric features we used in identification of sub-
jects were the same as in Fig. 5. We used all 10 combinations of finger pairs because no particular combinations 
were found to show significantly distinct performance or particularly better results than other combinations. 
Among 41 subjects with 2166 datasets, we achieved the highest classification accuracy of 94.14% with KNN, and 
it was confirmed that the accuracy was improved in all tested models by applying the devised ratiometric method. 
The ratiometric features enhanced the accuracy of classification from 70.68% to 94.14% in the KNN model. 
Figure 6(a) compares the prediction accuracy for raw data and ratiometric features in the four different models. 
Figure 6(b) shows the confusion matrix of 41 subjects using the ratiometric features in the KNN model, where the 
intensity of the color of the blue box represents an accurate prediction while that of the red box represents a false 
prediction, and ‘S1, S2, S3, ··· S41’ represents each subject class. The receiver operating characteristic (ROC) curves 

Figure 4.  Classification of different finger pairs based on raw data and ratiometric features. (a) The raw data of 
the measured impedance of finger pairs. (b) The ratiometric features derived by transforming raw impedance of 
finger pairs. The error bars in the figure indicate the relative standard deviation. (c) Scatter plot of the first three 
principal components of the raw data of impedance from principal component analysis. (d) Scatter plot of the 
first three principal components of the ratiometric features from principal component analysis. (e) Comparison 
of classification result of raw data and ratiometric features of 10 finger pairs.
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Figure 5.  Ten pairs of ratiometric features. The ratiometric features were derived by transforming the raw 
impedance spectra measured in five subjects over five days. Values are the mean ± S.D. (at least n = 50).

Figure 6.  Identification accuracy of individuals by raw data and ratiometric features. (a) Comparison of 
identification accuracies for raw data and ratiometric features in the four different classification models. (b) 
Confusion matrix of the classifier of KNN among 41 subjects (S1 ~ S41), where the intensity of the color of the 
blue box indicates the correct predictions and that of the red boxes indicates the incorrect predictions. (c) ROC 
curves of the raw impedance data for classifiers of LSVM, QSVM, and KNN, and Bag Trees. (d) ROC curves of 
the ratiometric features for each classification model.
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of raw data and ratiometric features for each classifier are represented in Fig. 6(c),(d), respectively. An equal error 
rate (EER) and an area under ROC curve (AUC) of raw and ratiometric data for the tested classifiers are listed in 
Table 1. The quadratic SVM classifier produced the highest AUC of 0.9939, while the KNN classifier achieved a 
better result in classification accuracy of 94.14% and the lowest EER of 3.0049. All EER and AUC values derived 
from the four models are better in ratiometric than in raw data.

Conclusion
Our research has significance as a biosignal-based authentication technology to overcome the risk of duplica-
tion of existing image-based technology including fingerprint, and to solve the existing limitations such as lack 
of reproducibility. The growth in use of biometric systems increases the attempts to fake the biometric systems 
and the biometric systems are quite susceptible to the sophisticated spoofing attacks. In recent years, biometric 
security against various types of attacks has been a very active field of research. This interest has led to remarkable 
advances, such as the development of liveness detection, for biometrics applications and the security enhance-
ments43. The liveness detection techniques were used to detect spoofing attempts by determining whether a biom-
etric object is a real human or fake. However, despite these notable progresses, the establishment of concrete 
protection against the threats remains a challenging task. One of the limitations of most anti-spoofing methods 
is the lack of generality. Although one approach may show very high performance for detecting certain types of 
spoofing against gummy fingers, gelatin, or playdoh copies, its performance could significantly drop when other 
types of synthetic features are presented44. In spite of a great amount of research and remarkable achievements 
in the field of spoof detection, the attack methodology has also evolved and become more sophisticated, so that 
there are still serious challenges to be faced in the detection of direct attacks44. On contrary, our approach is to 
learn the characteristics of the impedance of a finger that can classify a particular individual. These traits reflect 
the anatomical structure as well as biomaterial properties of the subject’s body (e.g., numerous cells and muscles, 
fat, ligaments and cartilage, multiple layers of tissues). Although our method does not need to learn and see fake 
copies, it becomes naturally able to distinguish the fake copies. For instance, in order to attempt a spoofing attack 
on a fingerprint system with an impedance sensing method suggested by Martinsen et al.45, it only needs to find 
an appropriate material that emulates electrical characteristics. However, in our case, the spoofing attempt must 
mimic the anatomical and biomaterial characteristics of a particular subject, which can offer a much higher level 
of security.

A typical liveness detection technique requires additional identification methods and thus it is only a part of 
the onboarding process for other biometric authentication methods. On the other hand, our method not only 
verifies the liveness of a subject by extracting the features of constituents inside live fingers, but also performs 
multiclass classification based on the characteristics of the subject. Additionally, our research suggests a solution 
that can overcome the limitations of low reproducibility to be used for biometrics by introducing a ratiometric 
feature that is robust to undesirable environmental changes and diversifies the feature patterns. Our method can 
be used in combination with fingerprint or other biometrics technology, yet it may also provide a unique utility 
with better performance than simple liveness detection.

Fingerprint is the most widely used authentication technology at present and is very unique with high accu-
racy of identification. For instance, the state-of-the-art fingerprint technologies (<1% EER46) is more accurate 
than our current results (~3% EER). However, the concept of this study is relatively new than modern fingerprint 
recognition and it is meaningful in comparison to the fingerprint recognition rate in the literature of recent dec-
ade (0.5~20% EER46). The empirical evaluation of uniqueness with the number of people we have demonstrated 
here may require further experimentation for better representation of the target population. It can also be further 
generalized by the theoretical evaluation using probability and statistical theory similar to DNA typing47 and fin-
gerprint matching48. The results reported here provide future implications for biometrics as well as further broad 
applications of home-based healthcare environments49 and human-machine interface technologies such as smart 
watches or wearable electronics50.

Methods
Impedance measurement system.  The impedance spectrum measurement system was designed to meas-
ure the impedance of ten pairs of fingers sequentially by electrically switching the five electrodes mounted on the 
board in the frequency range from 20 kHz to 500 kHz. Therefore, a total of 25 impedance values were obtained 
for each finger pair, and we used 250 feature vectors directly as inputs to the machine learning algorithms. To 
implement the impedance measurement system, we designed a multi-frequency constant current source. Our 
system included an MCU (Arduino Nano, Italy), a programmable waveform generator (AD9833, Analog Device), 
and a voltage-controlled current source (VCCS). The MCU was used to program the AD9833 in order to produce 
a multi-frequency sinusoidal signal via a serial peripheral interface. Then, this signal was converted to constant 

Classifier

Raw data Ratiometric features

EER (%) AUC EER (%) AUC

LSVM 11.2896 0.9503 5.6448 0.9864

QSVM 9.1785 0.9701 3.8515 0.9939

KNN 15.0248 0.8498 3.0049 0.9737

Bag Trees 12.4593 0.9283 3.1981 0.9918

Table 1.  Comparison of raw data vs. ratiometric features.
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current using a VCCS-based enhanced Howland current pump51. We designed the system for multi-channel 
measurement, and eight mechanical relays were used to select two of the five electrode pairs sequentially, and a 
total of ten pairs of finger impedances could be obtained. These multiple relays were controlled using an 8-bit shift 
register (SN74HC595, TI, USA). Through this switching mechanism, our current source circuit lines were con-
nected to two pairs of electrodes in sequence: two current-sourcing electrodes for current generation at multiple 
frequencies and two voltage-sensing electrodes for impedance measurement. The electrodes, which we designed 
by ourselves, were fabricated as double layer PCBs, and the top layer of the PCB was gold plated, and each was 
connected to the bottom layer through via hole. In order to make the contact area of the electrodes for each sub-
ject constant, the radius of the electrode is designed to be 0.5 cm, which is about from 50 to 70% of the area of 
contact with a general finger. The current source delivers a 100 µA sinusoidal current to the finger at frequencies 
between 20 kHz and 500 kHz. By applying a 4-point electrode measurement, ideally the impedance value is, in 
principle, not influenced by skin impedance. However, experimentally, there was a slight change in the imped-
ance value depending on the skin hydration or the contact pressure in the low frequency region especially below 
20 kHz. Therefore, in order to minimize these influencing variables in terms of basic research, data were acquired 
at frequencies above 20 kHz. Regarding the use of frequencies up to 500 kHz, the hardware we have implemented 
has generated stable and clear signals up to 500 kHz with neither noise nor distortion, and we determined that 
frequency was high enough based on the fact that several previous studies52–54 used the frequency up to 500 kHz 
to measure the constituent (e.g., intracellular fluid) associated with high frequencies for body impedance. R. 
Splinter55 also reported that 500 kHz frequency is sufficiently high for estimation of total body water including 
ICF in dual-frequency bioelectric impedance analysis. After the voltage electrodes sense voltage levels between 
two distinct positions in the current path, the measured voltage is converted to a DC signal by the RMS to DC 
converter (AD536AJD, Analog Devices, USA) and then collected through AD conversion. To ensure the repeat-
ability of the measurement, the position of the fingers was fixed by using supporters at the upper part of each 
electrode. The infrared temperature sensor (MLX90614, Melexis, Belgium) was mounted on the board and used 
to acquire the temperature of the subject’s hand. The acquired impedance spectrum and temperature data were 
transferred from the microcontroller to a computer via USB serial communication.

Human finger measurement of electrical impedance spectrum.  The Institutional Review Board 
of the Ministry of Health and Welfare of the Republic of Korea approved the study and we obtained written 
informed consent forms from all study participants. All experiments were performed in accordance with relevant 
guidelines and regulations. The experiments were conducted on 41 subjects in the designated laboratory space 
of our institute from September through December 2018. Subjects visited only once a day, participated in at least 
five days over three months, and provided 8~10 measurements for each session within an hour per day. The rea-
son for taking 8~10 measurements for each session was to obtain various training data by repeating the process 
of placing the subjects’ fingers at each recording. This process is similar to the fingerprints registration process, 
which requires repeated measurements approximately 10 times with different positions and angles. We scanned 
the impedance for the frequency range from 20 kHz to 500 kHz with increments of 20 kHz. For characterization 
of the impedance spectrum of different finger pairs, a total of ten pairs of finger impedances were obtained and 
principal component analysis of the impedance spectra of each finger pair was conducted by using MATLAB 
(R2018b, MathWorks).

Bioelectrical modeling of human finger.  The impedance of cellular tissue can be modeled as a resistor 
(representing the extracellular path) in series with a resistor and a capacitor in parallel (representing the intracel-
lular path). The tissue structure and its contents may exhibit different electrical characteristics. To illustrate the 
electrical variation of bioelectrical impedance due to external environmental factors, the electrical finger imped-
ance model was designed and simulated using Multisim 14.1 (National Instruments, USA).

Ratiometric features.  The term of ratiometric method is commonly used the optical and electrical sensing 
technologies that use the ratio between two measured signals (e.g., fluorescence intensities) that better represent 
the phenomenon of interest56,57. For instance, ratiometric method was defined previously by the use of ratios 
between the electrical measurements of supply voltage and output voltage levels58. The term “ratiometric method” 
in this study is defined as the use of ratios between the impedance values of two finger pairs. Specifically, the ratio 
is obtained by dividing the recorded value of a particular finger pair by the value of another finger pair obtained 
from the same measurement at the same frequency.

The measurement using our system could extract 45 possible combinations of finger pairs by selecting two out 
of 10 finger pairs. For the ratiometric features, 10 combinations were selected so that the combinations of finger 
pairs should take each finger pair only once for the numerator or the denominator, respectively. Here, the imped-
ance values of the 10 finger pairs largely varied as shown in Fig. 4(a), and therefore the ratio values of each combi-
nation spanned very different ranges within a subject. Generally, normalizing the features is not only important if 
we are comparing measurements that have different scales, but it is also a general requirement for many machine 
learning algorithms. For machine learning, data normalization is required when features have different ranges. In 
addition, measured values having different scales do not contribute equally to the analysis and can cause bias59–61. 
Therefore, in order to obtain the features with a balanced scale, we chose the 10 ratiometric features so that each 
of the 10 finger pairs is combined with a finger pair that results in the smallest deviation from the average of other 
ratiometric features. To the end, the chosen ratios were pair(1,2)/pair(4,5), pair(1,3)/pair(1,2), pair(1,5)/pair(1,3), 
pair(1,4)/pair(1,5), pair(2,3)/pair(1,4), pair(2,5)/pair(2,3), pair(2,4)/pair(2,5), pair(3,5)/pair(2,4), pair(3,4)/
pair(3,5), and pair(4,5)/pair(3,4). The ratiometric features contained a total of 250 elements, which is the same 
number as raw impedance data, and they were used as input to the classification algorithm.
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Recognition of individuals.  For the identification of individuals, discriminative classifiers (LSVM, QSVM, 
KNN, and Bag Trees) were implemented by using MATLAB multiclass classification. We employed SVM with a 
box constraint C of 1.0 and a kernel scale of 16 for both linear and quadratic kernels. The hyper parameters were 
set by geometric progression from 0.5 to 32 by a factor 2. They were trained with the sequential minimal optimi-
zation algorithm62. kNN classifier estimates the class label of a new observation by the majority class of the k near-
est neighbors. The number of nearest neighbor was set to 1 after parametric search from 1 to 20 and Euclidean 
distance metric was used. Bagging tree ensemble uses a collection of weak learners based on decision trees gener-
ated by a bootstrap method. We used bagging tree with Gini diversity index for split criterion, the number of trees 
of 30, the maximum number of decision splits of 2165, and otherwise default features. The hyper-parameters were 
chosen after grid parameter search among 15, 30, 45, and 60 for the number of trees and among 270, 540, 1082, 
and 2165 for the maximum number of decision splits. The search spaces of the hyper parameters were referred 
from James et al.63 and the default values in Matlab. To validate classification accuracy, each classifier was eval-
uated using leave-one-session-out cross-validation for 2,166 datasets from 41 subjects. Each measured spectral 
data was assigned to the subject class only when the data had a posterior probability greater than the threshold 
using the threshold score of the latent variable of the classifier. This method allows to recognize attempts by 
unknown users who were not registered in the training phase; thus, it may cause additional errors that predict 
whether the measurement belongs to more than one subject or no one. By changing the threshold value, we eval-
uated sensitivity (=1 - false acceptance rate) and specificity (=1 - false rejection rate) for the receiver operating 
characteristic (ROC) curve. The ROC curve was then used to evaluate the area under ROC curve (AUC) and an 
equal error rate (EER) at which the false acceptance rate (FAR) equals the false rejection rate.

Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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