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Hypofractionated stereotactic radiotherapy for 
intracranial meningioma: a systematic review

Intracranial meningiomas (ICMs) are the most common 
central nervous system tumors in adults, comprising 24%-
30% of all primary intracranial tumors with an annual 
incidence of 13 per 100 000.1 They are typically found at 
the skull base or over the convexity of the brain and are 
thought to develop from arachnoid cap cells in the dura. 
These tumors are classified based on the WHO grading 
system, which divides meningiomas based on tumor cell 
type, mitotic activity, necrosis, and brain invasion. Grade 
I meningiomas are considered benign tumors (65%-80%), 
Grade II are atypical and more aggressive (20%-35%), while 
Grade III anaplastic meningiomas (<3%) are malignant.2–4

Treatment options include observation, surgery, radio-
therapy, or a combination and are determined both by 
patient and tumor factors. With benign ICM in asymptom-
atic patients, observation with routine serial imaging may 
be considered, particularly if the tumor is small and/or the 
patient is elderly. For tumors causing symptoms, grow-
ing rapidly, or encroaching onto critical structures, defini-
tive management is warranted.3 Standard of care currently 
consists of complete surgical resection, with consider-
ation for postoperative radiotherapy depending on tumor 
grade and the completeness of resection. However, cer-
tain patients are poor surgical candidates because of other 
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Abstract
Background. The availability of image guidance and intensity modulation has led to the increasing use of hypof-
ractionated stereotactic radiotherapy (hSRT) as an alternative to conventionally fractionated radiotherapy or radio-
surgery for intracranial meningiomas (ICMs). As the safety and efficacy of this approach is not well characterized, 
we conducted a systematic review of the literature to assess the clinical outcomes of hSRT in the setting of ICMs.
Methods.  A systematic review of Medline and EMBASE databases was performed following the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses guidelines. Included studies were retrospective or prospective 
series that examined an ICM population of ≥10 patients, delivered >1 fraction of photon hSRT (≥2.5 Gy per fraction), 
and had a median follow-up of ≥2 years. Descriptive statistics were generated for included studies.
Results.  Of 1480 initial studies, 14 met eligibility criteria for inclusion, reporting on 630 patients (age range, 18-90) 
treated for 638 tumors. Primary radiotherapy was delivered in 37% of patients, 36% had radiation following sur-
gery, and surgical details were unavailable for 27%. In 474 tumors assessed for radiologic response, 78% remained 
stable, 18% decreased in size, and 4% increased in size. Crude local control was 90%-100% as reported in 10 stud-
ies. The median late toxicity rate was 10%. The most common significant late toxicities were decreased visual acuity 
and new cranial neuropathy.
Conclusions. With limited follow-up, the available literature suggests hSRT for ICMs has local control and toxicity 
profiles comparable to other radiotherapy approaches. Confirmation in larger patient cohorts with a longer dur-
ation of follow-up is required.
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comorbidities or because the tumors are situated in surgi-
cally inaccessible or risky locations. In these cases, radio-
therapy is an effective option.

External beam radiotherapy can be delivered as single-
fraction stereotactic radiosurgery (SRS), hypofractionated 
stereotactic radiotherapy (hSRT) in a few fractions, or con-
ventionally fractionated radiotherapy (cRT). Recent prac-
tice guidelines have defined radiosurgery as “radiation 
therapy delivered via stereotactic guidance with approxi-
mately 1 mm targeting accuracy to intracranial targets in 1 
to 5 fractions.”5 However, the term hSRT is still commonly 
used to denote SRS schedules typically ranging in 2-5 frac-
tions and is an important distinction given the differences 
in radiobiology and treatment delivery between single- 
and multifraction schedules. In the present review, SRS 
strictly denotes single-fraction radiosurgery while hSRT 
refers to nonconventional fractionated schedules delivered 
in >1 fraction of >2 Gy/fraction.

Radiotherapy has an established role for meningiomas 
after subtotal resection, recurrence, and as definitive pri-
mary treatment.3 Historically, cRT has been the standard 
radiotherapy approach for these patients. More recently, 
SRS has emerged as an effective and more convenient alter-
native for select patients, taking into account tumor location 
and proximity to sensitive neuroanatomy. SRS appears to 
be most effective for smaller ICMs that are situated a safe 
distance from optic pathways and other critical structures.3,4

hSRT has only recently emerged as an alternative to cRT 
or SRS for ICMs, but nonetheless there have been accumu-
lating series reporting on outcomes with this approach. As 
a middle ground between SRS and cRT, hSRT retains the 
radiobiological advantages of fractionation, while achiev-
ing higher doses per fraction and a shorter overall treat-
ment time for patients than cRT. The comparative safety 
and efficacy of a hypofractionated schedule in the treat-
ment of meningioma patients has not been characterized 
in a randomized prospective trial. In the context of limited 
high-level evidence supporting its use, we conducted a 
systematic review to assess the clinical outcomes and tox-
icities of hSRT for ICMs.

Methods

Database Search

A systematic review of the literature for studies evaluat-
ing the use of hSRT for ICMs was conducted following 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses guidelines.6 The electronic databases 
PubMed and EMBASE were queried from inception to 
December 2016. Conference proceedings and reference 
lists from included studies were also hand-searched 
for additional reports eligible for inclusion. Please see 
Appendix 1 for the complete search strategy.

Study Selection

Included studies were retrospective or prospective series 
that examined an ICM population of at least 10 patients, 
either receiving hSRT as primary treatment or following 

subtotal resection. We defined hSRT as delivering multifrac-
tionated photon radiotherapy with a prescription dose of ≥ 
2.5 Gy per fraction, using either a linear accelerator-based 
platform, CyberKnife (CK)  (Accuray Incorporated, CA, 
USA), or multisession Gamma Knife (Elekta AB, Stockholm, 
Sweden). All studies reported on clinical outcomes such as 
local control (LC) and toxicity and had a median follow-up 
of at least 2 years. Reviews, editorials, and planning studies 
without reported clinical outcomes were excluded. Studies 
that combined data from different non-meningioma histol-
ogies or treatment modalities—precluding the evaluation 
of hSRT in the meningioma subset—were also excluded. 
Two reviewers (EKN and TKN) screened the abstracts of all 
studies to select articles for further analysis based on these 
inclusion and exclusion criteria. Full-text review of these 
selected studies was performed by the same 2 reviewers 
with discrepancies settled by a third investigator (GSB).

Data Abstraction

Data abstraction was completed using a standardized form, 
which was reviewed and approved by all authors. The fol-
lowing study characteristics were abstracted: first author, 
year of publication, country of study, type of study, number 
of patients, and patient age. Abstracted treatment details 
included type of radiotherapy, dose and fractionation, and 
treatment volumes while tumor variables included grade, 
location, and size. Abstracted outcomes included progres-
sion-free survival (PFS), LC, clinical response, radiologic 
tumor response, follow-up time, and toxicities.

Results

Our search strategy yielded 1480 articles. Subsequent 
screening of abstracts based on the defined inclusion/
exclusion criteria resulted in 53 potentially eligible articles. 
Following full-text review, 13 articles remained. Hand-
searching of conference proceedings resulted in 1 abstract 
meeting inclusion criteria. In total, 13 full-length publications 
and 1 abstract were included in our final analysis (Fig. 1).

In total, 13 retrospective studies and 1 prospective 
study met criteria for this review, reporting on a total of 
638 tumors across 630 patients, with ages ranging from 
18 to 90 (Table 1).7–20 Nearly an equal number of patients 
received primary upfront radiotherapy compared with 
adjuvant radiotherapy following surgery. Out of 307 
tumors for which there was pathological histology, 91% 
were WHO Grade I meningiomas. Most of the tumors were 
located in the base of skull (66%) and 8% involved optic 
nerves or chiasm. Approximately one-third of patients 
received radiotherapy upfront, one-third received post-
operative radiotherapy, and the  timing of radiotherapy 
was not specified for the remainder. A narrow majority of 
patients were treated on a linear accelerator (57%) and the 
remainder were treated with CK. There were 7 patients who 
were previously irradiated. Complete summary of included 
studies can be found in Table 1.

The median follow-up time ranged from 24.5 to 
57.5  months. In 474 tumors assessed for radiologic re-
sponse, 78% remained stable, 18% decreased in size and 
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4% increased in size (Table 2). Of 327 patients who were 
symptomatic prior to treatment, 17% had a complete reso-
lution of symptoms, 41% had improvement, 36% had sta-
bility, and 6% had deterioration after radiotherapy. Crude 
LC was 90%-100% as reported in 10  studies. Actuarial 
LC rates, reported in 2 studies, were 89% and 92 ± 3% at 
3 years. Median 5-year PFS was 88% as reported in 4 stud-
ies. Recognizing the popularity of hSRT dose schedules 
of ≤ 5 fractions, treatment response and crude LC rates 
were also summarized for studies with these prescriptions 
(Table 2).

Overall, the median late toxicity rate was 8% with a 
range of 0% to 21% (Table 3). The median late toxicity rates 
for tumors involving the skull base and optic structures 
were 5% and 9%, respectively. The majority of the reported 
toxicities were Grades 1–2, and the most common late tox-
icities were decreased visual acuity in 8 patients and new 
cranial neuropathy in 11 patients. Grade 3 or higher tox-
icity was observed in 1 study, which reported 3 patients 
who developed Grade 3 or 4 deficits. These were seizure, 
gait disturbance, and bilateral vision loss. As above, for 
patients receiving hSRT in 5 fractions or less, the late tox-
icities were also summarized (Table 3).

Discussion

To our knowledge, this is the first systematic review exam-
ining the use of hSRT in ICMs. A  previous systematic 

review by Chung et al4 compared the outcomes achieved 
with cRT vs SRS; however, apart from 2 studies that 
included patients receiving staged radiosurgery, the re-
view predominantly assessed single-fraction SRS. Our 
study demonstrates excellent local control rates with hSRT, 
ranging from 90% to 100%, and 5-year PFS of 81%-98%. In 
comparison to single-fraction SRS and cRT, hSRT is well 
tolerated, with Grade 3 or greater late toxicity rates rang-
ing from 0% to 9.7%.

Studies with a larger median tumor volume (>20 cc) 
appeared to have lower LC rates. Maranzano and col-
leagues20 had the lowest reported LC at 5 years with a me-
dian tumor volume of 23 cc, while a study by Demiral et al,15 
which had the largest median tumor size of 26 cc, showed 
an LC rate of only 89%, as well as the highest late toxicity 
rate of 21.1%. This trend is in keeping with SRS studies 
that have shown worse outcomes with larger ICMs.21,22 All 
included studies primarily examined WHO Grade I  ICMs 
based on histology or imaging alone. For tumors in which 
histology was available, only 2  studies had more than 2 
patients with Grade II or greater ICMs.10,20 One of these did 
find lower LC and disease-specific survival in their grade II 
cohort, while the other study, which included a mixture both 
of Grade II and III ICMs, showed significantly worse 3-year 
and 5-year PFS.

The outcomes for ICMs treated with hSRT compare 
favorably to the published literature for single-fraction 
SRS and cRT. In the review by Chung and colleagues,4 
28  articles were reviewed, including 3683 patients 
treated with SRS or cRT. The mean 5-year PFS was 93.2% 
for SRS and 91.8% for cRT. Both modalities had a similar 
mean complication rate of approximately 10%. These 
data are very similar to the outcomes we observed for 
patients treated with hSRT. Further to this point, one of 
our included series by Han et al19 reported no significant 
differences in clinical response, late toxicities, radio-
graphic tumor control, or PFS among hSRT, SRS, and 
cRT. Albert and colleagues23 demonstrated a trend to-
ward improved 3-year overall survival in postoperative 
patients receiving SRS or hSRT compared to cRT, but this 
difference was not statistically significant. The Response 
Assessment in Neuro-Oncology working group also con-
ducted a review of 70 studies comparing radiotherapy 
modalities in low-grade ICMs.3 For SRS and cRT, median 
clinical responses to treatment were 29% and 43.2%, 
respectively, and median radiographic responses were 
49% and 23%, respectively. The higher radiographic re-
gression following SRS has been observed in other stud-
ies as well and is postulated to be an effect of high-dose 
radiation overcoming radioresistance in targeted tissue.4 
Median radiologic response across the included hSRT 
studies was only 14% but ranged widely from 6% to 41%. 
Generally, patients are counseled to expect tumor sta-
bility rather than shrinkage as the most common out-
come following radiotherapy, which is supported by our 
finding that radiographic stability ranged from 52% to 
98% across included studies. There was excellent clin-
ical response in the studies we examined with a median 
of 59%.

While SRS provides favorable benefits to some 
patients, there are limitations to its widespread applica-
tion. Larger tumors or those in non–skull-base locations 
typically have a higher risk of adverse radiation reactions, 

Articles identified from
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Fig. 1  Literature Search Strategy
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compromising the utility of SRS as alternative therapy in 
patients who are not operable because of tumor size or lo-
cation.24 In one series, 38.2% of patients receiving SRS for 
parafalcine or parasagittal ICM developed new or wors-
ened perilesional swelling, with tumor size and venous 
sinus invasion being predictive factors for post-SRS 
edema.25,26 In addition, Patil et  al27 found that patients 
with parasagittal meningiomas were more than 4 times 
as likely to develop symptomatic edema after SRS than 
nonparasagittal ICMs. Finally, Pollock and colleagues26,28 
reported higher complication rates when treating larger 
ICMs (>10 cc) with SRS.

As an alternative to single-fraction SRS, hSRT potentially 
provides a broader scope of application. Rates of peritumoral 
edema appear to be low, as Morimoto et al17 found 19% of 
patients receiving hSRT had treatment-associated edema.
Unger and colleagues29 reported lower rates of symptomatic 
edema with hSRT compared to SRS with 2-year rates of 3.2% 
and 12.5%, respectively. Additionally, hypofractionation has 
fewer restrictions with regards to tumor location. A study by 
Columbo et al30 found that patients with ICMs close to critical 
structures had low rates of toxicities when treated using hSRT 
and included 63 patients who could not have been treated by 

SRS otherwise. Further support for the relative safety of hSRT 
was demonstrated in a report31 that described hSRT symp-
tomatic edema rates of 6.3%, compared to 43% with SRS 
when treating ICMs in convexity or parasagittal locations.

From a radiobiological perspective, fractionation allows 
clinicians to take advantage of differences in alpha-beta 
ratios between tumor and normal tissue to potentially im-
prove the therapeutic ratio. As described in an example 
outlined by Kirkpatrick and colleagues,24 compared to sin-
gle-fraction SRS, a hypofractionated regimen can maintain 
the biological effective dose (BED) to tumor while reduc-
ing normal tissue toxicity. In addition, the higher dose per 
fraction may theoretically improve LC compared to cRT, 
although no prospective study has shown superiority of 
one modality over another.23 While most of the studies 
included in the present report delivered ≥5 Gy per fraction, 
5 studies included patients receiving 14 to 15 fractions 
with less than or equal to 3 Gy per fraction.7,10,11,16,20 This 
moderately hypofractionated cohort may differ from the 
more common regimen of 5 fractions or less. In particular, 
one of these studies reported the lowest 5-year LC rate of 
84%, one had a relatively low median LC of 24 months, 
and another had a 5-year PFS of only 80.9%.10,16,20 While 

Table 2  Summary of Treatment Outcomes for all Included Studies and for Studies that Delivered hSRT in 2-5 Fractions

Outcome All Included Studies (n = 14; Pts = 630) Studies with hSRT in 2-5 Fractions (n = 9; 
Pts = 331)

% n Pts % n Pts

Clinical Response

Median 45 43

Range 18-87 11 482 18-87 7 275

Mean 51 46

Radiographic Response

Median 14 22

Range 6-41 10 469 9-41 6 262

Mean 19 23

Radiographic Stability

Median 78 70

Range 59-92 10 469 59-90 6 262

Mean 76 71

Crude Local Control

Median 100 100

Range 90-100 10 407 90-100 8 312

Mean 97 97

3-Year PFS

Median 92 94

Range 89-100 3 254 89-100 2 162

Mean 94 94

5-Year PFS

Median 88 90

Range 81-98 4 323 87-93 2 174

Mean 89 90

Abbreviations: hSRT, hypofractionated stereotactic radiotherapy; PFS, progression-free survival; Pts, patients.



351Nguyen et al. Hypofractionated radiotherapy for meningioma
N

eu
ro-

O
n

colog
y

N
eu

ro-O
n

colog
y 

P
ractice

these findings are in support of the theory that higher 
doses per fraction offer superior control, no conclusions 
can be drawn based on the limited evidence at the present 
time. Conversely, extreme hypofractionation can be po-
tentially harmful. The only study that reported Grade III-IV 
late toxicity had a higher average dose per fraction. The 
patient who experienced Grade  IV toxicity received the 
largest dose of 36 Gy in 3 fractions.17

BED allows dose fractionation schedules to be com-
pared, and these values can be estimated for benign 
meningiomas based on a previously reported32 alpha-
beta ratio of 3. For all included studies, the BED ranged 
from 37.33 to 180 Gy3, with outcomes and toxicities sum-
marized in Tables 2 and 3. The most common prescription 
was 25 Gy in 5 fractions, which was associated with a BED 
of 66.67 Gy3. Three studies that exclusively used this frac-
tionation achieved local control rates of 89%, 100%, and 
100%.13,15,19 Two studies that delivered lower BED dose 
fractionations (<40 Gy3) had slightly inferior local control 
rates of 90% and 95%, but the number of patients receiv-
ing these schedules was relatively low.8,14 Studies that 
delivered moderately hypofractionated dose regimens in 
14-15 fractions had a BED of 57.2-90 Gy3, which is compar-
able to the 2-5 fraction regimens. A significant caveat that 
limits our ability to truly compare these dose schedules 
based on BED alone is the variability in which isodose 
level (IDL) was prescribed to, with most studies reporting 
this information only as a median or range. A course of 
25 Gy in 5 fractions prescribed to the 80% IDL would result 
in a higher dose within the tumor as the same course pre-
scribed to the 100% IDL. Taken together the heterogeneity 
in dose fractionations across studies and uncertainties in 

which IDL each dose regimen was prescribed to prohib-
its any strong conclusions or recommendations based on 
these data.

There are several limitations to this review worth not-
ing. First, the study is retrospective in nature and only 
descriptive analyses were completed given the substan-
tial heterogeneity between studies, most notably in dose 
fractionation delivered and outcomes reported. Second, 
there was a relatively short follow-up duration across 
a number of studies. Longer follow-up will be essential 
to confirm an acceptable toxicity profile but also to as-
certain the true LC rates with hSRT given the indolent 
biology of this mostly Grade I meningioma population. 
Third, studies with a mixed cohort of hSRT with either 
SRS or cRT were excluded in an effort to obtain a data-
set of only meningiomas treated with hSRT. The reports 
omitted through this approach may have had an impact 
on our results. Finally, there were several studies that did 
not meet the minimum median follow-up time of 2 years 
that were also excluded.

Conclusion

Larger, prospective studies with extended follow-up are 
required to fully characterize the tolerability and long-term con-
trol of hSRT for ICMs and assess how it truly compares to SRS 
and cRT. Until then, this systematic review supports the appli-
cation of hSRT as an effective and safe therapeutic option for 
ICMs. It remains a reasonable alternative to SRS for tumors 
inappropriate for single-fraction radiotherapy, provides the 

Table 3  Summary of Toxicities for All Included Studies and for Studies that Delivered hSRT in 2-5 Fractions

Late Toxicity All Included Studies (n = 14; Pts = 630) Studies With hSRT in 2-5 Fractions  
(n = 9; Pts = 331)

% n Pts % n Pts

Overall Late Toxicity

Median 8 8

Range 0-21 12 512 0-21 8 305

Mean 8 8

Overall > Grade 3 Toxicitys

Median 0 0

Range 0-10 12 581 0-10 9 331

Mean 1 1

Skull Base Tumors

Median 5 2

Range 0-21 5  261 0-21 4  204

Mean 8 6

Optic Tumors

Median 9 9

Range 8-10 2  46 8-10 2  46

Mean 9 9

Abbreviations: hSRT, hypofractionated stereotactic radiotherapy; Pts, patients.
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radiobiological advantages of fractionation, and allows for a 
shorter and more convenient treatment course for patients.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Practice online.

Funding

The authors have no sources of funding to disclose.

Conflict of interest statement. AVL has previously accepted 
an honorarium from Varian Medical Systems Inc. The other 
authors have nothing to declare.

References

1.	 Abbassy M, Woodard TD, Sindwani R, Recinos PF. An overview of an-
terior skull base meningiomas and the endoscopic endonasal approach. 
Otolaryngol Clin North Am. 2016;49(1):141–152. 

2.	 Magill ST, Young JS, Chae R, Aghi MK, Theodosopoulos PV, McDermott 
MW. Relationship between tumor location, size, and WHO grade in 
meningioma. Neurosurg Focus. 2018;44(4):E4. 

3.	 Rogers L, Barani I, Chamberlain M, et al. Meningiomas: knowledge base, 
treatment outcomes, and uncertainties. A RANO review. J Neurosurg. 
2015;122(1):4–23. 

4.	 Chung LK, Mathur I, Lagman C, et al. Stereotactic radiosurgery versus 
fractionated stereotactic radiotherapy in benign meningioma. J  Clin 
Neurosci. 2017;36:1–5. 

5.	 Seung SK, Larson DA, Galvin JM, et al. American College of Radiology 
(ACR) and American Society for Radiation Oncology (ASTRO) practice 
guideline for the performance of stereotactic radiosurgery (SRS). Am 
J Clin Oncol. 2013;36(3):310–315. 

6.	 Stewart LA, Clarke M, Rovers M et  al; PRISMA-IPD Development 
Group. Preferred reporting items for systematic review and meta-anal-
yses of individual participant data: the PRISMA-IPD statement. JAMA. 
2015;313(16):1657–1665. 

7.	 Gorman L, Ruben J, Myers R, Dally M. Role of hypofractionated stereo-
tactic radiotherapy in treatment of skull base meningiomas. J  Clin 
Neurosci. 2008;15(8):856–862. 

8.	 Pham CJ, Chang SD, Gibbs IC, Jones P, Heilbrun MP, Adler JR Jr. 
Preliminary visual field preservation after staged CyberKnife radiosur-
gery for perioptic lesions. Neurosurgery. 2004;54(4):799–810; discussion 
810. doi:10.1227/01.NEU.0000114261.18723.6A.

9.	 Navarria P, Pessina F, Cozzi L, et  al. Hypofractionated stereo-
tactic radiation therapy in skull base meningiomas. J  Neurooncol. 
2015;124(2):283–289. 

10.	 Kaul D, Budach V, Wurm R, et al. Linac-based stereotactic radiotherapy 
and radiosurgery in patients with meningioma. Radiat Oncol. 2014;9:78. 

11.	 Haghighi N, Seely A, Paul E, Dally M. Hypofractionated stereotactic 
radiotherapy for benign intracranial tumours of the cavernous sinus. 
J Clin Neurosci. 2015;22(9):1450–1455. 

12.	 Conti A, Pontoriero A, Midili F, et  al. CyberKnife multisession stereo-
tactic radiosurgery and hypofractionated stereotactic radiotherapy for 
perioptic meningiomas: intermediate-term results and radiobiological 
considerations. Springerplus. 2015;4:37. 

13.	 Marchetti M, Bianchi S, Milanesi I, et  al. Multisession radiosurgery 
for optic nerve sheath meningiomas—an effective option: preliminary 
results of a single-center experience. Neurosurgery. 2011;69(5):1116–
1122; discussion 1122. 

14.	 Marchetti M, Bianchi S, Pinzi V, et  al. Multisession radiosurgery for 
sellar and parasellar benign meningiomas: long-term tumor growth con-
trol and visual outcome. Neurosurgery. 2016;78(5):638–646. 

15.	 Demiral S, Dincoglan F, Sager O, et  al. Hypofractionated stereotactic 
radiotherapy (HFSRT) for WHO grade I  anterior clinoid meningiomas 
(ACM). Jpn J Radiol. 2016;34(11):730–737. 

16.	 Trippa F, Maranzano E, Costantini S, Giorni C. Hypofractionated stereo-
tactic radiotherapy for intracranial meningiomas: preliminary results of a 
feasible trial. J Neurosurg Sci. 2009;53(1):7–11.

17.	 Morimoto M, Yoshioka Y, Shiomi H, et al. Significance of tumor volume 
related to peritumoral edema in intracranial meningioma treated with 
extreme hypofractionated stereotactic radiation therapy in three to five 
fractions. Jpn J Clin Oncol. 2011;41(5):609–616. 

18.	 Smith D, Ghosh S, O’Leary M, Chu C. Abstract 40: Meningioma patients 
treated with hypofractionated radiosurgery—a review of 24 patients. 
J  Radiat Oncol. 2014; 3:17. doi:10.1007/s13566-014-0140-0. Abstract 
presented at: 23rd Meeting of the American College of Radiation 
Oncology; February 14–16, 2013. San Antonio, TX.

19.	 Han J, Girvigian MR, Chen JC, et al. A comparative study of stereotactic 
radiosurgery, hypofractionated, and fractionated stereotactic radio-
therapy in the treatment of skull base meningioma. Am J Clin Oncol. 
2014;37(3):255–260. 

20.	 Maranzano E, Draghini L, Casale M, et al. Long-term outcome of mod-
erate hypofractionated stereotactic radiotherapy for meningiomas. 
Strahlenther Onkol. 2015;191(12):953–960. 

21.	 DiBiase SJ, Kwok Y, Yovino S, et  al. Factors predicting local 
tumor control after gamma knife stereotactic radiosurgery for 
benign intracranial meningiomas. Int J Radiat Oncol Biol Phys. 
2004;60(5):1515–1519. 

22.	 Kondziolka D, Flickinger JC, Perez B. Judicious resection and/or radiosur-
gery for parasagittal meningiomas: outcomes from a multicenter review. 
Gamma Knife Meningioma Study Group. Neurosurgery. 1998;43(3):405–
413; discussion 413. 

23.	 Albert A, Lee A, Vijayakumar S, Kanakamedala M, Allbright R, Schreiber 
D. Adjuvant treatment of meningioma with stereotactic radiation sur-
gery and hypofractionated stereotactic radiation surgery: patterns 
of care and survival in a large, hospital database. Adv Radiat Oncol. 
2018;3(3):280–287. 

24.	 Kirkpatrick JP, Soltys SG, Lo SS, et  al. The radiosurgery fraction-
ation quandary: single fraction or hypofractionation? Neuro Oncol. 
2017;19(suppl 2):ii38–ii49. 

25.	 Sheehan JP, Cohen-Inbar O, Ruangkanchanasetr R, et  al. Post-
radiosurgical edema associated with parasagittal and parafal-
cine meningiomas: a multicenter study. J  Neurooncol. 2015;125(2): 
317–324. 



353Nguyen et al. Hypofractionated radiotherapy for meningioma
N

eu
ro-

O
n

colog
y

N
eu

ro-O
n

colog
y 

P
ractice

26.	 Pollock BE, Stafford SL, Link MJ. Gamma knife radiosurgery for skull 
base meningiomas. Neurosurg Clin N Am. 2000;11(4):659–666. 

27.	 Patil CG, Hoang S, Borchers DJ 3rd, et  al. Predictors of peritumoral 
edema after stereotactic radiosurgery of supratentorial meningiomas. 
Neurosurgery. 2008;63(3):435–440; discussion 440. 

28.	 Pollock BE, Stafford SL, Link MJ, Brown PD, Garces YI, Foote RL. Single-
fraction radiosurgery of benign intracranial meningiomas. Neurosurgery. 
2012;71(3):604–612; discussion 613. 

29.	 Unger KR, Lominska CE, Chanyasulkit J, et al. Risk factors for posttreat-
ment edema in patients treated with stereotactic radiosurgery for men-
ingiomas. Neurosurgery. 2012;70(3):639–645. 

30.	 Colombo F, Casentini L, Cavedon C, Scalchi P, Cora S, Francescon P. 
Cyberknife radiosurgery for benign meningiomas: short-term results in 
199 patients. Neurosurgery. 2009;64(2 suppl):A7–A13. 

31.	 Girvigian MR, Chen JC, Rahimian J, Miller MJ, Tome M. Comparison of 
early complications for patients with convexity and parasagittal men-
ingiomas treated with either stereotactic radiosurgery or fractionated 
stereotactic radiotherapy. Neurosurgery. 2008;62(5 suppl):A19–A27; 
discussion A27–A28. 

32.	 Kondziolka D, Shin SM, Brunswick A, Kim I, Silverman JS.The biology of 
radiosurgery and its clinical applications for brain tumors. Neuro Oncol. 
2015;17(1):29–44. 


