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Abstract

In the last decade, the use of microRNA (miRNA) and extracellular vesicle (EV) therapies has 

emerged as an alternative approach to mitigate the negative effects of several disease pathologies 

ranging from cancer to tissue and organ regeneration; however, delivery approaches towards target 

tissues have not been optimized. To alleviate these challenges, including rapid diffusion upon 

injection and susceptibility to degradation, porcine-derived decellularized extracellular matrix 

(ECM) hydrogels are examined as a potential delivery platform for miRNA and EV therapeutics. 

The incorporation of EVs and miRNA antagonists, including anti-miR and antago-miR, in ECM 

hydrogels results in a prolonged release as compared to the biologic agents alone. In addition, 

individual in vitro assessments confirm the bioactivity of the therapeutics upon release from the 

ECM hydrogels. This work demonstrates the feasibility of encapsulating miRNA and EV 

therapeutics in ECM hydrogels to enhance delivery and potentially efficacy in later in vivo 
applications.

Keywords

microRNAs; extracellular vesicles; extracellular matrix; hydrogels

1. Introduction

Therapeutics, particularly growth factor- and cell-based, have been extensively investigated 

for many clinical applications including, but not limited to, cardiovascular disease,[1, 2] 

cancer,[3, 4] and autoimmune diseases.[5, 6] With mechanisms regulating essential biological 

processes such as neovascularization, extracellular matrix (ECM) remodeling, and 

inflammation, many growth factor- and cell-based therapies have been pursued in clinical 

trials, but translation to the clinic has been largely unsuccessful.[7-9] Along with a lack of 

demonstrated efficacy in patients, manufacturing difficulties, like shortened shelf life and 

high production costs, hinder the feasibility of utilizing cell and growth factor-based 

approaches. Although engineered growth factors have recently been introduced to overcome 

many of these obstacles from growth factor therapeutics,[10, 11] researchers have been 

exploring alternative biologics, including microRNAs (miRNAs) and extracellular vesicles 

(EVs).

MiRNAs, short 20-22 base pair oligonucleotides, have emerged as a promising therapeutic 

for many applications, including cardiovascular disease, [12] inflammatory disease,[13] 

metabolic disease,[14] and cancer.[15, 16] These therapies harness the ability of miRNAs to 

regulate post-transcriptional gene expression, which occurs via complementary binding with 

a target messenger RNA. Chemical modifications have been implemented to produce 

miRNA mimics and inhibitors with increased stability and more favorable pharmacokinetics,
[18, 19] which have contributed to multiple miRNA therapeutics progressing to clinical trials.
[20]

Another class of biologic products that is emerging as a potent cellular mediator in 

numerous physiological and pathological processes are EVs. EVs, cell-derived vesicles 

comprising exosomes and microvesicles, have been shown to play a major role in cell to cell 

Hernandez et al. Page 2

Adv Ther (Weinh). Author manuscript; available in PMC 2019 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



communication, allowing cells to exchange proteins, lipids and genetic materials, including 

mRNAs and non-coding RNAs such as miRNAs, thus making them effective regulators of 

tissue homeostasis and repair.[21, 22] EVs have been shown to play a major role in many 

physiological and pathological processes including cell signaling,[23, 24] immunity,[5, 25] 

cancer development and progression,[26, 27] protein clearance,[28] and infection.[29, 30] Due 

to their broad repertoire of bioactive molecules and biological functions,[22, 31] EVs have 

been investigated in many therapeutic applications including organ regeneration,[31-33] 

cancer,[34, 35] immune-based diseases,[36, 37] and neurodegenerative diseases.[38]

Although miRNA and EV therapeutics have resulted in significant therapeutic outcomes in 

many pre-clinical studies,[20, 39] these benefits are hindered by poor delivery strategies and 

rapid clearance soon after administration. Intravenous delivery is the main delivery route 

employed by these therapies, and direct injections have also been utilized; however, both of 

these approaches fail to capitalize on the full therapeutic potential of miRNAs and EVs. 

Current delivery methods, which often require large payloads, could yield undesired side 

effects from unspecific binding of miRNAs. In addition, degradation by endogenous 

nucleases and rapid diffusion represent significant obstacles.[12] Consequently, improved 

delivery strategies are greatly needed.

Several groups have begun exploring the use of hydrogels as a delivery platform for miRNA 

and EV therapies,[40, 41] but natural materials alone (i.e. without the addition of chemical 

crosslinkers or modifications) have not been investigated. Unlike most synthetic materials, 

natural materials can better mimic the in vivo environment, but, in particular, decellularized 

extracellular matrix (ECM), one type of naturally derived biomaterial, successfully 

maintains biochemical cues of the native tissue microenvironment. Decellularized ECM has 

several beneficial properties, which include promoting cellular influx,[42] and its degradation 

products are angiogenic,[43] chemoattractant,[43, 44] and promote cell migration and 

proliferation.[45] In addition, previous studies in a myocardial infarction model have 

confirmed the benefits of using cardiac-derived ECM hydrogels as a delivery platform for 

growth factors with increased arteriogenesis compared to growth factor alone and ECM 

hydrogel alone controls.[11, 46] These ECM hydrogels have also been used for cell delivery 

in a hindlimb ischemia model of peripheral artery disease, which increased cell engraftment 

and survival, stimulated neovascularization and could also potentially be used for cell 

transplantation into the myocardium.[47, 48] Along with the efficacy of these decellularized 

materials, the hydrogels can be delivered minimally invasively, as has been shown via 

catheter in the heart or a direct injection for the skeletal muscle.[47, 49, 50] With a complex 

mixture of proteins, we anticipated that an ample supply of binding sites would be present to 

facilitate the binding of nucleic acids and EVs. Additionally, ECM hydrogels could ensure 

localization of both miRNAs and EVs, and the nanoscale and microscale architecture of 

these hydrogels could promote a slow release of the payload.

Here we evaluated the use of porcine-derived decellularized ECM hydrogels as a platform 

for the delivery of model miRNAs and EVs (Figure 1). We performed assessments of our 

ECM hydrogels to provide a slow release profile and maintain bioactivity of miRNA and EV 

therapeutics, demonstrating that these biomaterials could be a potential delivery platform for 

such newer generation biologics.
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2. Results and Discussion

Due to the earlier success with delivering growth factors and cells with tissue-derived 

hydrogels,[11, 46-48] we hypothesized that the ECM hydrogels would also provide an 

enhanced delivery platform for model miRNAs and EVs. Specifically, we expected the ECM 

hydrogels would prolong the release of miRNAs and EVs but would not affect the 

bioactivity of either therapeutic. To first evaluate retention, model miRNAs and EVs were 

mixed with three different types of decellularized ECM hydrogels. Specifically, myocardial, 

skeletal muscle, and lung ECM hydrogels were used due to differences in the composition of 

ECM proteins[49, 51] and to demonstrate potential broad applications of this delivery 

platform. Cardiac progenitor cell (CPC)-derived EVs[52] and miRNA antagonists for 

miR-214[53], an anti-miR and antago-miR, were used as model therapeutics for these studies 

since they have been evaluated considerably and showed promising results in many 

therapeutic applications.[32, 54, 55]

2.1. MicroRNAs

For model miRNAs therapeutics, an anti-miR and antago-miR against miR-214 were used 

and have been shown to recover neovascularization through the regulation of angiogenic 

factors.[53] The release profiles from the three ECM hydrogels were evaluated for the 

miRNA inhibitors up to 15 days (Figure 2). Comparing the anti-miR and antago-miR, the 

release profiles varied significantly, likely due to hydrophobic interactions caused by the 

presence of a cholesterol group on the 3’ end of the antago-miR. In fact, over 50% of the 

anti-miR was released from the ECM hydrogels by day 2 (Figure 2A), but the antago-miR 

did not reach 50% until around day 10 (Figure 2B). Moreover, the anti-miR was virtually 

completely released by day 10, but the antago-miR was not fully released until the additions 

of first collagenase to degrade the collagen in the ECM hydrogels and then 1.5M NaCl to 

dissociate residual antago-miRs. The rate of release was likely heavily facilitated by 

hydrophobic interactions, as indicated by the further release of antago-miR, but not anti-

miR, following the addition of 1.5M NaCl. The amount of amines present in the ECM 

hydrogels could also contribute to modulating the release profile, since there are some 

differences present amongst the tissue sources. Specifically, the ECM hydrogels are all 

composed of a large amount of fibrillar collagen, but skeletal muscle ECM contains the 

most, while the myocardial and lung ECMs are similar.[49, 51] Moreover, the lung ECM 

consists of a large fraction of basement membrane proteins, while the myocardial ECM is 

composed of many matricellular proteins.

Although some release profiles did not reach 100%, it is unlikely this was due to degradation 

since the chemical modifications made to the miRNA inhibitors provide added stability, and 

RNases-free solutions were used for all experiments. For those values above 100%, this was 

likely due to the gels slightly breaking down towards the end of the 15 days, particularly 

with the antago-miR, which may have resulted in samples containing larger amounts of the 

miRNA inhibitors.

Since a prolonged release over a period of 1-2 weeks would likely be preferred, only the 

antago-miR was investigated for the in vitro studies. In addition, only the myocardial ECM 

hydrogel was studied further due to the relevance of this particular model miRNA inhibitor 
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in applications of cardiovascular disease, like myocardial infarction. Although the 

incorporation of the antago-miR into the ECM hydrogels yielded prolonged release profiles, 

it was necessary to assess whether the ECM hydrogels interfered with the inherent 

bioactivity of the encapsulated antago-miR. To evaluate the bioactivity of the released 

antago-miRs, supernatant collected from myocardial ECM hydrogels at days 1 and 3 was 

tested in a Matrigel tube formation assay with human coronary artery endothelial cells 

(HCAECs), since miR-214 is known to affect angiogenic-related processes (Figure 3).[53] As 

a control, PBS supernatant obtained from hydrogels at day 15 was used since this likely 

contained the maximum amount of ECM soluble factors, which could also potentially have 

angiogenic effects. After incubating the cells with miRNA-conditioned media for 12 hours, 

visual differences were observed in the degree of tube formation (Figure 3A). Compared to 

the PBS supernatant controls, released samples from days 1 and 3 yielded more organized 

tubes with significantly less cell clustering. When normalized to the PBS supernatant group, 

the total length increased to 1.53 ± 0.15 for day 1 and 1.42 ± 0.08 for day 3, and the number 

of junctions increased to 1.84 ± 0.12 and 1.71 ± 0.19 for days 1 and 3, respectively (Figure 

3B). Although, the extent of tube formation did slightly decrease at day 3 relative to day 1, 

this was likely due to using a fixed amount of sample for each well, which contained less 

released antago-miR for day 3.

Overall, the use of the ECM hydrogels prolonged the release of the miRNA inhibitors, 

particularly the antago-miR, without impairing the bioactivity. This slower release rate 

would likely be favored for many therapeutic applications, and antago-miRs have been 

engineered to enhance efficacy in vivo. Specifically, the conjugation of the cholesterol group 

is thought to increase cellular uptake and improve in vivo stability.[19, 56] By combining this 

optimized biologic with a decellularized ECM hydrogel, the beneficial outcomes from these 

therapies could be further augmented.

2.2. Extracellular Vesicles

Similar to miRNAs, EVs have also been increasingly studied for many disease applications. 

In the present study, EVs derived from human cardiac progenitor cells (hCPCs)[52] were 

used for all experiments, as they have been shown to exert a protective effect on damaged 

myocardium by reducing cardiomyocytes apoptosis[55] and increasing cardiac function[57]. 

EVs were encapsulated into three different hydrogels and their release profile from the 

different scaffolds was evaluated at days 1, 3 and 7. After 7 days, approximately 40%, 45%, 

and 25% of EVs were released from the myocardial, skeletal, and lung ECM hydrogels, 

respectively. Of the released EVs, the majority were detected 1 day after encapsulation, 

ranging from ~ 30% in the myocardial and skeletal matrix hydrogels to ~ 20% in the lung 

ECM hydrogels (Figure 4A). Most of the remaining released EVs were released by day 3 

and only a minimal increase was observed at day 7, indicating that a high amount of EVs 

were still retained in the gel. A washing step after EV labeling and before EV encapsulation 

was also performed to remove excess dye, thus minimizing potential artifacts from free dye. 

This was also indirectly confirmed by labeling the encapsulated EVs with PKH26 red 

fluorescent dye. The encapsulation of labeled EVs in the hydrogels conferred a pink 

coloration, which was still visible at the end of the release study, indicative of the presence 

of the encapsulated EVs (Figure 4B). We also quantified the remaining EVs by digesting the 
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hydrogels with collagenase, confirming that indeed the majority of EVs were still 

encapsulated, with some differences among the different hydrogels. In particular, the 

cumulative study showed that after collagenase treatment, we were able to detect ~ 80%, 

70% and 45% of the encapsulated EVs in the myocardial, skeletal, and lung ECM hydrogels, 

respectively. Since we were not able to detect all of the encapsulated EVs, we evaluated the 

effects of the collagenase treatment on EV detection shortly after encapsulation. EVs were 

encapsulated within the different hydrogels, and, after hydrogel gelation, the gels were 

immediately treated with collagenase and compared with the same amount of non-

encapsulated EVs. Our analysis showed that only ~ 60% of the encapsulated EVs 

(58.75± 23.4%) were detected, indicating that the collagenase treatment negatively affected 

the EV detection, thus explaining the reason for not being able to recover all encapsulated 

EVs. However, we cannot exclude that some of the released EVs degraded due to 

experimental conditions, since it has been previously demonstrated that EVs are degraded 

when stored at 37°C.[58]

All ECM hydrogels provided a slow release of the encapsulated EV therapeutics; however, 

some differences were observed on the extent of the EV release between the different tissue 

sources. The level of released EVs detected in the EV-conditioned media from the lung 

ECM hydrogels was considerably lower than values of the myocardial ECM and the skeletal 

muscle ECM hydrogels. A possible explanation could be that the composition of the lung 

ECM hydrogels allowed for a more sustained encapsulation of the EVs compared to the 

muscle tissue derived ECM hydrogels. It is possible that a combination of physical 

entrapment, non-covalent interactions, or specific binding domains all contributed to the 

release profile of the encapsulated EVs. The combination of tissue-specific ECM molecules, 

which can affect the mechanical properties, pore size and electrostatic properties of the 

hydrogel could explain the differences observed among the different tissue sources.[59] 

Another possible mechanism behind the rate of EV release from the ECM hydrogels is the 

presence of matrix metalloproteinases (MMPs) in cardiac progenitor cell-derived 

extracellular vesicles.[60] These enzymes are generally known to induce ECM remodeling by 

degrading certain ECM molecules, which could modulate the degradation rate of ECM 

hydrogels in vivo.

We next evaluated if the encapsulation could negatively impact the bioactivity of the 

released EVs and if the released EVs would still assert their beneficial effects once released 

from the hydrogels. Conditioned media from EVs encapsulated in hydrogels was used to 

stimulate the phosphorylation of the ERK 1/2 pathway in target HCAECs and compared to 

the PBS supernatant collected from empty hydrogels. Western blot analysis showed that the 

EVs released 1 and 3 days after encapsulation significantly increased the phosphorylation of 

the ERK 1/2 proteins when compared to the PBS supernatant controls (1.54 ± 0.07 and 1.21 

± 0.04 fold increase, respectively) (Figure 5). No differences were seen when the EV-

conditioned media collected 7 days after encapsulation was used. The lack of bioactivity of 

the released EVs 1 week after encapsulation could likely be due to the very minimal levels 

released after the first days. However, the minimal observed release or lack of bioactivity of 

the EV-conditioned media released at day 7 could also partly be due to EV degradation in 

the experimental conditions, as mentioned above.
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Since the EVs’ therapeutic efficacy is in part mediated by exerting anti-apoptotic effects on 

the targeted cells,[61] we then investigated whether released EVs were also able to preserve 

cell survival in the presence of reactive oxygen species. Based on the pERK activation data, 

we only evaluated EVs released 1 and 3 days after encapsulation. A significant increase in 

cell survival was observed with both EV-conditioned medias when compared to the PBS 

supernatants (EVs: 79.07 ± 3.03% at day 1 and 80.08 ± 3.06% at day 3; PBS: 71.64 ± 3.40% 

at day 1 and 65.26 ± 3.22% at day 3) (Figure 6).

3. Conclusion and Outlook

The discovery of miRNAs and EVs as potent mediators of cellular function and tissue 

homeostasis has led many researchers to investigate their potential use for a wide variety of 

disease pathways. However, similar to cells, growth factors, or small molecules, their 

delivery is hampered by rapid clearance soon after administration, therefore potentially 

limiting their therapeutic effects. The use of decellularized ECM hydrogels has been 

proposed as an alternative approach to modulate the release rate of model miRNA and EV 

therapeutics. Our data collectively indicated that these hydrogels successfully retained the 

encapsulated biologics over a prolonged period of time with some differences between the 

therapeutics or hydrogel tissue source. Samples collected for the release profiles were also 

further investigated with bioactivity assays, and both the antago-miR and EVs remained 

bioactive after being released from the ECM hydrogel. This study demonstrates that 

decellularized ECM hydrogels may represent an advantageous platform for the delivery of 

miRNAs and EVs. Since the myocardial ECM hydrogel has already been injected via 

catheter in the hearts of myocardial infarction patients in a Phase I trial (clinicaltrials.gov 

identifier ), this suggests the clinical applicability of using injectable ECM hydrogels to 

delivery miRNAs and EVs in a wide array of disease applications.

4. Experimental Section

Extracellular matrix preparation:

Porcine-derived extracellular matrix (ECM) was prepared as previously described.[51, 62] 

Briefly, tissue from Yorkshire farm pigs was chopped into small cubes (2-5 mm) and 

decellularized with detergent for 3-5 days. Myocardial ECM, skeletal muscle ECM, and 

lung ECM was derived from the left ventricular myocardium, psoas muscle, and lung, 

respectively. For both the myocardial and skeletal muscle ECM hydrogels, decellularization 

was accomplished using 1% sodium dodecyl sulfate, while lung ECM hydrogels were 

decellularized with 0.1% sodium dodecyl sulfate. Skeletal muscle ECM hydrogels also 

required an additional isopropyl alcohol step to remove remaining lipids. Following 

decellularization, the tissue was then lyophilized and milled into a fine powder for long-term 

storage. Prior to use, the milled powder was partially digested with pepsin (Sigma-Aldrich) 

at a concentration of 10 mg ECM/1 ml pepsin solution (1 mg pepsin per 1 ml 0.1M HCl) for 

at least 48 hours and then neutralized to physiological pH and salt conditions. Finally, the 

concentration of the ECM hydrogel was adjusted to 6 mg/ml with 1X phosphate buffered 

saline (PBS) and then lyophilized once again for storage at −80°C.
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Cell Culture:

All cell lines were preserved in a humidified incubator at 37°C, 5% CO2 and atmospheric 

O2. Human cardiac progenitor cells (hCPCs)[60] and human coronary artery endothelial cells 

(HCAECs) were used between passages 17-23 and 7-14, respectively. hCPCs were cultured 

as previously described.[63] Briefly, cells were cultured in 0.1% porcine gelatin (Sigma-

Aldrich) coated flasks in growth media consisting of 10% fetal bovine serum (Thermo 

Fisher Scientific), 22% EBM2 (Lonza) complemented with EGM2 single quotes (Lonza) in 

Medium 199 (Corning), 1X non-essential amino acids (Lonza), and 1X penicillin-

streptomycin (Life Technologies). HCAECs were grown in MesoEndo cell growth media 

(Cell Applications).

MiRNA Preparation:

Anti-miR and antago-miR oligonucleotides were synthesized with the following sequence: 

5’ – ACU GCC UGU CUG UGC CUG CUG T – 3’ (Eurofins Genomics). Both 

oligonucleotides were designed with 2’ O-methylation, 4 PTO-linkages on the 3’ end, and 2 

PTO-linkages on the 5’ end. The antago-miR was further modified with a 3’ cholesterol 

group. For release experiments requiring miRNA detection via fluorescence measurements, 

a Cy3 dye molecule was conjugated to the 5’ end. All lyophilized anti-miR or antago-miR 

aliquots were resuspended with RNase-free water (Life Technologies) to a final 

concentration of 100 μM.

Anti-miR and Antago-miR Release:

Decellularized ECM hydrogels were prepared by resuspending lyophilized aliquots to a final 

concentration of 6 mg/ml with RNase-free water or a mixture of RNase-free water and 

miRNA inhibitors. Four micrograms of the Cy3-labeled anti-miR (n=3/ECM type) or 

antago-miR (n=3/ECM type) were mixed into the ECM hydrogels.[53] Hydrogels (200 μL 

total) were formed in microcentrifuge tubes by incubating at 37°C overnight. Larger volume 

gels were used for the anti-miR and antago-miR release compared to the EVs release, since 

concentrated amounts of the antago-miR did affect gelation in vitro. All ECM hydrogels 

were initially rinsed with 250 μL of RNase-free 1X PBS (Alfa Aesar) to remove any 

unincorporated anti-miR or antago-miR. After, 250 μL of RNase-free 1X PBS were added to 

each gel, all gels were incubated at 37°C on a shaker plate. Every 24 ± 2 hours for 15 days, 

200 μL of the PBS supernatant was collected for quantification of miRNA release. On day 

15 following collection of the PBS supernatant, 200 μL of bacterial collagenase 

(Worthington Biomedical Corporation) at 100 U/mL in a 0.1 M Tris-base, 0.25 M CaCl2 

solution, pH 7.4 was added to the gels to degrade the hydrogels. For complete degradation, 

gels were incubated at 37°C for 4 hours. Then, 200 μL of the collagenase samples were 

collected, and 200 μL of a 1.5 M NaCl solution was added to dissociate residual electrostatic 

interactions between the miRNAs and ECM hydrogels. Gels were allowed to incubate at 

37°C for 1 hour prior to sample collection. The miRNA content in each of the release 

samples was quantified using a BioTek Synergy™ 4 Multi-Mode Microplate Reader. The 

Cy3 dye molecules were detected using an emission spectrum with a constant excitation at 

547 nm and an emission ranging from 577 nm to 597 nm. Known amounts of the Cy3-

labeled anti-miR or antago-miR were mixed with supernatant from empty ECM hydrogels to 
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construct individual standard curves. These standard curves were then used to determine the 

amount of released miRNAs. Release samples were stored at −80°C for later analysis. To 

analyze the results, the amount of miRNA rinsed away on day 0 was subtracted from the 

original 4 μg and used as the total amount for calculating the cumulative percent released.

Antago-miR Bioactivity – Tube Formation Assay:

Growth-factor reduced Matrigel™ (10 μL, Corning) was carefully pipetted into individual 

wells in a μ-slide angiogenesis (Ibidi) and allowed to gel at 37°C for approximately 45 

minutes. In the meantime, HCAECs were collected, and the mixture was then concentrated 

to 400,000 cells/mL in MesoEndo growth media for a total amount of 10,000 cells per well. 

In separate microcentrifuge tubes, samples were prepared to yield 50 μL total per well. Each 

sample tube contained 25 μL of sample and 25 μL of cells in media. The sample volume was 

taken directly from tubes containing the collected release from days 1 and 3 and the PBS 

supernatant at day 15 prior to collagenase and 1.5M NaCl treatments. The experiment was 

done in triplicate, and data was analyzed using the Matlab AngioQuant toolbox.

EV Isolation:

hCPCs from 3 different donors were used for EV isolation. CPCs were cultured in EV-free 

growth media until 80% confluency was reached and the media was collected for EV 

isolation. To prepare EV-free growth media, 33% FBS in Medium 199 was centrifuged at 

100,000 g for 16 hours at 4°C (Optima L-80 XP Ultracentrifuge) and sterile filtered. The 

supernatant was used to prepare growth media as described above. hCPC-conditioned media 

was collected and centrifuged at 2000 g for 15 minutes at 4°C (Eppendorf Centrifuge 

5810R) to pellet dead cells and debris. The supernatant was then centrifuged at 10,000 g for 

30 minutes at 4°C to pellet larger vesicles. The EV pellet was obtained in the last centrifuge 

step at 100,000 g at 4°C for 60 minutes, sterile filtered, resuspended in PBS and stored at 

4°C when used the next day or at −80°C for long-term storage. EV concentration was 

measured using the Micro BCA Protein Assay Kit (Thermo Scientific). Bovine serum 

albumin (BSA) standards were prepared within the range of 0.5 μg/ml to 200 μg/ml. Both 

standards and EV samples were incubated with Micro BCA Working Reagent at 37°C for 2 

hours and analyzed with a BioTek Synergy™ 4 Multi-Mode Microplate Reader at 562 nm. 

EV concentration was determined by comparing the values of the EV samples with the 

known concentrations of the standards.

EV Labeling:

EVs were fluorescently labeled with 2×10−6 M PKH26 red fluorescent dye (Sigma; PKH26 

Red Fluorescent cell linker mini-kit for general cell membrane labeling, MINI26-1KT) 

according to the manufacturer’s protocol. The labeling reaction was stopped by adding 3 mL 

of 33% EV-free FBS in M199 and ultracentrifuged as previously described. After 

centrifugation, the pellet was resuspended in PBS at a concentration of 0.5 μg/μl and used 

for encapsulation experiments.
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EV Detection:

EV release from decellularized ECM hydrogels was measured using an EV capture method 

with antibody-coated magnetic beads. Samples were incubated with anti-CD63-coated 

magnetic beads (ExoCap, JSR Life Sciences) overnight and washed by aspiration on the 

magnet and adding 2% BSA in PBS (washing buffer). Secondary CD63-Alexa647 antibody 

in PBS (BD Bioscience) was added and incubated for 2 hours at room temperature while 

shaking. Beads were washed with washing buffer and resuspended in 0.25% BSA in PBS. 

Mean fluorescent intensity of the samples was measured by FACS (Canto).

EV Bioactivity – Stimulation of pERK Expression:

In a flat bottom 24 well plate, 100,000 HCAECs were plated in MesoEndo cell growth 

media. After 24 hours, the cells were starved by replacing media with Medium 199 for 3 

hours. Following starvation, HCAECs were incubated with 200 μl myocardial ECM 

hydrogel-conditioned PBS from gels with or without encapsulated EVs. Samples from days 

1 (n=4/group), 3 (n=3/group), and 7 (n=4/group) were examined. Cells were lysed with 

cOmplete Lysis-M buffer (Roche) on ice for 5 minutes. Lysate was centrifuged at 14,000 g 

for 10 minutes at 4°C, and the supernatant was stored at −80°C. To prepare the samples for 

gel electrophoresis, 14.5 μl HCAEC lysate was combined with 7.5 μl 4X NuPAGE LDS 

Sample Buffer (Thermo Fisher Scientific) and 3 μl NuPAGE Sample Reducing Agent 

(Thermo Fisher Scientific). The samples were then heated for 10 minutes at 70°C. A 

NuPAGE 4-12% Bis-Tris Protein Gel (Thermo Fisher Scientific) was loaded with 20μl 

sample and 10 μl PageRuler Prestained Protein Ladder (Thermo Fisher Scientific). The gel 

was placed in the XCell SureLock Mini-Cell Electrophoresis System (Thermo Fisher 

Scientific), and the chambers were filled with 1X NuPAGE MOPS SDS Running Buffer 

(Thermo Fisher Scientific). In addition, 500 μl of NuPAGE Antioxidant (Thermo Fisher 

Scientific) was added to the inner chamber. Electrophoresis was performed at 200 volts for 

50 minutes. Western blot was performed using the XCell SureLock Mini-Cell 

Electrophoresis System filled with 1X NuPAGE Transfer Buffer (Thermo Fisher Scientific) 

in 10% methanol in deionized water. Proteins were transferred from the gel onto a 0.45-μm 

nitrocellulose membrane (Bio-Rad Laboratories) at 35 volts for 1 hour on ice. The 

membrane was blocked in 5% BSA (Gemini Bio) in TBS for 1 hour at room temperature, 

followed by incubation with primary antibodies 1:500 phospho-p44/42 MAPK (Thr202/

Tyr204) (Cell Signal) and 1:3000 β3 tubulin (Abcam) in 0.5% BSA in TBS for 1 hour at 

room temperature. The membrane was then incubated with secondary antibody 1:1000 goat 

anti-rabbit IgG HRP (Abcam) in 5% milk 0.1% Tween in TBS for 1 hour at room 

temperature. Prior to imaging, the membrane was incubated with Pierce ECL Western 

Blotting Substrate (Thermo Fisher Scientific) for 1 minute and imaged with the Bio-Rad 

ChemiDoc MP System using Image Lab 3.0 software.

EV Bioactivity – Anti-Apoptotic Effect:

A 96-well plate was coated with 0.1% porcine gelatin and 7500 hCPCs per well were seeded 

and incubated in growth media overnight. After 24 hours, the media was replaced by 10% 

alamarBlue Cell Viability Reagent (Invitrogen) in growth media and incubated for 4 hours at 

37°C. AlamarBlue was transferred to a flat bottom 96-well plate (100 μl per well) and 
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baseline values were measured in a BioTek Synergy™ 4 Multi-Mode Microplate Reader at 

550 nm excitation and 585 nm emission. After baseline measurements, cells were incubated 

with 25 μM H2O2 in myocardial ECM hydrogel-conditioned PBS from gels with or without 

encapsulated EVs for 16 hours at 37°C followed by incubation with 10% alamarBlue in 

growth media for 4 hours at 37°C. AlamarBlue was again transferred to a flat bottom 96-

well plate (100 μl per well), and the final values were measured with the microplate reader. 

Cell survival was measured as % of viable cells compared to baseline measurements. Six 

and seven replicates were performed for day 1 and day 3 samples, respectively.

Statistical Analysis:

Results are displayed as mean ± standard error of the mean. GraphPad Prism 6 was used for 

statistical analyses. For comparisons between the miRNA release samples and PBS 

supernatant control, a one-way ANOVA with a Dunnett’s post hoc test was used. EV release 

samples and the PBS supernatant controls were compared with a Student’s t-test. 

Significance was accepted at p < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the workflow for assessing decellularized ECM hydrogels as a delivery 

platform for miRNA and EV therapeutics. Anti-miRs, antago-miRs, and EVs were 

encapsulated in ECM hydrogels, and the release profiles were first generated. Antago-miR 

and EV release samples were then further analyzed to ensure the biologics remained 

bioactive.
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Figure 2. 
Release profiles for miRNA inhibitors of miR-214, an anti-miR and antago-miR. Values 

were obtained from fluorescence measurements using the Cy3 dye molecule conjugated to 

each miRNA, and values exceeding 100% likely resulted from errors due to the linear fit of 

the generated standard curves. The anti-miR (A) yielded a more rapid release rate, likely due 

to the absence of a cholesterol group, which is present on the antago-miR (B). The 

cholesterol group introduces hydrophobic interactions, which appear to affect the release 

rate. Some of the error bars are too small to be visualized at each time point. n = 3/gel type

Hernandez et al. Page 16

Adv Ther (Weinh). Author manuscript; available in PMC 2019 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Bioactivity of released antago-miRs in a Matrigel tube formation assay. (A) Representative 

images are shown for the tube formation of HCAECs on Matrigel. Since ECM soluble 

factors are present in the PBS supernatant group, some tube formation is seen but with a 

large degree of cell clustering. However, released samples from days 1 and 3 produce more 

organized tubes that yield relative increases in (B) tubule length and the number of junctions 

over the PBS control (n = 3/group). *p < 0.05 compared to the PBS supernatant control 

using a one-way ANOVA with a Dunnett’s post hoc test.
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Figure 4. 
Cumulative release of hCPC-derived EVs from porcine ECM hydrogels. (A) Conditioned 

PBS was collected at days 0, 1, 3 and 7, and the concentration of detected EVs is shown as a 

percentage of the mean fluorescent intensity of 4 μg untreated EVs. Fluorescent intensities 

were determined with magnetic bead capture flow cytometry. Myocardial ECM hydrogels (n 

= 4), skeletal muscle ECM hydrogels (n = 3), and lung ECM hydrogels (n = 3) were 

examined. (B) PKH26 labeled EVs confer a pink color to the gels, which is still visible after 

7 days and indicates the presence of the encapsulated EVs.

Hernandez et al. Page 18

Adv Ther (Weinh). Author manuscript; available in PMC 2019 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The effect of CPC-derived EVs released from cardiac ECM hydrogels on pERK 1/2 levels in 

HCAECs. Cells were incubated with conditioned PBS collected at days 1 (n = 4/group), 3 (n 

= 3/group), and 7 (n = 4/group). The expression of pERK 1/2 was determined with western 

blot analysis, normalized to β3-tubulin and relative to conditioned PBS from empty ECM 

hydrogels. *p < 0.05 and **p < 0.01 compared to PBS supernatant using a Student’s t-test.
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Figure 6. 
The protective effect of CPC-derived EVs released from cardiac ECM hydrogels on H2O2-

induced apoptosis of hCPCs. Cells were incubated with conditioned PBS, collected at days 1 

(n = 6/group) and 3 (n = 7/group) in combination with 25 μM H2O2. The survival rate was 

determined with an alamarBlue cell viability assay and normalized to alamarBlue baseline 

values. *p < 0.05 and **p < 0.01 compared to PBS supernatant using Student’s t-test.
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