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Abstract

Like all other materials, biological soft tissues are subject to general laws of physics, including 

those governing mechanical equilibrium and stability. In addition, however, these tissues are able 

to respond actively to changes in their mechanical and chemical environment. There is, therefore, 

a pressing need to understand such processes theoretically. In this paper, we present a new rate-

based constrained mixture formulation suitable for studying mechanobiological equilibrium and 

stability of soft tissues exposed to transient or sustained changes in material composition or 

applied loading. These concepts are illustrated for canonical problems in arterial mechanics, which 

distinguish possible stable versus unstable mechanobiological responses. Such analyses promise to 

yield insight into biological processes that govern both health and disease progression.
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1. Introduction

Biological soft tissues consist of myriad proteins, glycoproteins, and glycosaminoglycans 

(Hynes and Naba 2012), each having individual natural (stress-free) configurations, 

mechanical properties, and rates of turnover. It is appropriate, therefore, to consider mixture 

theories of multiple solid constituents when establishing theoretical frameworks for 

mathematically modeling growth (changes in mass) and remodeling (changes in 

microstructure). Adopting a classical continuum theory of mixtures presents numerous 

challenges, however, including difficulty in identifying constitutive relations for linear 

momentum exchanges between constituents as they turnover and challenges in prescribing 

how traction boundary conditions partition by constituent, particularly as they evolve. For 

this reason, we have advocated a constrained mixture theory wherein one assumes that 
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structurally significant constituents possess individual natural configurations but are 

constrained to move with the mixture as a whole, and one satisfies full mixture equations for 

mass balance but classical equations for linear momentum balance augmented with a rule-

of-mixture relation for the stored energy (Humphrey and Rajagopal 2002). Such models 

simplify the constitutive formulation and solution of initial-boundary value problems. 

Nevertheless, the full constrained mixture theory involves heredity integrals for the evolution 

of constituent-specific mass density and stress, which can render the associated 

computational modeling expensive except in problems defined by simple geometries. Rate-

based models can thus be useful.

It is also well-known that biological soft tissues grow and remodel in response to changes in 

mechanical loading. Such responses – that is, changes in microstructural composition and/or 

organization and thus changes in mechanical properties and geometry – stem from 

mechanobiological processes, often changes in gene expression that control the production 

and removal of constituents in potentially evolving configurations (Humphrey et al. 2014). 

In parallel to classical concepts of mechanical equilibrium and mechanical stability, 

modeling biological growth and remodeling (G&R) necessitates an understanding of 

mechanobiological equilibrium and mechanobiological stability. The former can be defined 

by a balanced production and removal of stressed constituents within an unchanging 

configuration (Latorre and Humphrey 2018b); the latter can be defined as the ability of a 

tissue to preserve its mechanobiological equilibrium despite transient perturbations in 

loading under physiological or pathophysiological conditions (Cyron and Humphrey 2014). 

For example, we do not expect a muscle to grow or remodel simply because of a transient 

loading. Rather, we expect a muscle to grow or remodel in response to sustained or repetitive 

loading, which could lead to mechanobiological adaptivity to the new mechanical 

environment. Failed adaptivity can occur in disease and injury, however, which may result 

from a loss of mechanobiological stability.

In this paper, we first summarize a full hereditary integral-based constrained mixture model 

for growth and remodeling of soft tissues. We then derive a fully three-dimensional rate-

based constrained mixture theory that is equivalent to the integral-based model. We 

subsequently particularize this formulation to a prototypical cylindrical artery to identify 

equilibrium solutions for vanishing rates and to assess their mechanobiological (static) 

stability with respect to sustained changes in external loads or model parameters. Finally, we 

use this rate-based approach to assess whether a (dynamic, self-excited) G&R process 

around a previously equilibrated solution is mechanobiologically unstable or stable, either 

neutrally or asymptotically, with respect to perturbations in external loads that are eventually 

sustained over time. For purposes of illustration, we consider computational results for a 

cylindrical murine aorta exposed to sustained or transient changes in mechanical loading 

and/or material properties. Consistent with most prior constitutive descriptions of arterial 

mechanics, we assume an underlying pseudoelastic rather than viscoelastic or poroelastic 

material response; similarly, consistent with most prior stress analyses, we assume quasi-

static solutions rather than elastodynamics over a cardiac cycle (Humphrey 2002). In this 

way, we focus primarily on evolving mechanobiologically induced changes in geometry and 

material properties. Finally, we do not consider further complications associated with aortic 

Latorre and Humphrey Page 2

J Mech Phys Solids. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dissection or rupture, which necessarily require one to invoke additional constitutive 

frameworks.

2. Theoretical Framework

2.1. Constrained mixture framework: Integral form

Consider the Cauchy stress σ, at G&R time s, for a biological soft tissue consisting of a 

mixture of N structurally significant constituents and exhibiting incompressible behavior 

under transient mechanical loading,

σ(s) = ∑
α = 1

N
σα(s) − p(s)I (1)

with σα the mixture-level contribution to σ of constituent α = 1, …, N and p the Lagrange 

multiplier that enforces transient incompressibility although the tissue may change mass and 

volume over G&R timescales. The stress tensor σα can be expressed in constrained mixture 

models (Humphrey and Rajagopal 2002) through the following hereditary integral (Latorre 

and Humphrey 2018b)

σα(s) = 1
ρ∫−∞

s
mα(τ)qα(s, τ)σ α(s, τ)dτ (2)

where ρ is the assumed constant spatial mass density of the tissue (since most of the 

structurally significant constituents are hydrated similarly), mα(τ) > 0 is a spatial mass 

density production rate of constituent α, qα(s, τ) ∈ [0, 1] is a survival function for 

constituent α deposited within extant matrix at G&R time τ ≤ s that survives at G&R time s, 

and σα(s, τ) is the constituent-level Cauchy stress at s for constituent α deposited at τ. Let 

Wα Cn(τ)
α (s)  be the strain energy function of constituent α, with Cn(τ)

α (s) = Fn(τ)
αT (s)Fn(τ)

α (s) the 

right Cauchy–Green tensor at time s for constituent α deposited at time τ, which is 

computed from the associated deformation gradient Fn(τ)
α (s) with respect to natural 

configuration κn
α(τ), which is denoted n (τ). It can be shown that (Baek et al. 2006)

Fn(τ)
α (s) = F(s)F−1(τ)Gα(τ) (3)

with F the deformation gradient of the mixture at time s or τ, measured with respect to an 

original homeostatic (reference) configuration κ (0) (Figure 1), and Gα(τ) a symmetric (Gα 

= GαT) and volume-preserving (det Gα = 1) deposition (pre)stretch tensor by which 

constituent α is deposited within the extant matrix at time τ relative to its own possibly 

evolving natural configuration κn
α(τ) (Figure 1). This deposition stretch arises via synthetic 

cells acting on the secreted matrix via actomyosin activity (Humphrey et al. 2014), thus its 
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magnitude becomes a constitutive parameter and so too the orientation of the new tissue 

when deposited (Baek et al. 2006; Valentín et al. 2013). Furthermore, let the constituent-

level Cauchy stress for each constituent α be

σ α(s, τ) = 2
Jn(τ)

α (s)
Fn(τ)

α (s)
∂Wα Cn(τ)

α (s)
∂Cn(τ)

α (s)
Fn(τ)

αT (s) (4)

where Jn(τ)
α (s) = det Fn(τ)

α (s) = J(s)/J(τ), with J = det F at time s or τ.

Also let ρα represent the spatial (apparent) mass density of constituent α (i.e., its mass per 

unit current volume of mixture) so that the assumed constant spatial mass density ρ of the 

mixture is

ρ ≡ ρ(s) = ∑
α = 1

N
ρα(s) . (5)

The referential mass density ρR(s) = J(s) ρ(s) ≡ J(s) ρ of the mixture (i.e., mass per unit 

reference volume) can similarly be expressed as

ρR(s) = ∑
α = 1

N
ρR

α(s), (6)

with ρR
α(s) = J(s)ρα(s). Consistent with Eq. (2), ρR

α(s) reads in constrained mixture models 

(Latorre and Humphrey 2018b)

ρR
α(s) = ∫

−∞

s
mR

α(τ)qα(s, τ)dτ (7)

with mR
α(τ) = J(τ)mα(τ) the corresponding referential mass density production rate of 

constituent α. Note from Eqs. (2) and (7) that one must specify constitutive relations for 

qα(s, τ), mR
α(τ), and Wα Cn(τ)

α (s)  for the particular soft tissue under study.

Following previous studies of arterial G&R (Baek et al. 2007b; Latorre and Humphrey 

2018b; Valentín and Humphrey 2009), we let the degradation of structural constituents be 

described by first-order type kinetics

qα(s, τ) = exp −∫
τ

s
kα(t)dt (8)
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where kα is a rate-type parameter for mass removal that may depend on biomechanical or 

biochemical factors. For illustrative purposes, let (Latorre and Humphrey 2018b)

kα(t) = ko
α 1 + ( Δ σ(t))2 ,   t ∈ [τ, s] (9)

with ko
α the original homeostatic value and Δσ the relative difference of a given coordinate 

invariant measure σ of the Cauchy stress σ with respect to its original homeostatic value σo, 

namely

Δ σ(t) =
σ(t) − σo

σo
. (10)

Moreover, let the mass density production rate mR
α(τ) be described by (Latorre and 

Humphrey 2018b)

mR
α(τ) = kα(τ)ρR

α(τ)ϒα(τ) (11)

Where kα(τ)ρR
α(τ) = :mN

α (τ) represents an evolving nominal mass production rate of 

constituent α per unit total reference volume and ϒα(τ) is a stimulus function for G&R that 

can be modulated by biomechanical stimuli (e.g., in healthy arteries; Latorre and Humphrey 

2018a,b; Valentín and Humphrey 2009) or other effects, as, for example, biochemical 

mediators or inflammation (Baek et al. 2007b; Latorre and Humphrey 2018c; Miller et al. 

2014). Importantly for the present case wherein we consider mechanobiological stability of 

previously equilibrated mechanobiological states, mR
α as given in Eq. (11), should ensure a 

production that balances removal in any evolved homeostatic states “h” with ϒh
α 1 and 

hence ρRh
α mRh

α /kh
α. Of course, ϒo

α ≡ 1 and ρRo
α ≡ mRo

α /ko
α in the original homeostatic state 

“o”.

2.2. Constrained mixture framework: Rate form

Consider now the rate of change of the referential mass density ρR
α given in Eq. (7), which 

yields, by the Leibniz integral rule,

ρ̇R
α(s) = mR

α(s)qα(s, s)ds
ds + ∫

−∞

s
mR

α(τ)∂qα(s, τ)
∂s dτ (12)

or, upon consideration of chain and Leibniz rules in Eq. (8), (Latorre and Humphrey 2018b)
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ρ̇R
α(s) = kα(s)ρR

α(s) ϒα(s) − 1 (13)

where qα(s, s) = 1 and we used Eq. (11). Thus, Eq. (13) along with

ρ̇R(s) = ∑
α = 1

N
ρ̇R

α(s) (14)

are equivalent to Eqs. (7) and (6), respectively, though in rate form. For later use, since ρR(s) 

= J(s) ρ, with ρ constant, note the rate of change

J̇(s)
J(s) =

ρ̇R(s)
ρR(s) = ∑

α = 1

N
kα(s)

ρR
α(s)

ρR(s) ϒα(s) − 1 = ∑
α = 1

N
kα(s)ϕα(s) ϒα(s) − 1 (15)

with ϕα ≔ ρα/ρ the spatial mass fraction of constituent α, where in this case, ρα/ρ ≡ ρR
α /ρR.

Evolution of the stress given by Eqs. (1) and (2) can also be described by an equivalent rate 

form. Consider

σ̇(s) = ∑
α = 1

N
σ̇α(s) − ṗ(s)I (16)

where σ̇α yields, from Eq. (2) and the Leibniz rule,

σ̇α(s) = mα(s)qα(s, s)σ α(s, s)
ρ

ds
ds + 1

ρ∫−∞

s
mα(τ)∂qα(s, τ)

∂s σ α(s, τ)dτ + 1
ρ∫−∞

s
mα(τ)qα(s, τ

)∂σ α(s, τ)
∂s dτ

(17)

which, with qα(s, s) = 1, ∂qα(s, τ)/∂s = −kα (s) qα(s, τ), mα(s) = kα(s) ρα(s) ϒα(s), and a 

(potentially evolving) deposition Cauchy stress at the constituent level (cf. Eq. (4)) 

σ α(s, s) = Gα(s)Sα Gα2(s) Gα(s) = σ dep
α (s), reads

σ̇α(s) = kα(s)ϒα(s)σdep
α (s) − kα(s)σα(s) + 1

ρ∫−∞

s
mα(τ)qα(s, τ)∂σα(s, τ)

∂s dτ (18)

where we define the current deposition stress at the mixture level as σdep
α (s) = ϕα(s)σdep

α (s).
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Regarding the third term in the right-hand side of Eq. (18), ∂σα(s, τ)/ ∂s yields, from Eq. (4) 

(with the notation F
.
n(τ)
α (s) = ∂Fn(τ)

α (s)/ ∂s and J̇n(τ)
α (s) = ∂Jn(τ)

α (s)/ ∂s)

∂σα(s, τ)
∂s = 1

Jn(τ)
α (s)

F
.

n(τ)
α (s)Sα Cn(τ)

α (s) Fn(τ)
αT (s) + 1

Jn(τ)
α (s)

Fn(τ)
α (s)Sα Cn(τ)

α (s) F
.

n(τ)
αT (s)

+ 1
Jn(τ)

α (s)
Fn(τ)

α (s) ⊙ Fn(τ)
α (s):

∂Sα Cn(τ)
α (s)

∂s −
J̇n(τ)

α (s)
Jn(τ)

α2 (s)
Fn(τ)

α (s)Sα Cn(τ)
α (s) Fn(τ)

αT (s)

(19)

which involves the rates F
.
n(τ)
α (s), J̇n(τ)

α (s) and ∂Sα Cn(τ)
α (s) / ∂s, where 

Sα Cn(τ)
α (s) = 2∂Wα/ ∂Cn(τ)

α (s), and (for further convenience) the symbol ⊙ represents (A ⊙ 

B)ijkl = AikBjl while the symbol : represents the usual double contraction operation between 

second-or higher-order tensors, e.g., A : B = AijBij. First, from Eq. (3)

F
.

n(τ)
α (s) ≔

∂Fn(τ)
α (s)
∂s = F

.
(s)F−1(τ)Gα(τ) = 1(s)Fn(τ)

α (s) (20)

where 1(s) = F
.
(s)F−1(s) is the spatial velocity gradient at the mixture level at current G&R 

time s. With Jn(τ)
α (s) = J(s)/J(τ), we have

J̇n(τ)
α (s) ≔

∂Jn(τ)
α (s)
∂s = J̇(s)

J(τ) = J̇(s)
J(s)Jn(τ)

α (s) (21)

where J̇(s) = J(s) tr 1(s). Moreover, the chain rule yields

∂Sα Cn(τ)
α (s)

∂s = 2
∂Sα Cn(τ)

α (s)
∂Cn(τ)

α (s)
:
∂Cn(τ)

α (s)
∂C(s) : 1

2C
.
(s), (22)

where we identify the referential constitutive (hyperelastic) fourth-order tangent tensor at the 

constituent level

ℂα Cn(τ)
α (s) ≔ 2

∂Sα Cn(τ)
α (s)

∂Cn(τ)
α (s)

= 4
∂2Wα Cn(τ)

α (s)
∂Cn(τ)

α (s) ⊗ ∂Cn(τ)
α (s)

(23)

with the symbol ⊗ representing (A ⊗ B)ijkl = AijBkl, and the purely kinematic fourth-order 

tensor (Latorre and Humphrey 2018b)
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∂Cn(τ)
α (s)

∂C(s) = Gα(τ)F−T(τ) ⊙ Gα(τ)F−T(τ) . (24)

Hence, knowing that the rate of deformation tensor d = sym l = 1
2F−TC

.
F−1, we have, from 

Eq. (22), along with Eqs. (23) and (24),

∂Sα Cn(τ)
α (s)

∂s = ℂα Cn(τ)
α (s) :Fn(τ)

αT (s) ⊙ Fn(τ)
αT (s):d(s) . (25)

Defining a spatial constitutive (hyperelastic) fourth-order tangent tensor ℂα through the 

following push-forward operation over ℂα at the constituent level

ℂα(s, τ) = 1
Jn(τ)

α (s)
Fn(τ)

α (s) ⊙ Fn(τ)
α (s):ℂα Cn(τ)

α (s) :Fn(τ)
αT (s) ⊙ Fn(τ)

αT (s), (26)

then Eq. (19), with Eqs. (20), (21), and (25), reads

∂σ α(s, τ)
∂s = l(s)σ α(s, τ) + σ α(s, τ)lT(s) + ℂα(s, τ):d(s) − J̇(s)

J(s)σ α(s, τ) . (27)

Finally, substitution of Eq. (27) into Eq. (18) yields the rate equation

σ̇α(s) = kα(s)ϒα(s)σdep
α (s) − kα(s)σα(s) + ℂα(s):d(s) + l(s)σα(s) + σα(s)lT(s) − σα(s) tr l(s)

(28)

where we used Eq. (2) to obtain mixture-level stresses σα(s) from constituent-level stresses 

σα(s, τ) and, in parallel, we defined associated mixture-level moduli ℂα in terms of 

constituent-level moduli ℂα(s, τ) through the hereditary integral

ℂα(s) ≔ 1
ρ∫−∞

s
mα(τ)qα(s, τ)ℂα(s, τ)dτ . (29)

Eq. (28) reveals multiple contributions to the (instantaneous) change of stress σα at G&R 

time s that are intrinsically included in Eq. (2), but can only be distinguished in rate form. 

The first two addends associate, respectively, with an increase in stress σα over time due to 
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the deposition at rate kαϒα of mass (cf. Eq. (13)) having prestress σdep
α  and removal at rate 

kα of constituent α (cf. Eq. (13)) having stress σα, hence emphasizing the importance of 

rates of true production (by deposition) and removal (by degradation or death). The third 

addend includes material nonlinearities described constitutively by the spatial (linearized) 

stiffness tensor ℂα. The fourth and fifth addends include well-known geometric 

nonlinearities associated with instantaneous changes of the reference configuration for the 

Cauchy stress (i.e., as given by l, see Eq. (20)). Finally, the sixth addend highlights a change 

in stress associated with a change in current total volume (consequently, total mass) of the 

soft tissue over G&R timescales, as given constitutively by Eq. (15) in a coupled manner 

(recall that stimulus functions ϒα are typically driven by stress). We assume that such mass 

addition occurs interstitially due to local cellular synthesis and secretion.

Remark 1—An important (yet controversial) issue that can arise when developing 

evolution equations directly in rate form is selection of an appropriate objective (i.e., frame 

indifferent) rate in which a spatial quantity (typically, stress) is expressed and how it relates 

to kinematic and/or physical quantities and their objective rates (Simó and Pister 1984). In 

this regard, observe that the expression for σ̇α in Eq. (28) is not objective. Note, however, 

that we did not posit a constitutive equation for σ̇α; rather we obtained the (non-objective) 

material time derivative of the (objective) integral-type expression for σα given in Eq. (2). In 

other words, both equations (Eq. (2), and Eq. (28) including all terms) describe the same 

evolution for σα over G&R time s, hence we can write Eq. (28) as a proper objective rate of 

the stress tensor σα. Recalling the Truesdell rate (cf. Holzapfel 2000, p. 195), here written 

for each constituent α,

σ° α(s) = σ̇α(s) − l(s)σα(s) − σα(s) lT(s) + σα(s) tr l(s) (30)

allows us to write Eq. (28) as

σ° α(s) = kα(s) ϒα(s)σdep
α (s) − σα(s) + ℂα(s):d(s) (31)

which is now an objective equation for the rate of change of mixture level Cauchy stresses 

σα whose (convolution-type) solution is given, equivalently, by Eq. (2). Of course, other 

objective (e.g., Oldroyd/Lie, Green–Naghdi, or Jaumann) rates would give different 

expressions for the same constitutive relation in rate form (i.e., the expanded Eq. (28)). 

Equations (13) and (31), for example, thus constitute a pair of objective equations in rate 

form equivalent to Eqs. (7) and (2), respectively, given in (hereditary) integral form.

Remark 2—Noting that Jσα = FSαFT, with Sα the second Piola–Kirchho stress tensor for 

constituent α at the mixture level (Latorre and Humphrey 2018b), Eq. (30) can be expressed 

in terms of the material time derivative of Sα as
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σ° α(s) = 1
J(s)F(s)S

. α(s)FT(s) (32)

so, from Eq. (31),

S
. α(s) = kα(s) ϒα(s)Sdep

α (s) − Sα(s) + ℂα(s): 1
2C

.
(s) (33)

where we defined Sdep
α  and ℂα through respective pull-back operations over σdep

α  and ℂα, 

namely the Piola transformations

Sdep
α (s) ≔ J(s)F−1(s)σdep

α (s)F−T(s) (34)

and

ℂα(s) ≔ J(s)F−1(s) ⊙ F−1(s):ℂα(s):F−T(s) ⊙ F−T(s) . (35)

With Eq. (33) (equivalently, Eq. (31)) written in this way, we define (cf. Eq. (13))

S
.
g
α(s) ≔ kα(s) ϒα(s) − 1 Sα(s) =

ρ̇R
α(s)

ρR
α(s)

Sα(s) (36)

and

S
.
r
α(s) ≔ − kα(s)Υα(s) Sα(s) − Sdep

α (s)

= −
ρ̇R

α(s)
ρR

α(s)
+ kα(s) Sα(s) − Sdep

α (s)
(37)

as well as

S
.
e
α(s) ≔ ℂα(s): 1

2C
.
(s) (38)

so that Eq. (33) results from the addition of three contributions, growth-type, remodeling / 

relaxation-type, and elastic-type, to the stress rate S
. α (equivalently, σ°α in Eq. (31)), namely
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S
. α(s) = S

.
g
α(s) + S

.
r
α(s) + S

.
e
α(s) (39)

which, having been derived from the general (nonlinear, finite strain) constrained mixture 

model of Section 2.1, represents a generalization of the rate-form evolution equation 

employed in a temporally homogenized constrained mixture model for G&R (Cyron et al. 

2016). Indeed, as done in viscoelasticity, in which strain-like (Latorre and Montáns 2015; 

Sidoroff 1974) or stress-like (Holzapfel 1996; Simó 1987) internal state variable approaches 

can be employed to formulate evolution equations in rate form, one could compute stress 

evolutions in Eqs. (36)–(38) using appropriate strain- or stress-based internal variables, 

bypassing the need to track contributions of individual structurally significant constituents 

over the midand long-term past history (e.g., via Eqs. (2) and (29)), with consequent savings 

in computational time and memory. Of course, different approaches to G&R (integral- or 

rate-based, with the latter either internal strain- or stress-based) could lead to different 

predictions and results and thus must be subjected to experimental validation.

2.3. A constrained mixture model for arterial G&R in rate form

For illustrative purposes, we now specialize the evolution equations for referential mass 

density and Cauchy stresses in rate form for a cylindrical artery in maturity that can exhibit 

active or passive (pseudoelastic) material behaviors. We consider three main structurally 

significant constituents, an elastin-dominated amorphous matrix (α = e), oriented smooth 

muscle (α = m), and oriented collagen (α = c). We assume that elastin does not turnover 

during short to moderate periods of G&R (Wagenseil and Mecham 2009) while smooth 

muscle and collagen turnover continuously (generally within 4 to 6 months, Humphrey 

2002). We further consider active and passive contributions by smooth muscle (Murtada et 

al. 2017).

Eq. (6), with N = {e, m, c}, reads for this constrained mixture of solid constituents as

ρR(s) = ∑
α

e, m, c
ρR

α(s) = ρR
e (s) + ρR

m(s) + ρR
c (s) (40)

whereas Eq. (1), under the assumption of an axisymmetric state of stress (with er, eθ, and ez 

representing unit vectors in radial, circumferential, and axial directions, and using the 

compact notation jj → j for second- and fourth-order tensors) such that

σ(s) = ∑
j

r, θ, z
σ j(s)e j ⊗ e j − p(s)I, (41)

reads for each (principal) component
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σr(s) = σr
e(s) − p(s), (42)

σθ(s) = ∑
α

e, m, c
σθ

α(s) + σθ
act(s) − p(s), (43)

and

σz(s) = ∑
α

e, c
σz

α(s) − p(s), (44)

where only the elastin-dominated material (which includes effects of glycosaminoglycans, 

often of much lower mass fraction than that of elastin) contributes to radial stress, while all 

three constituents (with separate passive and active terms for smooth muscle) contribute to 

circumferential stress and only elastin and collagen contribute to axial stress. Assuming an 

axisymmetric deformation, F reads in terms of principal stretches

F(s) = ∑
j

r, θ, z
λ j(s)e j ⊗ e j (45)

where, from Figure 1, F(0) = Fo = I refers to the original homeostatic (loaded) configuration 

(cf. Bellini et al. 2014). Because of the constituent-specific deposition (pre)stretches, σ(0) = 

σo ≠ 0, in general. The resulting spatial velocity gradient l = F
.
F−1 is also symmetric, hence

l(s) ≡ d(s) = ∑
j

r, θ, z λ̇ j(s)
λ j(s) e j ⊗ e j . (46)

Lastly, since the principal directions of Cauchy stress remain constant over G&R time, we 

can also consider constant deposition stretch tensors Gα(τ) = Gα ∀τ (Latorre and 

Humphrey 2018a,b; Valentín et al. 2013), with associated constituent-level deposition 

stresses σα = GαSα Gα2 Gα = σdep
α  constant as well (i.e., σ α = σ o

α ≡ σ h
α).

2.3.1. Elastin—Consistent with prior comments, arterial elastin is assumed to be 

deposited and cross-linked in the perinatal period and, due to its long half-life under normal 

conditions (> 25 years), not turnover in maturity. Hence, mR
e (s) ≃ 0 for all s ≥ 0 herein. 

Moreover, in the absence of diseases characterized by increased elastolytic activity, qe (s, 0) 

≃ 1 over short-to-modest periods. Hence, elastin requires a different treatment within this 

formulation. We thus account for its contribution to the mechanical state of the artery at the 

Latorre and Humphrey Page 12

J Mech Phys Solids. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



initial time through an equivalent (fictitious, arising largely from prior somatic growth) 

deposition stretch tensor Ge(τ = 0) = Ge

Ge = ∑
j

r, θ, z
G j

ee j ⊗ e j (47)

such that additional incremental deformations for elastin given by Eq. (3) at time s, with F(τ 
= 0) = I, read

Fe(s) ≔ Fn(0)
e (s) = F(s)F−1(0)Ge(0) = F(s)Ge . (48)

The current mass of elastin per unit reference volume of mixture then remains constant over 

time, namely

ρR
e (s) = ρR

e (0) = ρe(0) = ρo
e, (49)

which in rate form yields

ρ̇R
e (s) = 0 (50)

consistent with Eq. (13) with neither production nor removal (i.e., ke (s) = 0) for s > 0.

Under the same assumptions (no production, no removal), it can be shown that components 

of Cauchy stress for elastin, Eq. (2), specialize to (Latorre and Humphrey 2018b)

σ j
e(s) = ϕe(s)λ j

2(s)G j
e2S j

e(s) =
ϕo

e

J(s)λ j
2(s)G j

e2S j
e(s),   j = r, θ, z (51)

Where Se Ce(s) = 2∂We Ce(s) / ∂Ce(s), with Ce(s) ≔ Cn(0)
e (s). The material time derivative of 

σ j
e(s) in Eq. (51) yields

σ̇ j
e(s) = 2σ j

e(s) + c j j
e (s)

λ̇ j(s)
λ j(s) + ∑

k ≠ j
c jk

e (s)
λ̇k(s)
λk(s) − σ j

e(s) J̇(s)
J(s) (52)

which, again, is consistent with the general Eq. (28) without production or removal of elastin 

for s > 0, with c jk
e ( j, k = r, θ, z) given in Appendix A. Note that 2σ j

e + c j j
e  accounts for 

geometrically and materially nonlinear stiffnesses in direction ej, as equivalently derived 
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from a “theory of small on large” (Baek et al. 2007a), and that c jk
e , with j ≠ k, introduces a 

Poisson-type coupling between the stress rate σ̇ j
e and transverse stretch rate λ̇k.

2.3.2. Smooth muscle—We assume that, like collagen, smooth muscle is continuously 

produced (cell division) and removed (cell apoptosis), hence associated referential mass 

densities and Cauchy stresses in rate form are given by the general formulation of Section 

2.2. In contrast to Eq. (50) for elastin, Eq. (13) for smooth muscle reads

ρ̇R
m(s) = km(s)ρR

m(s) ϒm(s) − 1 . (53)

The deposition stretch tensor for smooth muscle, assumed to be oriented predominantly in 

the circumferential direction, is

Gθ
m = Gθ

meθ ⊗ eθ, (54)

hence the rate of change of passive circumferential stress for smooth muscle is, from Eq. 

(28),

σ̇θ
m(s) = km(s) ϒm(s)ϕm(s)σθ

m − σθ
m(s) + 2σθ

m(s) + cθθ
m (s)

λ̇θ(s)
λθ(s) − σθ

m(s) J̇(s)
J(s) (55)

where σdep |θ
m (s) = ϕm(s)σθ

m. Note that the transverse-to-axial coupling term cθz
m = 0 because 

smooth muscle is aligned unidirectionally (Appendix A).

2.3.3. Collagen—Consistent with prior models (Bellini et al. 2014), we consider a four-

family distribution of collagen fibers, one oriented circumferentially (θ), one axially (z), and 

two symmetric diagonally (d). This collection of fiber families accounts for orientations 

observed via microscopy as well as difficult to measure cross-links that contribute to the 

overall anisotropy. The total referential mass density of collagen is thus

ρR
c (s) = ∑

i

θ, z, d
ρRi

c (s) (56)

which, assuming the same removal and production functions and related constants for all 

four families, satisfies in rate form (Latorre and Humphrey 2018b)

ρ̇R
c (s) = kc(s)ρR

c (s) ϒc(s) − 1 . (57)

Circumferential, axial, and symmetric diagonal deposition stretches are
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Gθ
c = Gθ

ceθ ⊗ eθ,   Gz
c = Gz

cez ⊗ ez, (58)

and

Gd
c = Gd

ced ⊗ ed,   ed = sinαdeθ + cosαdez,  with αd = ± αo, (59)

hence circumferential and axial components of rates of change of Cauchy stress are, from 

Eq. (28),

σ̇θ
c(s) = kc(s) ϒc(s)ϕc(s)σθ

c − σθ
c(s) + 2σθ

c(s) + cθθ
c (s)

λ̇θ(s)
λθ(s) + cθz

c (s)
λ̇z(s)
λz(s) − σθ

c(s) J̇(s)
J(s) , (60)

and

σ̇z
c(s) = kc(s) ϒc(s)ϕc(s)σz

c − σz
c(s) + 2σz

c(s) + czz
c (s)

λ̇z(s)
λz(s) + czθ

c (s)
λ̇θ(s)
λθ(s) − σz

c(s) J̇(s)
J(s) (61)

where (symmetric) coupling stiffness terms cθz
c = czθ

c  persist because of the diagonal fibers 

(Appendix A) that contribute to σθ
c (along with circumferential fibers) and σz

c (along with 

axial fibers).

2.3.4. Active stress—Consider the tensile stress generated by active contraction of 

smooth muscle cells, which, similar to the passive stress contribution, can be expressed in 

the general form

σθ
act(s) = ϕm(s)σθ

act(s) . (62)

Anticipating that we will assess mechanobiological stability of previously 

mechanobiologically equilibrated states, we assume the following form for σθ
act(s) in terms of 

an active second Piola–Kirchhoff stress (cf., Eq. (51) for elastin, without considering 

deposition stretches for the active contribution)

σθ
act(s) = ϕm(s)σθ

act(s) = ϕm(s)λθ
2(s)Sθ

act(s) (63)

which does not incorporate possible time-dependent readjustment of actomyosin filament 

overlap to optimize the force–length response (Baek et al. 2007b), as assumed by Valentín et 
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al. (2013). Yet, Eq. (63) allows Sθ
act to depend on a ratio of vasoconstrictors to vasodilators 

C, as, for example

σθ
act(s) = ϕm(s)λθ

2(s)Sθ
act(s) = ϕm(s)λθ

2(s)S 1 − e−C2(s) (64)

With S  a material constant and C ultimately depending on the flow-induced shear stress τw 

over the endothelium through the linearized expression (Valentín and Humphrey 2009)

C(s) = CB − CS Δ τw(s), (65)

with CB and CS constants, where Δτw, the relative change in τw with respect to the original 

homeostatic value τwo, can be expressed in terms of associated volumetric blood flow rates 

(Q, Qo) and luminal radii (a, ao) as (Latorre and Humphrey 2018a,b)

Δ τw(s) =
τw(s) − τwo

τwo
=

Q(s)ao
3

Qoa3(s)
− 1. (66)

Inclusion of the wall shear stress here reminds us that certain components of Cauchy stress 

can be important mechanobiologically though not important mechanically; note that flow-

induced wall shear stress is typically of the order 1.5 Pa while the pressure-induced in-plane 

intramural stresses are of the order 150 kPa, yet Pa-order changes in wall shear stress can 

dramatically affect matrix turnover and the geometry in which such turnover occurs. 

Nevertheless, the material time derivative of σθ
act in (63) yields, with ϕm = ρm/ρ ≡ ρR

m/ρR,

σ̇θ
act(s) =

ρ̇R
m(s)

ρR
m(s)

−
ρ̇R(s)
ρR(s) σθ

act(s) + 2σθ
act(s)

λ̇θ(s)
λθ(s) + ϕm(s)λθ

2(s)
dSθ

act(C(s))
dC(s) Ċ(s) (67)

where Ċ reads, from Eqs. (65) and (66),

Ċ(s) = − CS
τ̇w(s)
τwo

= CS
τw(s)
τwo

3 ȧ(s)
a(s) − Q̇(s)

Q(s) . (68)

Let an active stiffness-like term cθθ
act > 0 be

cθθ
act(s) ≔ ϕm(s)λθ

2(s)3CS
τw(s)
τwo

dSθ
act(C(s))
dC(s) (69)
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and the circumferential stretch for active stresses be approximated by

λθ(s) ≈ a(s)
ao

(70)

so ȧ/a ≈ λ̇θ /λθ, such that Eq. (67) adopts a similar expression to its passive counterpart, Eq. 

(55),

σ̇θ
act(s) = km(s) ϒm(s)ϕm(s)σθ

act(s) − σθ
act(s) + 2σθ

act(s) + cθθ
act(s)

λ̇θ(s)
λθ(s) − σθ

act(s) J̇(s)
J(s)

−
cθθ

act(s)
3

Q̇(s)
Q(s) .

(71)

Note that an increase (or decrease) in blood flow would potentially lead to an instantaneous 

vessel dilatation (or constriction) via the relaxation (or further contraction) of its smooth 

muscle, as desired during acute responses to altered flow (Humphrey 2002).

2.3.5. Mixture-level constitutive relations—Noticing that we include constituents 

that either turnover or not and that can have different passive and active contributions as well 

as different spatial arrangements and orientations, the constitutive relations for total 

referential mass density and Cauchy stresses in rate form specialize for our prototypical 

artery as

ρ̇R(s) = ∑
α

m, c
ρ̇R

α(s) = J̇(s)ρ, (72)

and

σ̇θ(s) = ∑
α

e, m, c, act
σ̇θ

α(s) − ṗ(s),   σ̇z(s) = ∑
α

e, c
σ̇z

α(s) − ṗ(s),   σ̇r(s) = σ̇r
e(s) − ṗ(s) (73)

where, for notational compaction, we include the superscript act for active circumferential 

stresses within the summation over the “constituent” index α. Let the “extra” part of stress 

(Humphrey 2002) given by different constituents in the principal directions be denoted with 

superscript x as

σθ
x(s) = ∑

α

e, m, c, act
σθ

α(s),   σz
x(s) = ∑

α

e, c
σz

α(s),  and σr
x(s) = σr

e(s) (74)

with respective stiffnesses as
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cθθ
x (s) = ∑

α

e, m, c, act
cθθ

α (s),   czz
x (s) = ∑

α

e, c
czz

α (s),  and crr
x (s) = crr

e (s) (75)

as well as (with c jk
x = ck j

x )

cθz
x (s) = ∑

α

e, c
cθz

α (s),   czr
x (s) = czr

e (s),  and cθr
x (s) = cθr

e (s) . (76)

Hence, with Eqs. (53), (57) for referential mass densities, and Eqs. (52), (55), (60), (61), and 

(71) for stress contributions, we can write constrained mixture equations in rate form for an 

idealized cylindrical artery as

ρ̇R = ∑
α

m, c
kαρR

α ϒα − 1 (77)

σ̇θ +
cθθ

act

3
Q̇
Q = ∑

α

m, c, act
kα ϒα ρR

α

ρR
σθ

α − σθ
α + 2σθ

x λ̇θ
λθ

+ ∑
j

r, θ, z
cθ j

x λ̇ j
λ j

− σθ
x ρ̇R

ρR
− ṗ (78)

σ̇z = kc ϒc ρR
c

ρR
σz

c − σz
c + 2σz

x λ̇z
λz

+ ∑
j

r, θ, z
cz j

x λ̇ j
λ j

− σz
x ρ̇R

ρR
− ṗ (79)

σ̇r = 2σr
x λ̇r
λr

+ ∑
j

r, θ, z
cz j

x λ̇ j
λ j

− σz
x ρ̇R

ρR
− ṗ (80)

where the rates in the right-hand sides are yet to be related to the variables of interest for 

each particular case. Note that these, and all relations in Section 2.3, hold at any point within 

a cylindrical arterial wall whether thin- or thick-walled.

2.4. Equivalent thin-walled artery: Stability analysis

We seek to analyze the mechanobiological stability of evolving loaded states of an artery, 

which we assume to have achieved a state of mechanobiological equilibrium when subjected 

to an inner pressure P = Ph, flow rate Q = Qh, and axial stretch λz = λzh. Because these 

external loads are eventually sustained over time during the dynamic stability analyses 

performed, the resulting solutions represent self-excited deformations caused by combined 
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growth, remodeling, and elastic responses. That is, we are not analyzing forced dynamic 

responses, either over short (cardiac cycle) or long (G&R) timescales. Moreover, because of 

residual stresses in maturity (which arise from materially non-uniform deposition stretches 

and somatic growth), the mean values of Cauchy stress represent well the transmural 

distribution of stress. Hence, we use mean values similar to those for a thin-walled pressure 

vessel. Because of the aforementioned order of magnitude difference in mean in-plane (θ 
and z) and out-of-plane (r) stresses, we also assume a quasi-plane-stress state for which |

σr|/σθ ~ |σr|/σz ≪ 1, hence the Lagrange multiplier in Eqs. (78)–(80) is obtained directly 

from Eq. (42) as (hereafter, we omit any dependences on times s or τ for notational 

convenience)

σr = σr
e − p = 0 p = σr

e . (81)

Noticing from Eq. (51) that σ j
e ∝ G j

e2 and that in-plane deposition stretches for elastin are 

typically Gθ
e Gz

e 2, with Gr
e = 1/ Gθ

eGz
e 1/4, we have

σr
e

σθ
e

σr
e

σz
e

1
Gθ

eGz
e

3
≪ 1 (82)

and because smooth muscle and/or collagen contribute to circumferential and axial stresses 

through Eqs. (74)1 and (74)2, we find

p = σr
e ≪ σθ

e, σz
e < σθ

x, σz
x (83)

whereby p will be negligible in this mechanobiological stability analysis. If this assumption 

did not hold at a given homeostatic (loaded) state, a similar procedure could be followed 

while incorporating ṗ = σ̇r
e, from Eq. (80), in Eqs. (78) and (79). Finally, for analytical 

convenience, we consider the same (original) rates and gains for turnover of smooth muscle 

and collagen, thus

ko
m = ko

c ≡ ko,  and ϒm = ϒc ≡ ϒ . (84)

2.4.1. Nonlinear, non-autonomous system—The previous assumptions, along with 

the external loads remaining constant over time during the stability (self-excitation) analysis, 

that is,

P = Ph,   Q = Qh,   λz = λzh Ṗ = 0,   Q̇ = 0,   λ̇z = 0 (85)
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reduce Eqs. (77)–(80) to the following nonlinear system of first-order differential equations

ρ̇R = k(ϒ − 1) ρR − ρo
e (86)

σ̇θ = k ∑
α

m, c, act
ϒ

ρR
α

ρR
σθ

α − σθ
α + 2σθ + cθθ

λ̇θ
λθ

+ cθr
λ̇r
λr

− σθ
ρ̇R
ρR

(87)

σ̇z = k ϒ
ρR

c

ρR
σz

c − σz
c + czθ

λ̇θ
λθ

+ czr
λ̇r
λr

− σz
ρ̇R
ρR

(88)

which suggests that ρR, σθ, and σz could represent an appropriate set of time-dependent 

variables for an asymptotic stability analysis of arterial G&R if the three right-hand sides 

could be expressed as functions of these variables and, perhaps, G&R time s, either 

implicitly or explicitly. In other words, we seek to identify a non-autonomous system of the 

form (Rouche et al. 1977)

y. (s) = f(y(s), s),   s ≥ 0,   y(0) = yh + δyh (89)

with y = [ρR, σθ, σz]T the dependent variable, s the independent variable, f (y, s) a nonlinear 

vector-valued function, and δyh an initial (typically modest) perturbation relative to the 

evolved homeostatic state yh = [ρRh, σθh, σzh]T.

Consider first the global equilibrium equation for mean circumferential stress σθ = Pa/h, 

with transmural pressure P, luminal radius a, and wall thickness h, which can be expressed 

in terms of γh = Ph/Po, σθo = Poao/ho, λθ = a/ao, and ρR/ρ = J = λrλθλzh, with λr = h/ho, as

σθ = σθo
Phaho
Poaoh = γhσθo

λθ
λr

= γhσθo
λθ

2λzh
J = γhλzhρσθo

λθ
2

ρR
(90)

Hence, internal (constitutive) and external (mechanical equilibrium) expressions for σ̇θ yield, 

from Eqs. (87) and (90)

k ∑
α

m, c, act
ϒ

ρR
α

ρR
σθ

α − σθ
α + 2σθ + cθθ

λ̇θ
λθ

+ cθr
λ̇r
λr

− σθ
ρ̇R
ρR

= σθ 2
λ̇θ
λθ

−
ρ̇R
ρR

(91)

whereupon the associated (total) Truesdell rate vanishes, cf. Eq. (31),
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σ° θ = k ∑
α

m, c, act
ϒ

ρR
α

ρR
σθ

α − σθ
α + cθθ

λ̇θ
λθ

+ cθr
λ̇r
λr

= 0 (92)

Furthermore, J̇ = J tr l, with Eqs. (15)1 and (46), and λ̇z = 0, yields

λ̇θ
λθ

+
λ̇r
λr

=
ρ̇R
ρR

(93)

which, along with Eq. (92), enable expressions for λ̇θ/λθ and λ̇r /λr to be substituted into Eqs. 

(87) and (88). Letting the stimulus function ϒ in Eqs. (86)–(88) be driven by relative 

intramural Δσ (same as in Eq. (9)) and wall shear Δτw stresses (same as in Eq. (65)) through 

a linearized relation (Latorre and Humphrey 2018b; Valentín and Humphrey 2009), we have

ϒ = 1 + Kσ Δ σ − Kτ Δ τw (94)

with Kσ ≥ 0 and Kτ ≥ 0 gain-type G&R parameters, and σ in Eq. (10) the first principal 

invariant of σ, namely σI = σr + σθ + σz ≃ σθ + σz, so

Δ σ =
σI − σIo

σIo
≃

σθ + σz
σθo + σzo

− 1 (95)

which, importantly, accounts for the biaxial wall mechanics, noting that axial mechanics 

plays fundamental roles in arterial mechanics (Humphrey et al. 2009), including arterial 

G&R (Gleason et al. 2007). In addition, we can rewrite τw/τwo in Eq. (66), with εh = Qh/Qo 

and Eq. (90), as

τw
τwo

=
Qhao

3

Qoa3 =
εh

λθ
3 = εh γhλzh

ρσθo
ρRσθ

3/2
(96)

so we obtain the desired dependences for ϒ = ϒ(y) ≡ ϒ(ρR, σθ, σz). Now, let the terms 

∑α
m, c, act σθ

α and σz
c in Eqs. (87) and (88) be expressed as

∑
α

m, c, act
σθ

α = σθ − σθ
e,  and σz

c = σz − σz
e . (97)
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If, as in previous work (Latorre and Humphrey 2018a,b,c), the hyperelastic response of 

elastin is modeled via a neoHookean function with shear modulus ce, for which Sθ
e = Sz

e = ce

are constant, we have from Eqs. (51) and (90)

σθ
e = ϕo

eGθ
e2Sθ

e λθ
2

J = σθo
e λθ

2

J =
σθo

e

γhλzhσθo
σθ (98)

and

σz
e = ϕo

eGz
e2Sz

e λzh
2

J = σzO
e λzh

2

J = λzh
2 σzo

e ρ
ρR

(99)

whereby terms in Eq. (97) can be expressed as a function of the variables in y = [ρR, σθ, 
σz]T as

∑
α

m, c, act
σθ

α = 1 −
σθo

e

γhλzhσθo
σθ,  and σz

c = 1 − λzh
2 ρσzo

e

ρRσz
σz . (100)

Likewise, because c jk
e = 0 for this particular case, cθr = 0 = czr in Eqs. (87) and (88). 

Consider, finally, the terms in Eqs. (87) and (88)

∑
α

m, c, act ρR
α

ρR
σθ

α,  and 
ρR

c

ρR
σz

c (101)

which, after noticing that if (Latorre and Humphrey 2018b)

ko
m = ko

c, ϒm = ϒc ρR
m

ρo
m =

ρR
c

ρo
c =

ρR
m + ρR

c

ρo
m =

ρR − ρo
e

ρ − ρo
e (102)

then

ρR
c

ρR
σz

c = ρ
ρR

ρR
c

ρo
c

ρo
c

ρ σz
c = ρ

ρR

ρR − ρo
e

ρ − ρo
e σzo

c (103)

with the (original) total axial stress for collagen σzo
c = ϕo

ασz
c constant. Moreover
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∑
α

m, c, act ρR
α

ρR
σθ

α = ∑
α

m, c, act ρR
α

ρR

ρo
α

ρo
α

ρo
α

ρ σθ
α = ρ

ρR

ρR − ρo
e

ρ − ρo
e ∑

α

m, c, act
ϕo

ασθ
α (104)

with

∑
α

m, c, act
ϕo

ασθ
α = ϕo

mσθ
m + ϕo

cσθ
c + ϕo

mσθ
act = σθo

m + σθo
c + ϕo

m ρRσθ
γhλzhρσθo

Sθ
act σθ, ρR (105)

where σθo
m  and σθo

c  are constant. Note, from Eqs. (63), (64), (65), (90) and (96), the 

dependences for σθ
act

σθ
act = λθ

2 σθ, ρR Sθ
act σθ, ρR . (106)

Therefore, after some lengthy (but otherwise straightforward) algebra, Eqs. (86)–(88) reduce 

to the following nonlinear system of differential equations of the form in Eq. (89), which, for 

prescribed constant loads Ph, Qh, λzh, and initial perturbation δyh, describes the evolution of 

ρR, σθ, and σz in terms of themselves and the G&R-time-dependent stiffnesses cθθ and czθ 
(see Eqs. (75), (76), and Appendix A), namely

ρ̇R
kρR

=
ρR − ρo

e

ρR
(ϒ − 1) (107)

σ̇θ
kσθ

= −
ρR − ρo

e

ρR
(ϒ − 1) +

2σθ
cθθ

Ω (108)

σ̇z
kσz

= −
ρR − ρo

e

ρR
(ϒ − 1) +

2σθ
cθθ

czθ
2σz

Ω − χ (109)

where

ϒ = 1 + Kσ
σθ + σz

σθo + σzo
− 1 − Kτ

τw
τwo

− 1 , (110)

and we defined
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Ω ≔ 1 − 1
γhλzh

σθo
e

σθo
− ϒ

ρR − ρo
e

ρ − ρo
e

ρ
ρR

σθo
m + σθo

c

σθ
+ 1

γhλzh

ϕo
mSθ

act

σθo
, (111)

and

χ ≔ 1 − λzh
2 ρ

ρR

σzo
e

σz
− ϒ

ρR − ρo
e

ρ − ρo
e

ρ
ρR

σzo
c

σz
(112)

with τw/τwo (in ϒ) and Sθ
act (in Ω) functions of ρR and σθ from Eqs. (96) and (106). 

Although one would need to update the hereditary-integral-based elastic moduli cθθ and czθ 
(cf. Eq.(29)) between incremental steps to solve numerically Eqs. (107)–(109) for ρR, σθ, 

and σz, we will just need their homeostatic values cθθh and czθh to analyze the stability of 

the dynamical system of Equations (107)–(109) near a homeostatic state.

2.4.2. Mechanobiological equilibrium—As mentioned above, we seek a 

mechanobiological stability analysis of an equilibrated mechanobiological state, previously 

computed for prescribed Ph, Qh, λzh. Mathematically, the equilibrated state yh must satisfy 

ρ̇R = 0, σ̇θ = 0, and σ̇z = 0 in Eqs. (107)–(109), that is, from Eq. (89)

0 = f(y(s), s) ∀s ≥ 0 y(s) = yh (113)

hence representing a so-called equilibrium or critical point (Rouche et al. 1977) of this 

system of first-order differential equations.

Considering ρ̇R |h = 0, σ̇θ |h = 0, and σ̇z |h = 0 in Eqs. (107)–(109), requires

ϒh = 1,   Ωh = 0,  and  χh = 0 (114)

at mechanobiological equilibrium. It can be shown, numerically, that the steady-state 

solution yh = [ρRh, σθh, σzh]T obtained from Eq. (114), via our rate-based constrained 

mixture approach, represents the same mechanobiologically equilibrated solution obtained 

from an integral-based constrained mixture approach for the same prototypical vessel 

(Latorre and Humphrey 2018b). In particular, it is easy to verify, analytically, that the 

original homeostatic rule-of-mixture solution (cf. Section 3.2 in Latorre and Humphrey 

(2018b), with volume and mass fractions being equivalent and p negligible with respect to 

in-plane stresses)
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ρR = ∑
α

e, m, c
ρo

α ≡ ρ, (115)

σθ = ∑
α

e, m, c, act
ϕo

ασθo
α = ∑

α

e, m, c, act
σθo

α ≡ σθo, (116)

and

σz = ∑
α

e, c
ϕo

ασzo
α = ∑

α

e, c
σzo

α ≡ σzo (117)

obtained for P = Po, Q = Qo, and λz = λzo = 1, satisfies ϒo − 1 = Ωo = xo = 0 in Eqs. (110)–

(112), and, thus, represents an associated critical point of the system of first-order Equations 

(107)–(109).

2.4.3. Mechanobiological stability—Importantly, distinction between time-dependent 

and time-independent solutions, Eqs. (89) and (113), respectively, allows us to analyze two 

types of (un)stable responses related to different mechanobiological sources. Briefly, Eq. 

(89) describes the evolution of y (s) near a previously mechanobiologically equilibrated 

solution yh following an initial perturbation δyh at s = 0 for prescribed model parameters and 

external loads for s ≥ 0, and, hence, requires that the critical point yh exists and is bounded, 

in general. Subsequently, a dynamic stability analysis determines if the time-dependent 
solution y (s > 0) approaches yh, remains close to yh, or diverges. On other hand, Eq. (113) 

yields a time-independent mechanobiologically equilibrated solution yh for prescribed 

model parameters and external loads, which might be statically bounded or unbounded, or 

even give rise to bifurcations. We thus refer to mechanobiological dynamic stability as the 

ability of the time-dependent solution y (s) to remain close to a finite (bounded) equilibrated 

state yh, with rate-dependent terms in Eq. (89) playing a central role. We alternatively refer 

to mechanobiological static stability as the ability of time-independent solutions yh to 

remain finite (bounded), where only rate-independent terms in Eq. (89) are relevant.

Mechanobiological (static) stability of yh with respect to sustained 
perturbations.: Consider our idealized artery with initial geometry and mass fractions xo = 

{ao, ho, lo, ϕo} in an original homeostatic (loaded) state o. An associated original 

equilibrated solution yo = [ρRo, σθo, σzo]T (with ρRo = ρ) is obtained from Eq. (113) for 

prescribed original external loads ξo = {Po, Qo,λzo} and original model parameters ςo, 

namely, Eqs. (115)–(117). Consider, too, an evolved equilibrated solution yh = [ρRh, σθh, 
σzh]T, obtained from Eq. (113) for evolved loads ξh = {Ph, Qh, λzh} and evolved parameters 

ςh, which can be computed numerically from the three conditions in Eq. (114) (cf., 

equivalently, Latorre and Humphrey 2018b). The steady-state solution yh is called 
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mechanobiologically stable with respect to sustained changes in external loads ξh if, for 

every (physiological) ϵ > 0, there is a (physiological) δ > 0, such that

ξh − ξo < ϵ yh − yo < δ . (118)

Equivalently, yh is called mechanobiologically stable with respect to sustained changes in 

parameters ςh if, for every (physiological) ϵ > 0, there is a (physiological) δ > 0, such that

ςh − ςo < ϵ yh − yo < δ . (119)

Otherwise, the steady-state solution yh is mechanobiologically unstable with respect to 

physiologically admissible changes in ξh or ςh. Note that neither G&R time s nor rate-

dependent terms influence this type of statically (un)bounded solution.

Eq. (113) with y (s) = yh, absent G&R time s, and explicit consideration of the evolution of a 

single parameter ζh ϵ {ξh, ςh} can be rewritten as a one-parameter family of equations f (yh, 
ζh) = 0. By the implicit function theorem, we have

f yh, ζh = 0 yh = yh ζh , (120)

hence static stability of yh with respect to changes in ζh can be assessed through the 

evolution of the (implicit) parameter-dependent solution yh = yh (ζh). Differentiation of f (yh 

(ζh) , ζh) = 0 with respect to ζh yields

df yh ζh , ζh
dζh

=
∂f yh, ζh

∂yh
⋅

dyh ζh
dζh

+
∂f yh, ζh

∂ζh
= 0 (121)

Whereupon

dyh ζh
dζh

= −
∂f yh, ζh

∂yh

−1
⋅

∂f yh, ζh
∂ζh

. (122)

A first-order Taylor expansion yields yh (ζh + Δζh) ≃ yh (ζh)+(dyh (ζh) /dζh)Δζh. Assuming 

that ∥yh∥ increases monotonically with respect to monotonic changes in Δζh, 

mechanobiological static stability of yh, in the sense of Eqs. (118) or (119), requires, from 

Eq. (122), that the Jacobian matrix ∂f (yh, ζh) /∂yh is invertible. In other words, if there 

exists a physiological value ζh (i.e., |ζh − ζo| < ϵ), such that
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det
∂f yh, ζh

∂yh
0 yh ζh − yo ∞ (123)

then the mechanobiologically equilibrated solution yh is statically unstable (i.e., unbounded). 

For our idealized artery,

∂f yh, ζh
∂yh

= ∂f(y, ζ)
∂y h

=

∂ ρ̇R
∂ρR

∂ ρ̇R
∂σθ

∂ ρ̇R
∂σz

∂σ̇θ
∂ρR

∂σ̇θ
∂σθ

∂σ̇θ
∂σz

∂σ̇z
∂ρR

∂σ̇z
∂σθ

∂σ̇z
∂σz h

(124)

which we compute numerically using Eqs. (107)–(109) in examples below. Importantly, 

other types of G&R instabilities (not necessarily unbounded) could arise depending on the 

specific evolution of the nonlinear function yh (ζh), including limit-point instabilities and/or 

bifurcations (cf. Erlich et al. 2018). Hence, each case, defined by specific constitutive 

relations, material constants, geometry, and boundary conditions should be evaluated 

separately (Haslach and Humphrey 2004).

Mechanobiological (dynamic) stability of y (s) with respect to transient perturbations 
near yh.: As explained above, a mechanobiologically equilibrated solution yh represents a 

critical point of Eq. (89) for a given original geometry and mass fractions xo, prescribed 

evolved loads ξh, and prescribed evolved model parameters ςh. Assume now that for a given 

ϵh > 0, there exists a δh > 0 such that Eqs. (118) and (119) are satisfied, or, in other words, 

that yh exists and remains physiological. Eq. (89), with xo given, and ξh and ςh fixed, 

describes a time-dependent solution y (s ≥ 0) following an initial perturbation δyh at s = 0. 

The time-dependent solution y(s) is called mechanobiologically stable at s = 0 with respect 

to arbitrary perturbations δyh if, for every ϵ > 0, there is a δ > 0 such that if

δyh < ϵ y(s) − yh < δ ∀s ≥ 0. (125)

Otherwise, y(s) is mechanobiologically unstable at s = 0 with respect to transient 

perturbations δyh. Note that both the G&R time s and rate-dependent terms play crucial 

roles in dynamically (un)bounded solutions.

Consider an evolved equilibrium solution yh = [ρRh, σθh, σzh]T of Eqs. (107)–(109) for 

prescribed ξh and ςh, with y. = 0. We linearize about yh (0), as given in Eq. (89), as
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ẏ = f(y, s) ≃ f yh, 0 + ∂f(y, s)
∂y h

⋅ y − yh + ∂f(y, s)
∂s h

(s − 0) (126)

where we neglect higher-order terms. Considering that cθθ and czθ are additional variables 

(to ρR, σθ, and σz) that depend on s,

∂f(y, s)
∂s h

=

∂ ρ̇R
∂s

∂σ̇θ
∂s
∂z
∂s h

= Ωh

0

−
2σθ

cθθ
2

dcθθ
ds

−
2σθ

cθθ
2

czθ
2

2σz

d cθθ/czθ
ds

h

= 0 (127)

which, importantly, vanish because of the equilibrium value Ωh = 0 in Eq. (114). Thus, since 

yh is an equilibrium point (i.e., f (yh, 0) = 0) and ∂f (y, s) /∂s|h = 0, linearization of Eq. (89) 

at yh (i.e., Eq. (126)) is represented by a linear autonomous system of differential equations 

in terms of an incremental (time-dependent) solution δy(s) = y(s) − yh

δẏ(s) = ∂f(y, s)
∂y h

⋅ δy(s),   s ≥ 0,   δy(0) = δyh, (128)

which is valid in a neighborhood of the evolved homeostatic solution y = yh.

It is well-known (Hairer et al. 1993) that the eigenvalues of the matrix of constant 

coefficients ∂f (y, s) /∂y|h determine the stability of the associated linear(ized), autonomous 

system given in Eq. (128). The question now is whether these eigenvalues determine, too, 

the stability of the nonlinear, non-autonomous system given in Eq. (89) near the equilibrium 

state yh. This theory, initiated in the late 1800s, was “brought to perfection”(Hairer et al. 

1993) by Lyapunov (1882), so we employ his main contributions in this regard.

Original homeostatic state.: For illustration, we analyze analytically the asymptotic 

stability of y (s) near the original equilibrium state yo. After considering the dependences of 

the right-hand sides of Eqs. (107)–(109) on ρR, σθ, and σz, performing all the required 

partial derivatives in Eq. (124), and rearranging terms conveniently (see Appendix B), we 

obtain the following (generally complex) eigenvalues for the linearized problem of Eq. (128) 

particularized at the original state yo

l1o = − ko (129)
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l2o =
ko
2 To + To

2 − 4Do (130)

l3o =
ko
2 To − To

2 − 4Do (131)

where To ≔ (tr (∂f/∂y|o) − l1o)/ko = tr (∂f/∂y|o)/ko + 1 reads

To = −
2σθo

ne

cθθo

𝒞θzo
2σθo

+ ϕo
ne − ϕo

e σzo
ne

σθo
Kσ −

2σθo
ne

cθθo
Kτ −

𝒞θθo
act

cθθo
+

2σθo
ne

cθθo
, (132)

and Do ≔  det  ∂f / ∂y|o /l1o /ko
2 = −  det  ∂f / ∂y|o /ko

3 reads

Do =
2σθo

ne

cθθo
ϕo

e 1 +
σzo

ne

σθo
+

𝒞θθo
act

cθθo
ϕo

ne − ϕo
e σzo

ne

σθo
Kσ +

2σθ0
ne

cθθo
Kτ, (133)

with Kσ = Kσσθo/σIo, Kτ = 3Kτ /2, ϕo
ne = 1 − ϕo

e, σθo
ne = σθo − σθo

e , σzo
ne = σzo − σzo

e , 

𝒞θzo = 2σθo + cθzo and 𝒞θθo
act = 2σθo

act + cθθo
act . Clearly, many parameters influence the system, 

including mass fractions, active stress and stiffness (which can depend on vasoactive 

parameters), passive circumferential and axial stresses, and circumferential and axial-to-

circumferential total stiffnesses (that depend, additionally, on elastic constants, deposition 

stretches and diagonal collagen orientation), and, of course, rate and gain parameters for 

removal and production.

Regarding the type and sign of the eigenvalues l1o to l3o in Eqs. (129)–(131), we firstly 

observe that ≷

ko ≷ 0 l1o ≶ 0. (134)

Hence, for l1o < 0 (i.e., with ko > 0, which is physical), one can assure, based on a linearized 

analysis (Rouche et al. 1977), that the following (partial) results regarding the critical point 

yo = [ρ, σθo, σzo]T of the nonlinear system of Eqs. (107)–(109) hold in a neighborhood of yo 

(cf. the Trace-Determinant plane, Figure 9.1.9 in Boyce and DiPrima 2012) such that

To < 0 and Do > 0 y(s) is asymptotically stable (135)
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or

To > 0 or Do < 0 y(s) is unstable (136)

where neglect of higher-order terms in Eq. (126) intentionally disregarded particular cases 

that would generally require their consideration (e.g., complex eigenvalues with vanishing 

real parts, giving rise to “the [nonlinear] center problem”, cf. Hairer et al. 1993). 

Importantly, if, because of the current lack of empirical evidence of oscillatory behaviors in 

vivo over G&R timescales, one assumes that physiological G&R responses are dynamically 

stable and progress over time without oscillations, then To < 0 and Do > 0 in Eq. (135) must 

additionally satisfy

To < − 2 Do < 0 y(s) is asymptotically stable without oscillations (137)

which, based on Eqs. (132) and (133), imposes conditions on mechanobiological parameters 

to ensure physiologically reasonable dynamical adaptations. Indeed, depending on different 

values of the trace To and determinant Do (hence, eigenvalues l2o and l3o), we found in 

numerical examples below that so-called asymptotically stable (spiral or nodal) sinks, 

unstable (spiral or nodal) sources, or neutrally stable centers (Boyce and DiPrima 2012) are 

mathematically admissible.

2.5. Illustrative results for the murine aorta

Recall that the mechanical response of elastin is modelled using a neoHookean relation

We Ce(s) = ce

2 Ce(s):I − 3 , (138)

with ce a shear modulus, which we used to express σθ
e and σz

e in Eqs. (98) and (99) in terms 

of the primary variables σθ and ρR. Conversely, smooth muscle and collagen are modelled 

using Fung-type relations

Wα λn(τ)
α (s) =

c1
α

4c2
α e

c2
α λn(τ)

α2 (s) − 1 2
− 1 ,   α = m, c, (139)

where c1
α (dimensions of stress) and c2

α (dimensionless) are material parameters, and λn(τ)
α (s)

is the fiber stretch (relative to its evolving natural configuration due to continued matrix 

production). Collagen fiber families oriented in circumferential, axial, and symmetric 

diagonal directions have respective fractions βθ, βz, and βd = 1 − βθ − βz. Representative 

values of parameters for a mouse descending thoracic aorta are listed in Table 1, with 

smooth muscle and collagen sharing rate and gain constants for convenience, recall Eqs. (84) 
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and(94). Additional values needed to quantify the active response of smooth muscle through 

Eqs. (64) and (65) are given in specific examples below. The inner pressure at the original 

homeostatic state, for vanishing active contribution, is Po = 13.2 kPa, with mean values of 

circumferential ˙σθo = 213 kPa and axial σzo = 238 kPa stresses in the original homeostatic 

state, consistent with experimental findings (Bellini et al. 2014).

3. Illustrative Results

Here, we consider three cases of (patho)physiological importance – an acute but sustained 

increase in blood pressure, a pathological loss of elastin, and the role of active smooth 

muscle contraction – as well as two studies of key constitutive parameters.

3.1. Mechanobiological stability of equilibrium solutions

3.1.1. Acute increase in pressure—Consider the equilibrium inner pressure ratio γh 

= Ph/Po as the driving parameter ζh for a one-parameter family of nonlinear equations of the 

type (120)1, explicitly, Eqs. (107)–(109) with y. = ρ̇R, σ̇θ, σ̇z
T = 0 ∀s ≥ 0, or, alternatively, 

Eqs. (114). Let the flow rate and axial stretch preserve their original homeostatic values εh = 

Qh/Qo = 1 and λzh =1. The solution to these time-independent equations, with baseline 

parameters in Table 1, represents a mechanobiologically equilibrated state for each γh, that 

is, yh(γh) in Eq. (120)2. Corresponding inner radius ah, thickness hh and axial force fh are 

then obtained from ρRh/ρ = Jh plus the mechanical equilibrium equations ˙σθh = Phah/hh and 

˙σzh = fh/(2πahhh), with Jh/λzh = λrh λθh = hhah/(hoao).

Figure 2 shows equilibrium values for (a) ah, (b) hh, (d) σθh, and (e) σθzh as functions of the 

stimulation-driver Ph/Po. In addition, panels (c) and (f) show the evolution of these variables 

in respective phase-type planes, with the driving parameter γh removed. The pressure was 

increased from its original homeostatic value γo = 1 (i.e., Po ≈ 99 mmHg) up to an evolved 

ratio γh = 1.8 (i.e., Ph ≈ 178 mmHg), hence ϵ = 0.8Po in Eq. (118), which is a proper range 

of biological interest. Observe that all the equilibrium variables remain statically bounded 

for increasing pressure within this range (following, e.g., Humphrey 2002, qualitatively), 

which, according to Eq. (118), represents a mechanobiologically stable situation. The 

problem remains well-posed for this range of pressures, with the γh-dependent Jacobian 

determinant, cf. Eq. (123), Do = −  det  ∂f / ∂y|o /ko
3 = 0.15 for γo = 1 and 

Dh = −  det  ∂f / ∂y|h /kh
3 = 0.10 for γh = 1.8. The partial derivatives ∂f/∂y|h at equilibrium 

points yh(γh), see Eq. (124), were computed numerically via forward (first-order) finite 

differences. In particular, the Jacobian determinant computed numerically at the original 

homeostatic state was consistent with the analytical expression in Eq. (133). Results show 

wall thickening with slight dilatation as is common in hypertension (Humphrey 2002).

3.1.2. Elastin degradation—Consider G&R driven, quasi-statically, by elastin 

degradation prescribed ζh ≡ ch
e = 1 − φh co

e where co
e is the original shear modulus for elastin, 

ch
e is the evolved modulus used to compute the associated equilibrated states, and φh ∊ [0, 1] 

quantifies elastin degradation. In addition to the flow rate and axial stretch, the inner 
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pressure also remains constant, that is, γh = εh = γzh = 1. Note that the modified elastin 

properties, Eqs. (98) and (99) derived for a constant value ce, needed to be updated by the 

corresponding factor, ch
e /co

e = 1 − φh. If Kτ= Kσ/2 (Table 1), we find a bounded growth of the 

vessel for all φh ∊ [0, 1]; in contrast, if Kτ= Kσ/5, we find an unbounded growth at some φh 

< 1. Specifically, Figure 3 shows equilibrium values for (a) ah, (b) hh, (d) σθh, and (e) σzh as 

functions of the stimulation-driver φh. Panels (c) and (f) show associated evolutions in phase 

planes. Following prior studies, which decrease either the mass fraction of elastin (Cyron et 

al. 2014; Zeinali-Davarani et al. 2011) or its elastic parameter (Valentín et al. 2013; Watton 

et al. 2004), we degraded ch
e up to φh,max ≈ 0.8, namely ϵ ≈ 0.8co

e in Eq. (119). Observe in 

this case that equilibrium values of inner radius and thickness, which remain statically 

bounded initially, rapidly diverge when ch
e approaches the value ch

e = (1 − 0.775)co
e = 0.225co

e, 

at which an asymptotic growth response occurs. Consistent with Eq. (123), the problem 

becomes ill-posed during a quasi-static evolution, with Jacobian determinants Do = 0.069 for 

φo = 0 and Dh → 0+ for φh →0.775−. Conversely, equilibrium values of intramural stresses 

decreased only slightly, remaining close to normal. These results are consistent with 

previous evolution analyses and observations (cf. Valentín et al. 2013 and references therein) 

showing that irreversible damage to elastin prevents an artery from maintaining its original 

homeostatic geometry and composition; with the passive stress contribution by elastin 

diminished, the artery distends and collagen production increases in an attempt to 

compensate (Cyron et al. 2014). A similar asymptotic growth response results for the 

pressure-driven case of Figure 2, with ch
e = co

e constant, but with Kτ= Kσ/5 and a high inner 

pressure of Ph ≈ 4.4Po, which could be reached only in cases of extreme adaptations such as 

veins placed in the arterial system (Ramachandra et al. 2017). Note that this blow-up 

pressure, if any, depends on specific values of material parameters. Finally, the Jacobian 

determinants Dh computed for all the static cases studied evolved continuously and were 

positive. According to Eq. (122), a potential change of sign of Dh(yh, ζh), occurring at a 

bounded equilibrium state yh, could lead to singularities of some primary variables in the 

corresponding phase plane. At least in the cases analyzed, with the present boundary 

conditions, constitutive relations and simulation-driver parameters, we observed asymptotic 

responses and not limit points or bifurcations.

3.2. Mechanobiological stability of dynamic evolutions

3.2.1. Gain parameters Kσ and Kτ—The results in Section 3.1 describe how (static) 

equilibrium points of the system of Eqs. (107)–(109) evolve with respect to sustained 

changes in external loads or model parameters (e.g., in Figures 2 or 3). Ideally, in the 

absence of further perturbations, these solutions would remain statically equilibrated. We 

now employ Eqs. (107)–(109), including rate terms, to describe how perturbed dynamic 

solutions behave near a previously equilibrated point under constant loads. Specifically, 

consider perturbations of y (s) around the original homeostatic state yo with parameters in 

Table 1, that is, the initial equilibrium point in Figures 2 or 3. To show a precise 

correspondence between the integral-based formulation of Section 2.1 and rate-based 

formulation of Section 2.2, we compute the eigenvalues of the Jacobian matrix in Eqs. 

(129)–(131) but also the temporal evolution of the system using the integral-based 
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formulation. For all cases analyzed, the transient (impulse-like) perturbation consists of a 

rapid rise of inner pressure up to 1.5Po at s = 0+ days, which is maintained for 20 days and 

returned back to the original homeostatic value Po at s = 20+ days. The dynamic stability 

character of y (s) around the original state yo is then analyzed according to Eq. (125). Figure 

4 shows five different dynamic responses associated with increasing absolute values of the 

gain parameters Kσ= Kτ > 0, which, based on Eq. (110), do not modify the original 

homeostatic state (because the terms within parentheses vanish originally, i.e., ϒo ≡ 1 in any 

case). For the first case, Kσ = 0.03, we obtain To = 0.149 > 0 and Do = 0.004 > 0, which 

yields eigenvalues l2o/ko = 0.110 > 0 and l3o/ko = 0.040 > 0 in Eqs. (130) and (131), 

representing an asymptotically unstable (non-oscillatory) solution, or unstable source; see 

the phase plane in Figure 4. The case Kσ = 0.12 yields To = 0.087 > 0 and Do = 0.018 > 0, 

with complex conjugates l2o and l3o given by Ro ≡ Re(l2o)/ko = 0.044 > 0 and Io ≡ 
Im(l2o)/ko = 0.125, representing an asymptotically unstable (oscillatory) solution, or 

unstable spiral. The specific value Kσ = 0.2445 results in a dynamic response that is 

neutrally stable around yo, with To = 0 and Do = 0.036 > 0, hence Ro = 0 and Io = 0.189, 

represented by a stable center. The oscillatory response becomes asymptotically stable for a 

further increase up to Kσ = 0.3, with To = −0.038 < 0 and Do = 0.044 > 0, hence Ro = 

−0.019 < 0 and Io = 0.208, represented by a stable spiral in the phase plane. Finally, for the 

higher value Kσ = 1.8, we obtain To = −1.075 < 0 and Do = 0.262 > 0, which yields real 

eigenvalues l2o/ko = −0.372 < 0 and l3o/ko = −0.703 < 0, representing an asymptotically 

stable (non-oscillatory) solution, or stable sink in the phase plane. Indeed, based on the 

condition in Eq. (137), stable non-oscillatory responses were obtained for Kσ = 2Kτ > 1.67.

Note the apparently low influence of neglected higher order terms in Eq. (128), especially 

for Kσ = 0.2445, which remains neutrally stable, even for a moderate perturbation as the one 

introduced herein. Additional information regarding the evolution of y (s) after removing the 

perturbation can be extracted from the eigenvalues computed from the linearized problem, as 

rates of amplitude decay / grow (from their real part) or periods of oscillatory responses 

(from their imaginary part). For example, for Kσ = 0.2445, Im(l2o) = Ioko = 0. 10189 days−1, 

which yields an oscillatory period of 2π/Im(l2o) ≈ 332 days, consistent with the 

corresponding undamped response in Figure 4 computed using the associated integral-based 

formulation.

Lastly, it can be shown that the same qualitative behavior is obtained for mean 

circumferential and axial stresses for the different cases analyzed. For illustration, we show 

in Figure 5 the dynamic evolution of σθ and σz for Kσ = 0.12 (first row, unstable) and Kσ = 

0.3 (second row, asymptotically stable). Hence, intramural stresses may eventually become 

unbounded for dynamically unstable situations, whereas they remained bounded in the 

statically unstable cases simulated above, recall Figure 3. This fact highlights the importance 

of identifying what kind of instability develops in an arterial wall, if any.

3.2.2. Rate parameter ko—We comment here on the effect of the degradation rate 

parameter ko ≡ ko
m = ko

c > 0 on mechanobiological stability. First, because this parameter is 

absent from Eqs. (110)–(112), different values of ko do not affect the mechanobiologically 

equilibrated solutions given by Eq. (114); they merely influence when equilibration occurs. 
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In case ko
m ≠ ko

c different ratios ko
m/ko

c yield different evolved homeostatic solutions, in 

general (Latorre and Humphrey 2018b). In the present case, with ko
m/ko

c = ko/ko = 1, different 

values of ko yet affect the dynamics of the problem. Based on the eigenvalues in Eqs. (129)–

(131), or the original differential Eqs. (107)–(109), ko defines the time scale on which the 

system evolves but, because the signs of (the real part of) the eigenvalues lio, i = 1, 2, 3, 

remain unchanged for different ko > 0, there is no change in the mechanobiological stability 

character of the perturbed solutions. Albeit not shown, this was confirmed numerically using 

our integral-based constrained mixture model with various values ko; if the dynamic 

response after a transient perturbation was asymptotically stable originally (e.g., fourth row 

in Figure 4), an increase in ko made the response more stable, whereas if it was unstable 

originally (e.g., second row in Figure 4), an increase in ko made the response more unstable.

Substitution of Eq. (94) in Eq. (107) yields

ρ̇R = ρ̇R
+ − ρ̇R

− = kKσ ρR − ρo
e Δ σ − Kτ/Kσ Δ τw (140)

which means that the net production of material (i.e., difference between total production ρ̇R
+

and total removal ρ̇R
− is proportional to kKσ (cf., Cyron and Humphrey 2014 and Wu and 

Shadden 2016, wherein shear stress effects are not considered and rate and gain parameters 

are combined into single non-dimensionless “gain” or “growth feedback” constants). 

Considering a reference case I and a case II with possible different production and removal 

rates, with Kτ/Kσ = const, an increased production rate with a constant removal rate (i.e., kII 

= kI) requires Kσ
II > Kσ

I  in our formulation, such that the net production ρ̇R
II > ρ̇R

I  (for equal 

remaining variables). However, an increased removal rate (i.e., kII > kI) for a constant 

production rate requires Kσ
II < kI /kII Kσ

I < Kσ
I , such that the net production ρ̇R

II < ρ̇R
I  Hence, 

because changes in ko do not modify the stability character of the system, while lower values 

of Kσ tend to destabilize it, we conclude that increased removal rates for preserved 

production rates (i.e., kII > kI and Kσ
II < kI /kII Kσ

I ) tend to destabilize the system from a 

dynamic standpoint.

3.2.3. Material-to-prestress stiffness ratio cθθ/(2σθ)—Similarly to ko, the 

equilibrium components of the total material stiffness ℂ(s) (cf. Eq.(29) for different 

constituents α) are absent from Eqs. (110)–(112), hence equilibrated stresses, rather than 

equilibrated values of stiffness, affect the mechanobiologically equilibrated solutions given 

by Eq. (114). Again based on Eqs. (132) and (133), however, the circumferential equilibrium 

stiffness cθθo may modify the dynamic stability character of perturbed solutions near the 

original homeostatic state. In particular, the material-to-prestress stiffness ratio 

cθθo/ 2σθo
ne = cθθo/ 2σθo − 2σθo

e  appears in both To and Do. Even though the prestress 

σθo
ne = σθo − σθo

e  only accounts for the stress of constituents that turnover, namely collagen 
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and smooth muscle cells, we analyze in this example the effect on dynamic stability of the 

(total) material-to-prestress stiffness ratio cθθo/(2σθo).

The center row of panels in Figure 4 showed a neutrally stable response around the original 

equilibrium state that follows a 20-day impulse-like perturbation in inner pressure. For that 

case, Kσ = 2Kτ = 0.2445 and, from parameters in Table 1, cθθo/(2σθo) ≈ 2.5, which yielded 

Ro = Re(l2o)/ko = 0 and Io = Im(l2o)/ko = 0.189. We show in Figure 6 results computed with 

the same set of parameters except for the constants c1
c and c2

c for collagen, which were 

modified such that σθo remains constant while cθθo/(2σθo) decreases to ≈ 1.5 (first row) or 

increases to ≈ 3.5 (second row). Clearly, a reduction in circumferential stiffness, for constant 

circumferential stress, which yielded Ro > 0, destabilizes the referential (neutral) stable 

response, whereas an increase in cθθo/(2σθo), which yielded Ro < 0, stabilizes it 

asymptotically.

Lastly, the condition in Eq. (137) predicts that the ratio cθθo/(2σθo) should reach ≈ 29 (or 

higher) to yield a convergent non-oscillatory response if the gain parameters remain as low 

as Kσ = 2Kτ = 0.2445. However, a more realistic, actually attainable, minimum value for 

stable non-oscillatory evolutions cθθo/(2τθo) ≈ 5 is predicted if the likely more physiological 

(cf. Section 3.2.1) values Kσ = 2Kτ = 1 are considered. Changes in intrinsic material 

stiffness appear to be fundamental in thoracic aortic aneurysms (Bellini et al. 2017), hence 

the importance of such considerations.

3.2.4. Active contraction of muscle—The prior results have focused on the passive 

response of an idealized arterial wall. We analyze in this example the influence on 

mechanobiological stability of the active contribution to stress and stiffness given in Eqs. 

(64) and (69), along with (65). The first row of panels in Figure 7 show an asymptotically 

unstable (oscillatory) response near an associated original homeostatic state computed with 

parameters in Table 1, except with Kσ = 2Kτ = 0.12 (cf. second row in Figure 4) and an 

additional active contribution to stress given by Ŝ = 40 kPa, CB = 0.8326, and CS = 0.5CB. 

The associated Jacobian matrix is such that To = 0.068 > 0 and Do = 0.020 > 0, with 

complex eigenvalues l2o and l3o given by Ro = 0.034 > 0 and Io = 0.137.

We analyze three different modifications of the active response given by the different 

parameters Ŝ, CB, and CS. A fold increase in the second Piola-Kirchho stress-like active tone 

Ŝ yields the same fold increase in both equilibrated active stress, which from Eq. (64), with 

λθo = 1, Δτw|o = 0, and Co = CB, reads

σθo
act = ϕo

mS 1 − e
−CB

2
, (141)

and equilibrated active-like sti ness, which from Eq. (69), with τwo/τwo = 1 and 

dSθ
act /dC |o = 2SCBe

−CB
2
, reads
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cθθo
act = 6ϕo

mSCSCBe
−CB

2
. (142)

A fold increase in the basal ratio CB yields a nonlinear increase in stress, which saturates for 

high increments of CB

σθo
act ϕo

mS > 0 for CB , (143)

and a nonlinear decrease in stiffness, which tends to vanish

cθθo
act 0+ for CB . (144)

Finally, a fold increase in the vasoactive parameter CS yields no change in stress σθo
act, but the 

same fold change in stiffness cθθo
act .

According to Eqs. (132) and (133), along with Eqs. (135) and (136), different effects on σθo
act

and cθθo
act , and hence on the combined stiffness 𝒞θθo

act = 2σθo
act + cθθo

act , lead to different dynamic 

responses for a given initial perturbation. We show in Figure 7, second to fourth rows, 

computed dynamic responses for respective 10-fold increases in S , CB, and CS with respect 

to the reference case (first row). Interestingly, higher values of S  (second row), which 

increase σθo
act and cθθo

act  proportionally, and CS (fourth row), which increase cθθo
act , stabilize (Ro 

= −0.042 and Ro = −0.027, respectively) the reference response (Ro = 0.034), whereas an 

equal fold increase in CB (third row), with associated saturated stress σθo
act and vanishing 

stiffness cθθo
act , yields a slightly more unstable response (Ro = 0.040) than the referential one. 

Albeit not shown, intramural stresses for each case followed respective stable (second, 

fourth rows) or unstable (first, third rows) dynamic evolutions. Lastly, among the many 

possible combinations for these parameters, Eq. (137) predicts stable non-oscillatory G&R 

responses for a combined 7.07- or higher-fold change in both Ŝ and CS, with CB unchanged. 

The importance of active stress generation has long been known in general arterial G&R 

(Valentín et al. 2009) and recently was revealed in aortic dissection (Ferruzzi et al. 2016).

4. Discussion

Years ago, Waxman (1981) considered axial (buckling) instabilities in arteries as a function 

of prior biological growth. Although inappropriately based on linear elasticity, this paper 

highlighted the need to study growth and related issues of stability within a framework of 

continuum mechanics. Soon thereafter, Skalak et al. (1982) emphasized the need to study 

growth in terms of finite displacements, that is, nonlinear continuum mechanics. They also 

noted the possibility of unstable growth if one does not consider appropriate 
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interdependencies in rates of allometric growth of individual structural elements. No formal 

stability analysis was offered, however. Somewhat surprisingly, growth mechanics did not 

advance much further until mid-1990s, with the introduction of a theory of finite kinematic 

growth. Among others who adopted this approach, Taber (1998) suggested that evolution 

laws for arterial adaptations to altered hemodynamics must include negative feedback, in 

terms of homeostatic target values, to yield stable responses. Further increasing interest in 

modeling G&R was the introduction of a constrained mixture approach that enabled one to 

consider different rates of turnover of different constituents (Humphrey and Rajagopal 

2002).

There now exist many different models of soft tissue G&R based on mixture theory. For 

example, Klisch et al. (2003) used a mixture model to describe independent contributions of 

proteoglycans and collagen to the growth of cartilage. Lemon et al. (2006) used a porous 

flow mixture theory to study growth of engineered tissues ex vivo. Cristini et al. (2009) used 

a multi-phase mixture model to study the growth of avascular solid tumors. Narayanan et al. 

(2009) presented a general mixture-based model of growth that coupled mass transport and 

tissue mechanics. Haider et al. (2011) used a mixture model to study matrix production in a 

cell-seeded tissue engineered scaffold for cartilage. Cowin and Cardoso (2012) proposed a 

general mixture-based poroelastic model of interstitial growth. Ateshian et al. (2014) 

modeled interstitial tissue growth by considering both the solid mechanics and biochemical 

reactions. Soares and Sacks (2016) used a triphasic constrained mixture model to describe 

engineered tissue formation under in vitro dynamic mechanical loading. Vernerey (2016) 

used a constrained mixture model of interstitial growth in polymeric scaffolds for tissue 

engineering. Truster and Masud (2017) similarly used a mixture theory to study the 

infiltration of cells and neotissue formation within degrading polymeric scaffolds used for 

tissue engineering. Additional discussion of these and other mixture approaches can be 

found in Ambrosi et al. (2011) and Ateshian and Humphrey (2012). Note, too, that Watton et 

al. (2004) and Baek et al. (2006) used mixture-based computational models to study 

aneurysmal G&R. Whereas the former reported an unstable / unbounded enlargement of 

these lesions, the latter showed that multiple parameters (e.g., rates of tissue production and 

preferential alignment of the new tissue) can stabilize the enlargement, at least when 

production rates depend on differences in stress from homeostatic targets, consistent with 

the suggestion of Taber (1998). Again, however, these works did not consider formal 

stability analyses. In contrast, Ben Amar and Goriely (2005) noted that growth can alter both 

the geometry of and residual stress field within a tissue, each of which can affect mechanical 

stability under near static loading. Specifically, these authors contrasted cases wherein prior 

growth could either stabilize (via wall thickening or tensile residual stresses) or destabilize 

(via thinning or compressive residual stresses) a prototypical thick-walled, neoHookean 

spherical shell model of a tissue. Revisiting the study of Waxman (1981), Goriely and 

Vandiver (2010) used similar ideas to study axial buckling of arteries subjected to increasing 

pressures.

More recent studies have instead focused on the stability of the G&R process itself (i.e., 

mechanobiological stability) rather than the mechanical stability that results from prior 

G&R. Erlich et al. (2018) studied the possible stability of the growth of layered tubular 

structures that exhibit an isotropic, materially uniform behavior; they used the concept of 

Latorre and Humphrey Page 37

J Mech Phys Solids. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



kinematic growth rather than a mixture approach. Additionally, Satha et al. (2014), Cyron et 

al. (2014), and Wu and Shadden (2016) used different approaches to study the stability of 

G&R in arteries and arrived at consistent conclusions. Increased tissue stiffness and higher 

rates of tissue production tend to stabilize G&R processes under constant pressures while 

increased rates of degradation can destabilize the G&R. Hence, there is an acute need to 

consider parameter values carefully, both to identify optimal G&R capacity and to determine 

whether a process will or will not be mechanobiologically stable.

In this paper, we sought both to develop a general framework and to illustrate consequences 

of G&R stabilities by performing a systematic, formal analysis for idealized arteries while 

yet accounting for complexities such as different nonlinear material properties and rates of 

turnover for different structurally significant constituents and including intramural biaxial 

and wall shear stresses as stimuli for mass production as well as active and passive 

contributions of smooth muscle. Toward this end, we first derived a new rate-based form for 

a constrained mixture that is equivalent to the traditional heredity integral-based form but 

facilitates linearized stability analyses about appropriate mechanobiological equilibria. 

Numerical simulations confirmed this equivalency, at least for the canonical problems 

considered. This rate-form revealed, among other findings, the appropriateness of the 

Truesdell stress rate in constrained mixture G&R formulations and the natural separation of 

rates of change of stress into elastic and inelastic parts, the latter in terms of “growth” and 

“remodeling” aspects. We next derived a system of nonlinear ordinary differential equations 

for G&R of a cylindrical artery that admitted both an analysis of critical points and an 

eigenvalue analysis of respective linearized systems. The former led to the concept of 

mechanobiological static stability of mechanobiologically equilibrated states, which allows 

one to analyze how soft tissues adapt to sustained changes in external loads or material 

properties, with G&R time s conveniently eliminated from the analysis; the latter led to the 

concept of mechanobiological dynamic stability of perturbed solutions around previously 

equilibrated states. For the arterial model considered, these analyses delineated two different 

types of possible instabilities, namely, asymptotic growth of static equilibria and asymptotic 

growth of dynamic responses around (bounded) equilibrated states.

Regarding the novel concept of mechanobiological static stability of G&R states, our 

findings are consistent with prior studies that showed a destabilizing effect of elastin 

degradation (cf. Watton et al. 2004, Zeinali-Davarani et al. 2011, and Valentín et al. 2013). 

Yet, even though this G&R problem in the aorta, leading to aneurysm growth, is frequently 

addressed from a time-dependent perspective, we confirmed that its ultimate cause may be a 

mechanobiological instability of the evolving equilibrium state (Cyron et al. 2014), which 

we directly addressed with a static approach. Analyses of this type driven by other external 

loads or material parameters could lead to other types of static instabilities, such as limit 

points or bifurcations.

Additional findings related to the mechanobiological stability of transiently perturbed 

evolutions around equilibrium states were consistent with other studies that showed the 

stabilizing effects of increased material stiffness and tissue production rates and 

destabilizing effects of increased removal rates (cf. Satha et al. 2014, Cyron et al. 2014, and 

Wu and Shadden 2016). At least for the constitutive relations and model parameters used, 
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we additionally showed that gain parameters for mass production that are associated with 

both intramural biaxial and wall shear stresses play important roles in the eigenvalue 

analysis and that an increasing active contribution to stress was stabilizing. Consistent with 

the type and sign of the eigenvalues of the Jacobian matrix, determined analytically for the 

original homeostatic state, numerical simulations further revealed that unstable, neutrally 

stable, or asymptotically stable results could arise mathematically in response to transient 

perturbations depending on specific model assumptions or values of the parameters, hence 

extending the analysis of Satha et al. (2014). In this regard, note that we focused on the 

stability of an idealized and isolated growing artery from a constitutive point of view, 

disregarding other factors that could damp oscillations, including external perivascular 

support or additional intrinsic dissipation. Nevertheless, as we illustrated in examples above, 

mathematical analyses of this type can serve to identify conditions that ensure a 

physiologically reasonable dynamics predicted by the G&R constitutive model.

Our theory, based originally on fully coupled nonlinear evolutions of mass and stress (Fung 

1995), thus builds on the mechanobiological stability theory of Cyron and Humphrey 

(2014), where mechanical stability (against displacement perturbations) and 

mechanobiological stability (against mass perturbations) were analyzed incrementally based 

on a theory of small on large (Baek et al. 2007a) extended to G&R by distinguishing elastic 

and inelastic deformations. Mechanobiologically stable systems considered therein, with 

sustained and transient responses analyzed together, were always neutrally (Lyapunov) 

stable under small, residual perturbations with respect to the original state, leading to 

associated definitions of mechanobiological adaptivities. Using a linearized stress-strain 

relation with respect to a homeostatic state of the vessel wall, among other assumptions, Wu 

and Shadden (2016) also found a neutrally stabilizing condition, or degeneration, when the 

dynamics of displacement and mass variables were decoupled from the dynamics of an 

additional generalized stiffness variable. Further use of an extended system led to the main 

stability conclusions that displacements and mass were neutrally stable whereas stress and 

stiffness were asymptotically stable. In contrast, our formulation, based on nonlinear 

constitutive relations for multiple constituents that may turnover or not, did not lead, by 

default, to a degenerate system of this kind; rather, neutral stability in the sense of Lyapunov 

around evolved critical points was obtained only for particular cases. In general, 

mechanobiological dynamic stability following the nonlinear equations considered herein 

exhibited an asymptotic character, either oscillatory or not, under moderate perturbations. 

Because of the lack of empirical evidence of oscillatory behaviors in vivo, these findings can 

aid further in refining values of parameters that are physiologically meaningful and yet 

revealing.

In conclusion, it is becoming increasingly evident that mechanical homeostasis is 

fundamental to healthy tissue structure and function and conversely that compromised or 

lost homeostasis underlies many cases of disease (Humphrey et al. 2014). Homeostasis 

necessarily implies negative feedback loops that govern G&R processes at the tissue level, 

with target values of appropriate mechanical metrics. It has recently been suggested that the 

converse, that is positive feedback loops, implies disease progression, leading to a type of 

biological instability (Schwartz et al. 2018). We suggest that mechanobiological stability 

analyses, such as those performed herein, promise to provide increasing insight into general 
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processes that promote health versus disease progression. There is, therefore, a pressing 

need to continue to broaden and advance our constitutive relations for G&R, building on 

new biological findings as they become available while continuing to capture fundamental 

features of soft tissues, including the different material properties, rates of turnover, and 

natural configurations of the different structural constituents.
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Appendix A.: Constitutive tangent moduli

Elastin

c jk
e (s) =

ϕo
e

J(s)λ j
2(s)λk

2(s)G j
e2Gk

e2C jk
e (s),   j, k = r, θ, z (A.1)

Smooth muscle

cθθ
m (s) =

λθ
4(s)

J(s)ρ∫−∞

s
km(τ)ϒm(τ)qm(s, τ)

ρR
m(τ)Gθ

m4Cθθ
m (s, τ)

λθ
4(τ)

dτ (A.2)

Collagen

cθθ
c (s) =

λθ
4(s)

J(s)ρ∫−∞

s
kc(τ)ϒc(τ)qc(s, τ)

ρRθ
c (τ)Gθ

c4Cθθ
c (s, τ)

λθ
4(τ)

dτ +
λθ

4(s)
J(s)ρ∫−∞

s
kc(τ)ϒc(τ)qc(s, τ

)
ρRd

c (τ)Gd
c4Cdd

c (s, τ)
λθ

4(τ)
sin4αddτ

(A.3)
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czz
c (s) =

λz
4(s)

J(s)ρ∫−∞

s
kc(τ)ϒc(τ)qc(s, τ)

ρRz
c (τ)Gz

c4Czz
c (s, τ)

λz
4(τ)

dτ +
λz

4(s)
J(s)ρ∫−∞

s
kc(τ)ϒc(τ)qc(s, τ

)
ρRd

c (τ)Gd
c4Cdd

c (s, τ)
λz

4(τ)
cos4αddτ

(A.

4)

cθz
c (s) =

λθ
2(s)λz

2(s)
J(s)ρ ∫

−∞

s
kc(τ)ϒc(τ)qc(s, τ)

ρRd
c (τ)Gd

c4Cdd
c (s, τ)

λθ
2(τ)λz

2(τ)
sin2αdcos2αddτ (A.5)

Active contribution

cθθ
act(s) = 3ϕm(s)λθ

2(s)CS
dSθ

act(C(s))
dC(s)

τw(s)
τwo

(A.6)

Mechanobiologically equilibrated values

σθo = ∑
α

e, m, c, act
σθo

α = ϕo
eSθ

eGθ
e2 + ϕo

mSθ
mGθ

m2 + ϕo
c βθSθ

cGθ
c2 + βdSd

cGd
c2sin2αd + σθo

act (A.7)

σθo
e = ϕo

eσθ
e = ϕo

eSθ
eGθ

e2,   σzo
e = Sz

eGz
e2 (A.8)

σzo = ∑
α

e, c
σzo

α = ∑
α

e, c
ϕo

ασz
α = ϕo

eSz
eGz

e2 + ϕo
c βzSz

cGz
c2 + βdSd

cGd
c2cos2αd (A.9)

σθo
act = ϕo

mS 1 − e
−CB

2
,   cθθo

act = 6ϕo
mSCSCBe

−CB
2

(A.10)
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cθθo = ∑
α

e, m, c, act
cθθo

α = 0 + ϕo
mCθθ

m Gθ
m4 + ϕo

c βθCθθ
c Gθ

c4 + βdCdd
c Gd

c4sin4αd + cθθo
act (A.11)

cθzo = ∑
α

e, c
cθzo

α = 0 + ϕo
cβdCdd

c Gd
c4sin2αdcos2αd = ϕo

cβdCdd
c Gd

c4sin2αdcos2αd (A.12)

Appendix B.: Jacobian matrix derivatives

Auxiliary results

∂ τw/τwo
∂ρR

= − 3
2

ρσθo
ρRσθ

1/2 ρσθo

ρR
2σθ

= − 3
2

τw
τwo

1
ρR

o − 3
2ρ (B.1)

∂ τw/τwo
∂σθ

= − 3
2

ρσθo
ρRσθ

1/2 ρσθo

ρRσθ
2 = − 3

2
τw
τwo

1
σθ

o − 3
2σθo

(B.2)

∂ϒ
∂ρR

= − Kτ
∂ τw/τwo

∂ρR

o 3Kτ
2ρ =

Kτ
ρ (B.3)

∂ϒ
∂σθ

= Kσ
∂ σθ + σz /σIo

∂σθ
− Kτ

∂ τw/τwo
∂σθ

o Kσ
σIo

+
3Kτ
2σθo

=
Kσ + Kτ

σθo
(B.4)

∂ϒ
∂σz

= Kσ
∂ σθ + σz /σIo

∂σz

o Kσ
σIo

=
Kσ
σθo

(B.5)

∂Sθ
act

∂ρR o

=
dSθ

act

dC
dC

d τw/τwo

∂ τw/τwo
∂ρR o

=
dSθ

act

dC
o

3CS
2ρ =

cθθo
act

2ρϕo
m (B.6)
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∂Sθ
act

∂σθ o

=
dSθ

act

dC
dC

d τw/τwo

∂ τw/τwo
∂σθ o

=
dSθ

act

dC
o

3CS
2σθo

=
cθθo

act

2σθoϕo
m (B.7)

Jacobian derivatives at original homeostatic state o

1
ko

∂ ρ̇R
∂ρR o

=
ρ − ρo

e

ρ Kτ (B.8)

1
ko

∂ ρ̇R
∂σθ o

=
ρ − ρo

e

σθo
Kσ + Kτ (B.9)

1
ko

∂ ρ̇R
∂σz o

=
ρ − ρo

e

σθo
Kσ (B.10)

− ρ
koσθo

∂σ̇θ
∂ρR o

= 2
σθo

ne

cθθo
+

ρ − ρo
e

ρ Kτ + 2
σθo

ne

cθθo

ρo
e

ρ − ρo
e +

𝒞θθo
act

cθθo
(B.11)

− 1
ko

∂σ̇θ
∂σθ o

= 2
σθo

ne

cθθo
+

ρ − ρo
e

ρ Kσ + Kτ − 2
σθo

ne

cθθo
+

𝒞θθo
act

cθθo
(B.12)

− 1
ko

∂σ̇θ
∂σz o

= 2
σθo

ne

cθθo
+

ρ − ρo
e

ρ Kσ (B.13)
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− ρ
koσθo

∂σ̇z
∂ρR o

=
cθzo
cθθo

σθo
ne

σθo
+

σzo
e

σθo
−

ρo
e

ρ
σzo
σθo

Kτ +
cθzo
cθθo

σθo
ne

σθo

ρo
e

ρ − ρo
e +

σzo
e

σθo
−

ρo
e

ρ
σzo
σθo

ρ
ρ − ρo

e

+
cθzo
2σθo

𝒞θθo
act

cθθo

(B.14)

− 1
ko

∂σ̇z
∂σθ o

=
cθzo
cθθo

σθo
ne

σθo
+

σzo
e

σθo
−

ρo
e

ρ
σzo
σθo

Kσ + Kτ +
cθzo
2σθo

2σθo
ne + 𝒞θθo

act

cθθo
(B.15)

− 1
ko

∂σ̇z
∂σz o

= 1 +
cθzo
cθθo

σθo
ne

σθo
+

σzo
e

σθo
−

ρo
e

ρ
σzo
σθo

Kσ (B.16)
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Figure 1: 
Schematic representation of different configurations involved in soft tissue G&R. The 

original in vivo homeostatic configuration of the mixture κ (0) = κo is chosen as the 

reference configuration for the computation of G&R deformations of the mixture via F (τ), τ 
∈ [0, s]. Fn(τ)

α (s) = F(s)F−1(τ)Gα(τ) describes the deformation experienced, at time s, by the 

material element of constituent α deposited at time τ. We assume that the constituents, 

deposited with prestretches Gα (τ), are constrained to deform with the mixture.
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Figure 2: 
Mechanobiologically stable (static) equilibrium responses illustrated for a “normal” murine 

aorta. Panels (a,b,d,e) show equilibrium values for (bounded) inner radius ah and thickness 

hh, as well as (bounded) circumferential σθh and axial σzh Cauchy stress, as functions of the 

stimulation-driver pressure ratio γh = Ph/Po. Panels (c) and (f) show the associated evolution 

of the homeostatic state in phase-type planes: thickening with slight dilation and slight 

reduction in biaxial stress. Note, too, that the thickening is not fully mechano-adaptive, 

consistent with experimental observations for the murine thoracic aorta (Bersi et al. 2016).
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Figure 3: 
Mechanobiologically unstable (static) equilibrium responses with respect to prior elastin 

degradation while preserving inner pressure Ph = Po. Panels (a,b,d,e) show equilibrium 

values for (unbounded) inner radius ah and thickness hh, as well as (bounded) 

circumferential σθh and axial σzh Cauchy stress, as functions of the stimulation-driver 

parameter φh = co
e − ch

e /co
e. Panels (c) and (f) show the associated evolution of the 

homeostatic state in phase-type planes: asymptotic thickening and dilation with moderate 

reduction in biaxial stress.
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Figure 4: 
Mechanobiologically unstable (Kσ = 0.03, “source”, and Kσ = 0.12, “spiral”; top two rows), 

neutral stable (Kσ = 0.2445, “center”; third row), and asymptotic stable (Kσ = 0.3, “spiral”, 

and Kσ = 1.8, “sink”; bottom two rows) dynamic responses that follow a perturbation in 

pressure, consisting of a rapid rise from Po up to 1.5Po at s = 0+ days, subsequently 

sustained for 20 days, and finally returned back to the original homeostatic value Po at s = 

20+ days. For all cases, Kτ = Kσ/2.
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Figure 5: 
Dynamic stress response (σθ and σz) for cases Kσ = 0.12 (cf. unstable spiral; second row, 

Fig. 4) and Kσ = 0.3 (cf. stable spiral; fourth row, Fig. 4).

Latorre and Humphrey Page 52

J Mech Phys Solids. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
Dynamic stabilization afforded by an increased ratio of circumferential stiffness to material 

pre-stress cθθo/(2σθo). Panels in first row show an unstable oscillatory response with Kσ = 

2Kτ = 0.2445 and cθθo/(2σθo) ≈ 1.5 (cf. third row, Fig. 4, wherein Kσ = 2Kτ = 0.2445 and 

cθθo/(2σθo) ≈ 2.5). Panels in second row show results for cθθo/(2σθo) ≈ 3.5, which stabilizes 

asymptotically the prior neutrally stable response.
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Figure 7: 
Dynamic stabilization by the active response of smooth muscle cells. Panels in first row 

show an unstable response with passive (Table 1, except for Kσ = 2Kτ = 0.12; cf. second 

row, Fig. 4) and additional active (Ŝ = 40 kPa, CB = 0.8326, CS = 0.5CB) contributions to 

stress. A 10-fold increase in either Ŝ (second row) or CS (fourth row) stabilize the prior 

response (first row). A 10-fold increase in CB (third row) has little effect over the prior 

response, even augmenting the instability.

Latorre and Humphrey Page 54

J Mech Phys Solids. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Latorre and Humphrey Page 55

Table 1:

Representative baseline model parameters for a mouse descending thoracic aorta, adapted (homogenized 

through the thickness) from Latorre and Humphrey (2018a). Superscripts e, m, c denote elastin, smooth 

muscle, and collagen, with superscripts/subscripts r, θ, z, d denoting radial, circumferential, axial, and 

symmetric diagonal directions. Subscript o denotes original homeostatic values. Subscripts σ and τ denote 

intramural and wall shear stress related parameters, respectively.

Artery Mass Density ρ 1050 kg/m3

Inner Radius, Wall Thickness a0, h0 [0.6468, 0.0402] mm

Mass Fractions ϕo
e

,ϕo
m

,ϕo
c

[0.30, 0.35, 0.35]

Collagen Fractions βθ, βz, βd [0.068, 0.381, 0.551]

Diagonal Collagen Orientation α0 45.36°

Elastin Parameter ce 114.5kPa

Smooth Muscle Parameters c1
m

,c2
m

[401.0 kPa, 0.012]

Collagen Parameters c1
c

,c2
c

[411.2 kPa, 5.5]

Deposition Stretches Gr
e
,Gθ

e
,Gz

e
[1/(1.9 · 1.6), 1.9,1.6]

Deposition Stretches Gθ
m = Gθ

c, Gz
c, Gd

c
[1.071,1.193,1.192]

Mass Production Gains Kσ, Kτ [1.0, 0.5]

Mass Removal Rate k0 1/10 day−1
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