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Abstract

Objective.—Genome-wide association studies (GWASs) for epithelial ovarian cancer (EOC) 

have focused largely on populations of European ancestry. We aimed to identify common germline 

variants associated with EOC risk in Asian women.

Methods.—Genotyping was performed as part of the OncoArray project. Samples with >60% 

Asian ancestry were included in the analysis. Genotyping was performed on 533,631 SNPs in 

3238 Asian subjects diagnosed with invasive or borderline EOC and 4083 unaffected controls. 

After imputation, genotypes were available for 11,595,112 SNPs to identify associations.

Results.—At chromosome 6p25.2, SNP rs7748275 was associated with risk of serous EOC 

(odds ratio [OR] = 1.34, P = 8.7 × 10−9) and high-grade serous EOC (HGSOC) (OR = 1.34, P = 

4.3 × 10−9). SNP rs6902488 at 6p25.2 (r2 = 0.97 with rs7748275) lies in an active enhancer and is 

predicted to impact binding of STAT3, P300 and ELF1. We identified additional risk loci with low 

Bayesian false discovery probability (BFDP) scores, indicating they are likely to be true risk 

associations (BFDP <10%). At chromosome 20q11.22, rs74272064 was associated with HGSOC 

risk (OR = 1.27, P = 9.0 × 10−8). Overall EOC risk was associated with rs10260419 at 

chromosome 7p21.3 (OR = 1.33, P = 1.2 × 10−7) and rs74917072 at chromosome 2q37.3 (OR = 

1.25, P = 4.7 × 10−7). At 2q37.3, expression quantitative trait locus analysis in 404 HGSOC tissues 

identified ESPNL as a putative candidate susceptibility gene (P = 1.2 × 10−7).

Conclusion.—While some risk loci were shared between East Asian and European populations, 

others were population-specific, indicating that the landscape of EOC risk in Asian women has 

both shared and unique features compared to women of European ancestry.
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1. Introduction

Epithelial ovarian cancers (EOC) are a diverse group of tumors occuring predominantly 

among postmenopausal women. Epidemiological and lifestyle risk factors include a family 

history of ovarian and breast cancer [1], nulliparity [2], and no oral contraceptive use [3]. 

Germline mutations in highly penetrant genes, including BRCA1 [4] and BRCA2 [5], are 

associated with a >15% lifetime risk of ovarian cancer [6]; but these mutations are present in 

only 10–15% of EOC cases. In the general population, common genetic variants identified 

using genome-wide association studies (GWASs) have been found to confer more modest 

disease risks with odds ratios generally ≤1.5. To date, GWASs have identified >30 regions of 

the genome harboring common variants associated with EOC risk (reviewed in Jones et al. 

[7]), with all but one of these studies reporting risk variants identified in women of European 

ancestry [8–19]. There is one report of a GWAS performed in 1057 Asian cases and 1799 

controls (Han Chinese), with replication in 492 EOC cases and 1004 controls. This study 

identified two genome-wide significant risk regions at 9q22.33 and 10p11.21; however, 

neither region appears significantly associated with EOC risk in European populations [9].

EOC incidence varies by race and/or ethnicity; women in Asian, North African and Middle 

Eastern countries tend to have lower rates of EOC than women in northern European and 

Baltic countries [20,21]. Women from Asia migrating to the United States and Europe retain 

their comparatively reduced rates of EOC [22]. In addition, Asian women, particularly those 

from China, Korea, Vietnam and the Philippines, tend to be significantly younger at 

diagnosis, and are more likely to be diagnosed with early stage (stage I) disease. 

Consequently, they have better 5-year survival rates compared to EOC cases in white women 

of European ancestry [23,24]. The distribution of histological subtypes also differs between 

Asian and European women. Asian women are more likely than European women to 

develop clear cell or mucinous EOCs and less likely to develop serous EOC [23,25]. Much 

of the variation in EOC incidence rates by race or ethnicity may be attributable to 

differences in reproductive, lifestyle, and environmental risk factors; but variations in the 

underlying genetics are also likely to contribute to the observed differences.

The international Genetic Associations and Mechanisms in Oncology (GAME-ON) project 

designed a custom Illumina genotyping array (the ‘OncoArray’), containing over 530,000 

variants to identify genetic risk factors across multiple tumor types, and in different racial or 

ethnic groups [26]. The OncoArray includes risk-associated SNPs identified from GWAS 

meta-analyses of breast, colorectal, lung, ovarian and prostate cancers; risk regions 

associated with numerous other phenotypes (both cancer and non-cancer); and a genome-

wide SNP ‘backbone’ to enable agnostic GWASs to be performed for each phenotype [26]. 

The OncoArray has been used to genotype >500,000 subjects, including ~53,000 individuals 

from EOC case-control studies, of which ~7000 subjects are of East Asian ancestry. Here, 
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we report genetic association analyses of EOC case-control subjects of East Asian ancestry 

genotyped on the OncoArray.

2. Methods

2.1. Study samples

All subjects included in this analysis were of Asian descent (see below) and provided written 

informed consent. Data and blood samples were collected under protocols approved by the 

Institutional Review Boards or Ethics Committee at each institution. All constituent studies 

and host institutions are listed in Supplementary Table 1. The OCAC OncoArray data set 

comprised 63 genotyping project/case-controls sets (Supplementary Table 1). Some studies 

(e.g. SEARCH) contributed samples to more than one genotyping project and some case-

control sets are a combination of multiple individual studies. Post-QC sample numbers, by 

histology, for subjects of Asian ancestry are shown in Table 1.

2.2. Genotype data and quality control (QC)

Genotyping was performed at five locations: University of Cambridge, Center for Inherited 

Disease Research (CIDR), National Cancer Institute (NCI), Genome Quebec and Mayo 

Clinic. OncoArray sample QC was similar to that carried out for the other projects (as 

described in Pharoah et al., 2013 [11,16,17,27]). Samples were excluded if (1) genotyping 

call rate was <95%, (2) heterozygosity was excessively low or high, (3) if they were not 

female or had ambiguous sex, or (4) were duplicates (cryptic or intended). Duplicates and 

close relatives were identified using in-house software that calculates a concordance matrix 

for all individuals. Samples with concordance >0.86 were flagged as duplicates and samples 

with concordance between 0.74 and 0.86 were flagged as relatives. The comparison was 

performed among all the OncoArray samples, and all the previously genotyped samples. 

Concordance statistics were used to identify cryptic duplicates and expected duplicates 

whose genotypes did not match, and we attempted to resolve these with the study 

investigators. If a discrepancy could not be resolved both samples were excluded. For 

confirmed cryptic duplicates and relatives, we retained one sample in the analysis. For case-

control pairs we excluded the control, while for case-case and control-control pairs we 

excluded the sample with the lower call rate.

SNP QC was carried out according to the OncoArray QC Guidelines [26]. Only SNPs that 

passed QC for all consortia were used for imputation. We excluded SNPs with a call rate < 

95%, SNPs deviating from Hardy-Weinberg equilibrium (P < 10−7 in controls and P < 10−12 

in cases) and SNPs with concordance <98% among 5280 duplicate pairs. For the imputation, 

we additionally excluded SNPs with a MAF < 1% and a call rate < 98% and SNPs that could 

not be linked to the 1000 genomes reference or differed significantly in frequency from the 

1000 genomes (European frequency) and a further 1128 SNPs where the cluster plot was 

judged to be inadequate. Of the 533,631 SNPs which were manufactured on the array, 

494,813 SNPs passed the initial QC and 470,825 SNPs were used for imputation. Samples 

with overall heterozygosity <5% or > 40% were excluded.
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2.3. Ancestry analysis and imputation

Intercontinental ancestry was calculated using the software package FastPop (http://

sourceforge.net/projects/fastpop/) [28]. Consistent with other OncoArray studies, only the 

samples with >60% Asian ancestry, were included in the analyses reported here. Principal 

component analysis for the OncoArray data was carried out using data from 33,661 

uncorrelated SNPs (pair-wise r2 <0.1) with minor allele frequency >0.05 using an in-house 

program (available at http://ccge.medschl.cam.ac.uk/software/pccalc/). Principal 

components analysis for the other genotype data sets was carried out as previously described 

[16].

We performed imputation separately for each genotyping project data set. We imputed 

genotypes into the reference panel from the 1000 Genomes Project (v3 October 2014) [29]. 

We initially used a two-step procedure, which involved pre-phasing in the first step and 

imputation of the phased data in the second, to improve computation efficiency. We carried 

out pre-phasing using Shape-IT [30] and the subsequent imputation using 1MPUTE2 [31]. 

We then performed more accurate imputation for any region with a SNP with P < 10−6. The 

boundaries of these regions were set +/− 500 kb from the most significant SNP in the region. 

The single-step imputation used 1MPUTE2 without pre-phasing with some of the default 

parameters modified. These included an increase of the MCMC iterations to 90 (out of 

which the first 15 were used as burn-in), an increase of the buffer region to 500 kb and 

increasing to 100 the number of haplotypes used as templates when phasing observed 

genotypes.

2.4. Association analyses

We excluded SNPs from the association analysis if their imputation accuracy was r2 < 0.3 or 

their minor allele frequency (MAF) was <0.01. In total, genotypes for 11,595,112 million 

variants were available for analysis. We evaluated the association between genotype and 

disease using the imputed genotype dosage (log-additive genetic models) in a logistic 

regression model. We carried out initial genome-wide analyses separately for OncoArray, 

COGS and the five GWAS datasets and pooled the results using a fixed effects meta-

analysis. The analyses were adjusted for study and for population substructure by including 

the eigenvectors of project-specific principal components as covariates in the model (nine 

for OncoArray, five for COGS, two for UK GWAS, and two for the US, BWH and POL 

GWAS, and a single PC for the MAY GWAS). The number of eigenvectors chosen was 

based on the point of inflection of a scree plot. After one-step imputation of the genotypes in 

the regions of interest we used genotype dosages in a single logistic regression model with 

adjustment for each genotyping project/study combination and nineteen principal 

components. Principal components were set to zero for samples not included in a given 

project. We used custom written software for the analysis.

To assess the magnitude of confounding caused by cryptic population substructure, we 

calculated inflation in the test statistics (λ) by dividing the median of the test statistic by 

0.455 (the median for the χ2 distribution on 1 degree of freedom). The inflation was 

converted to an equivalent inflation for a study with 1000 cases and 1000 controls (λ1000) 

by adjusting by effective study size:
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λ1000 = 1 + 500(λ − 1)

∑K
1
nk

+ 1
mk

where n is the number of cases and m is the number of controls in each study stratum, k. 

There was a small inflation of the test statistics for the all invasive analysis (λ = 1.057, 

λ1000 = 1.015).

EOC is a heterogeneous phenotype with five major histotypes for invasive disease – high-

grade serous ovarian cancer (HGSOC), low-grade serous ovarian cancer (LGSOC), 

mucinous ovarian cancer (MOC), endometrioid ovarian cancer (EnOC) and clear cell 

ovarian cancer (CCOC) – and two histotypes of borderline disease – serous and mucinous. 

The pattern of association across the different histotypes varies for the known OC risk loci 

[8]. We therefore carried out the association analysis on the following nine histotypes: all 

invasive disease; HGSOC; LGSOC; all invasive serous; serous borderline; LGSOC and 

borderline serous combined; EnOC; CCOC; and mucinous invasive/mucinous borderline 

combined. QQ plots are shown in Supplementary Fig. 1.

2.5. Identifying candidate causal SNPs in each susceptibility region

To identify a set of variants most likely to contain the true underlying causal association – 

the candidate causal variants – we excluded SNPs with causality odds of <1:100 by 

comparing the likelihood of each SNP from the association analysis with the likelihood of 

the most strongly associated SNP.

2.6. Expression quantitative trait locus (eQTL) analyses

Expression QTL analyses were conducted using three data sets. We used an in-house 

generated RNA-sequencing data set of 105 primary normal ovarian surface epithelial cell 

(OSEC) and 60 fallopian tube secretory epithelial cell (FTSEC) cultures (Lawrenson et al., 

submitted). All samples were sequenced following a ribo-depletion library preparation 

method, and all specimens were genotyped on the OncoArray. We also performed tumor-

specific eQTL analyses using TCGA HGSOC data set [32]. The sample size for women of 

Asian ancestry was too small in each data set to perform an eQTL analysis restricted 

specifically to Asians and so we decided to leverage the entire (cosmopolitan ancestry) data 

sets for eQTL analysis. For the TCGA analysis, we focused on all genes and samples (n = 

404) that had matched gene expression (measured on the Agilent 1 M microarray), CpG 

methylation (measured on the Illumina Infinium HumanMethylation27 BeadChip), copy 

number alteration (called using the Affymetrix SNP 6.0 array), and germline genotype 

(called using the Affymetrix SNP 6.0 array) data available. Genotypes were imputed into the 

1000 Genomes October 2014 (Phase 3, version 5) European reference panel for all three 

data sets [29]. Expression QTL analyses were performed using linear regression as 

implemented in the R package Matrix eQTL [33]. Prior to eQTL analyses the effects of 

tumor copy number and methylation on gene expression were regressed out as previously 

described [34]. We focused on cis-acting eQTL relationships between candidate causal risk 
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SNPs and all genes up to 1 Mb on either side of these SNPs. Two-sided P-values are 

reported.

2.7. Functional annotation of variants

We used shell scripts with bedtools (http://bedtools.readthedocs.org/en/latest/) to generate 

overlap data between all variants in each associated region including likely causal SNPs and 

bed file versions of all the biofeature data used. The overlap data thus obtained were 

converted to matrix form by means of python scripts and then sorted in Microsoft Excel.

To test for locus-specific tissue enrichment of variants, H3K27 acetylation peaks were 

collated from public sources or from in-house data (all listed in Supplementary Table 2). 

Overlaps were counted for the all SNPs against which genotypes were imputed in 1000 

genomes for each H3K27ac dataset. The fraction of causal SNPs with overlaps was then 

tested for significance against this background for each cell type in the H3K27ac datasets 

using the hypergeometric distribution. Finally, p values were adjusted for multiple 

comparisons using Bonferroni’s method.

2.8. Data availability statement

The summary results for all imputed SNPs reported in this paper are available at: https://

doi.org/10.17863/CAM.25845

3. Results

3.1. Association analyses

Of the samples genotyped on the OncoArray, 21,879 EOC cases and 29,224 controls from 

OCAC met our quality control (QC) criteria (see Methods). Intercontinental ancestry was 

determined using FastPop [28] to select samples with >60% Asian ancestry for inclusion in 

association analyses (Fig. 1a). This analysis inferred Asian ancestry in 2981 women with 

invasive EOC (1615 high-grade serous, 36 low-grade serous, 404 endometrioid, 278 clear 

cell and 212 mucinous EOC; 436 ‘other’), 257 women with borderline EOC (133 serous and 

124 mucinous), and 4083 controls. Most samples were collected through population-based 

studies conducted in eastern Asia (Fig. 1b), with around 25% of specimens collected in 

studies conducted in the US, Europe and Australia. The number of participants by analysis 

stratum is listed in Table 1. Data from the 1000 Genomes Project reference panel [29] were 

used to impute genotypes for 11,403,952 common variants (minor allele frequency, MAF > 

1%). Histology was ascertained for 2802 (86.5%) Asian EOC cases in total. The Asian 

populations had higher frequencies of the clear cell (9.9%) and mucinous (12.0%) 

histological subtypes (‘histotypes’) and lower frequency of the high-grade serous histotype 

(57.6%) compared to the non-Asian populations (7.0%, 7.2% and 66.4%, respectively) (Fig. 

1c).

Association analyses were performed for all East Asian subjects considering histotypes 

combined, all invasive cases, all borderline cases, and for each histotype separately (Table 

1). There was little evidence of inflation of the test statistic (λ1000 for all invasive analysis = 

1.015). We identified three risk associations at two different loci reaching genome-wide 
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significance (effect allele frequency, EAF ≥0.05, P < 5 × 10−8) (Table 2 and Fig. 1d-f). There 

was no evidence of heterogeneity by study for these associations. At chromosome 6p25.2, 

rs7748275 was associated with risk of serous EOC (OR = 1.4, P = 8.7 × 10−9). The Bayesian 

false-discovery probability (BFDP [35]) for this association was 9% assuming a maximum 

likely OR of 1.2 and a prior of 1:10,000, or 1% assuming a prior of 1:1000). This SNP was 

also associated with risk of high-grade serous ovarian cancer (HGSOC) specifically (OR = 

14, P = 4.3 × 10−9, BFDP = 24% or 3% assuming a prior of 1:10,000 or 1:1000, 

respectively).

At chromosome 10p12.1, SNP rs1934363 was associated with risk of clear cell ovarian 

cancer (CCOC) (odds ratio (OR) = 10.9, P = 3.0 × 10−10); however, the Bayesian false-

discovery probability (BFDP [35]) for this association was close to 100% (Table 2) strongly 

suggesting that it is likely to be a false positive result. SNPs rs1934363 and rs7748275 were 

not significantly associated with EOC risk in Europeans genotyped on the OncoArray 

(Supplementary Table 3).

We also identified one-hundred and twenty-six loci that showed marginal evidence of risk 

associations (P-values 1 × 10−5 to 5 × 10−8) (Supplementary Table 4). Twenty-eight of these 

loci are more likely than not to be true associations based on a BFDP score < 50% for the 

index SNP (Supplementary Table 5). This included a locus at chromosome 20q11.22, where 

SNP rs74272064 (kgp7556451) was associated with both HGSOC (OR = 1.27, P = 9.0 × 

10−8, BFDP = 3% assuming a prior of 1:1000), and serous EOC (P = 1.5 × 10−7); and a 

locus at chromosome 7p21.3, where SNP rs10260419 was associated with overall EOC risk 

(OR = 1.33, P = 1.2 × 10−7, BFDP = 5% assuming a prior of 1:1000); and a locus at 

chromosome 2q37.3, where SNP rs74917072 was associated with overall risk of invasive 

EOC (OR = 1.25, P = 4.7 × 10−7, BFDP = 7% assuming a prior of 1:1000).

Finally, we compared EOC risk associations in European and East Asian populations [8]. Of 

the 28 East Asian risk loci with a BFDP score < 50%, only one showed evidence of an 

association in European women (rs10260419, P = 3.4 × 10−4 for HGSOC risk) 

(Supplementary Table 5). However, of the 30 loci previously identified in European women, 

associations in this East Asian population were in the same direction for 22, 17 of which 

have a one-sided P-value <0.2. While the P-values for these loci were modest in the Asian 

population, the BFDPs indicate they are all likely to be true associations (BFDP range 0.5–

21%, Supplementary Table 6). The most significant association was for rs10069690 at 

chromosome 5p15, which lies within an intron of TERT, identified in European subjects 

(OncoArray East Asian study OR = 1.21, P = 3.18 × 10−4) [18]. To explore the global 

genetic architecture in the two populations we calculated a polygenic risk score using 

published European hits (excluding mucinous associations) and found that European risk 

scores do predict cancer in East Asians (HGSOC OR = 1.76 per unit increase in polygenic 

risk score, P = 8.6 × 10−6), confirming that European risk loci contribute to EOC risk in the 

East Asian population. Finally, we compared our results to the previous Han Chinese ovarian 

cancer GWAS [9]. Neither of the risk regions identified in this report (at 9q22.33 and 

10p11.21) were associated with EOC risk in our study (Supplementary Table 7). Conversely, 

none of the 126 regions identified in our study showed evidence of association in the prior 

GWAS (Supplementary Table 4).
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3.2. Functional annotation of risk variants

We performed functional annotation for the genome-wide significant 6p25.2 risk region and 

the 28 loci with a BFDP score < 50% (Supplementary Tables 2 & 8). These loci were 

associated with overall EOC, serous EOC or HGSOC-specific risk. For each region we used 

imputation-based fine mapping to identify SNP sets that represent the most likely candidate 

causal risk variants (SNPs with likelihood odds >1:100 of being the causal variant at each 

locus; see Methods and Supplementary Table 8). In total we identified 1283 candidate causal 

risk SNPs across the 29 regions. These variants were intersected with catalogues of 

regulatory biofeature data generated using chromatin immunoprecipitation sequencing 

(ChIP-seq) of primary EOC tissues and normal EOC precursor cells (fallopian tube 

secretory epithelial cells (FTSECs) and ovarian surface epithelial cells (OSECs)). The 

biofeature annotated in the most cell types was active chromatin, indicated by H3K27ac 

ChIP-seq signal. Other marks included H3K4me1, CCCTC-binding factor (CTCF), 

associated with insulators, PAX8, a transcription factor overexpressed in many EOCs 

[36,37], and regions of open chromatin catalogued using Formaldehyde-Assisted Isolation of 

Regulatory Elements sequencing (FAIRE-seq) [38]. The full list of EOC-relevant epigenetic 

data sets used is provided in Supplementary Table 2.

Twenty-nine percent of SNPs (368/1283) overlapped one or more biofeatures present in 

relevant cell types (Supplementary Table 8). SNPs rs6058070 and rs6087592 at chromosome 

20q11.22 (linked with r2 = 0.97) coincided with 44 and 43 unique biofeature data sets, 

respectively. Rs6058070 and rs6087592 show expression quantitative trait locus (eQTL) 

associations for the MAP1LC3A (microtubule-associated protein 1 light chain 3 alpha) gene 

in GTEx tissues, but not in EOC related samples (OSEC, FTSEC or HGSOC). At the 6p25.2 

locus, out of seven candidate causal SNPs, only one, rs6902488, coincided with biofeatures 

in EOC-relevant cells, specifically marks of active chromatin (H3K27ac and H3K4me1) 

present in two independent immortalized OSEC lines [38,39]. SNP rs6902488 lies within a 

putative enhancer close to the center of a 265 kb intergenic region between SLC22A23 and 

PXDC1. We used MotifbreakR [40] to predict the function of rs6902488 and found this SNP 

alters the binding of transcription factors (TFs) STAT3, p300 and ELF1. Stronger binding 

was associated with the risk-conferring (T) allele for all three TFs (Supplementary Table 9, 

Fig. 2).

We also evaluated locus-specific enrichment of tissue specific H3K27ac signals with 

candidate causal risk SNPs based on the hypothesis that multiple SNPs may be working 

together to mediate risk (Fig. 3). Variants at chromosome 20q11.21 were enriched in PAX8 

binding sites and regions of active chromatin in EOC cell lines and FTSECs; the 9q22.1 risk 

locus showed strong enrichment of SNPs within active chromatin in primary tumors; and six 

of the seven risk SNPs at 3p23 were located in CTCF peaks suggesting they may play a role 

in gene repression. Risk SNPs at the 4p15.33, 21q22.1, 6q26 and 20p11.32 loci also showed 

enrichment in active and or/poised regulatory elements detected in ovarian cancer relevant 

cell types.
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3.3. Expression quantitative trait locus (eQTL) analyses to identify target genes at risk 
loci

We performed eQTL analysis using three whole transcriptomic data sets: (1) 404 primary 

HGSOCs from The Cancer Genome Atlas (TCGA) [32]; (2) 105 primary OSEC samples; 

and (3) 60 primary FTSEC samples. We regressed out the effects of copy number and 

methylation on gene expression in tumors [34]. For all three data sets we evaluated 

associations between the 1283 candidate causal risk SNPs spanning the 29 loci and gene 

expression for all genes within a 1 Mb window spanning the index SNPs at each locus. We 

applied a threshold of P < 3.9 × 10−5 for eQTL associations based on correction for testing 

1283 SNPs. Where multiple SNPs at the same locus were associated with expression of the 

same gene due to linkage disequilibrium, we report the strongest associations.

We identified a significant eQTL signal for SNP rs34307842 associated with ESPNL 
expression at the 2q37.3 locus in primary HGSOCs (PeQTL = 1.2 × 10−7, Fig. 4, 

Supplementary Table 10). The GT allele of rs34307842 was associated with increased 

ESPNL expression and increased HGSOC risk. We examined the epigenomic landscape at 

this locus and identified a putatively functional variant, rs12620528, which is in linkage 

disequilibrium with an eQTL SNP for ESPNL (rs10929255, r2 = 0.86 in Chinese and 

Japanese populations) (Fig. 5). This SNP lies within an intron of UBE2F, around 130 kb 

centromeric to ESPNL. SNP rs12620528 coincides with active chromatin detected in 

primary ovarian tumors and significantly alters binding motifs for TEAD factors, NFKB and 

SPI1 (Fig. 5c,d).

Significant eQTLs (PeQTL < 3.9 × 10−5) were also identified for 9 genes at 3 additional sub-

genome-wide significant risk regions in primary FTSECs and for 41 genes spanning 6 sub-

genome-wide significant risk regions in OSECs (Supplementary Tables 11 & 12). Notably, 

at 6q21.32 the index risk SNP rs72492309 (Prisk = 2.2 × 10−6, BFDP = 26%) was associated 

with expression of the HLA-DRB1, HLA-DRB6, and HLA-DQB1 genes in both FTSECs 

and OSECs (PeQTL < 3.9 × 10−5). Other significant associations were either cell-type 

specific or were not replicated between OSECs and FTSECs (Supplementary Tables 11 and 

12).

4. Discussion

This study reports the identification of a novel genome-wide significant locus at 

chromosome 6p25.2 associated with risk of serous and high-grade serous ovarian cancer in 

East Asian women. We also identified several candidate EOC risk regions that did not reach 

statistical thresholds of genome-wide significance but where the Bayesian false discovery 

probabilities (BFDPs) provided additional evidence that the risk associations may be real. 

There are several likely reasons why we did not identify additional EOC risk regions at 

genome-wide levels of significance (P < 5 × 10−8). Firstly, this study included 2981 and 257 

subjects diagnosed with invasive and borderline EOC, respectively, and so was not strongly 

powered to identify risk alleles with this level of statistical stringency. Disease heterogeneity 

will also have affected our ability to identify risk loci; studies in European subjects have 

shown that common variant risk regions differ for different ovarian cancer histotypes 
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[8,15,19]. Our power to detect associations for specific histotypes in East Asian women was 

extremely limited given that this study included few cases of rare histologies.

This study would also have been limited by the content of the genotyping array (OncoArray) 

– the GWAS backbone was primarily designed for European populations and the custom 

content was largely based on meta-analyses performed in European subjects. Several studies 

for other phenotypes have shown that the spectrum of disease risk can vary substantially 

across different populations. Because data from large-scale genotyping in East Asian 

populations were not included in the design of the OncoArray, there will be bias against risk 

alleles that are common in these populations but rare in Europeans. The current study 

supports other findings that show both similarities and differences in risk variants between 

East Asian and European populations. None of the most significant EOC risk regions 

identified in this study were associated with risk in European populations; although of the 30 

confirmed EOC risk loci so far reported in Europeans, around two-thirds showed evidence of 

association in our East Asian study. This includes variants at 8q24, which are associated 

with the risk of multiple cancer types, including ovarian, breast, prostate and colorectal 

[17,41]. Variants at 8q24 have been previously implicated in candidate SNP studies for 

ovarian cancer risk in Asian women [42]; and were nominally significant in both this study 

(BFDP = 12%) and the previous Han Chinese GWAS (Supplementary Table 5). This study 

did not replicate findings from a three-staged GWAS analysis of a homogenous population 

of around 2500 Han Chinese women with ovarian cancer, and ~4000 controls, even though 

we included women of Han Chinese other Chinese ancestry in our analyses. It may be that 

the previously reported loci did not replicate as they are only associated with EOC risk in 

Han Chinese and not across other Asian ethnic groups [9].

Similar to most other GWASs, the majority of risk associated SNPs identified in this study, 

including all candidate causal SNPs at the 6p25.2 locus, were non-coding, suggesting their 

functional impact is mediated through non-coding elements that regulate gene expression. 

We leveraged epigenomic data profiled in primary ovarian tumors and cell types 

representing the precursors of EOC (OSECs and FTSECs) to identify putative functional 

targets of risk SNPs. At 6p25.2 a risk SNP rs6902488 is located in a region of active 

chromatin in OSECs, with the alternative allele at this SNP predicted to strongly enhance the 

binding of three proteins with a known role in EOC biology. STAT3 is a member of the 

STAT family of transcription factors and has been posited as a therapeutic target for EOC, 

particularly in chemoresistant cells [43]. P300 is a transcriptional co-activator known to bind 

to enhancers in many cell types and works in concert with other transcription factors to 

orchestrate downstream transcriptional changes. Finally, ELF1 is an ETS domain 

transcription factor and closely related to ELF4, which has previously been implicated as a 

transforming factor in EOC [44]. Further functional experiments will be required to evaluate 

which of these factors play a role in mediating risk at this locus.

It is unlikely that our epigenomic analyses have captured all possible functional noncoding 

elements. For example, data representing disease specific transcription factors (e.g. WT1) 

are not available for the major EOC histotypes and their precursor tissues. This may explain 

why so few of the candidate causal risk variants we identified at 6p25.2 and other risk loci 

intersect putative functional biofeatures. Future investigations will require more 
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comprehensive analysis of the non-coding architecture of disease relevant tissues to identify 

the likely causal risk SNPs and target gene(s).

We identified 28 genomic regions where the Bayesian false discovery probability (BFDP) 

score provided additional evidence that these loci confer susceptibility to EOC even though 

the risk associations for these regions failed to reach genome-wide significance. Of 

particular interest is a locus at chromosome 2q37.3 which is associated with overall EOC 

risk. A BFDP calculation indicated this is likely to be a true association (for the index SNP 

rs74917072, P = 4.65 × 10−7 and BFDP = 7%). We identified candidate causal risk SNPs at 

this locus with significant eQTL associations (top P = 1.2 × 10−7) for the Espin-Like 

(ESPNL) gene using expression data from primary HGSOCs. ESPNL is a little studied gene 

with homology to Espin (ESPN). Both ESPNL and ESPN are involved in actin bundling in 

hair cell stereocilia in the inner ear (40) and there is some evidence that both are expressed 

in the normal fallopian tube in the Human Protein Atlas (proteinatlas.org). ESPNL has not 

previously been implicated in cancer, but we speculate that it may play a role in EOC cell 

motility in response to chemical stimuli.

We also explored eQTLs in novel RNA-seq data generated in OSECs and FTSECs. In both 

cell types we identified significant eQTL associations after Bonferroni-correction between 

candidate causal risk alleles and Major Histocompatibility Complex, Class II, DR Beta 1 

(HLA-DRB1), DR Beta 6 Pseudogene (HLA-DRB6), and DQ Beta 1 (HLA-DQB1) gene 

expression at a sub-genome-wide significant risk locus at 6q21.32. The index EOC risk SNP 

(rs72492309) at this locus is 154 kb away from rs2647012, a genome-wide significant index 

SNP associated with follicular lymphoma risk in Europeans that has previously been shown 

to have cis-regulatory effects on HLA-DQB1, HLA-DRB1, and HLA-DRB6 expression in 

lymphoblastoid cell lines [45]. SNP rs72492309 is also 91 kb from rs9272143, a SNP known 

to be associated with both cervical cancer risk (P = 2.8 × 10−17) and HLA-DRB1 expression 

(P = 4 × 10−7) [46]. SNPs at this locus are associated at genome-wide significance with 

inflammatory bowel disease [47], blood pressure [48], autism [49], and Alzheimer’s disease 

[50]. Class II HLA genes are predominantly expressed by antigen presenting cells in the 

immune system, but can be expressed by other cell types, albeit at lower levels. HLA 

proteins are localized to the surface of cells where they present cellular peptides to the 

immune system to enable identification and clearance of invading pathogens. Clustered 

somatic mutations in HLA genes in certain cancers point to a role for HLA deregulation 

during tumorigenesis, and may contribute to immune escape during neoplastic 

transformation. Mild immune deregulation could feasibly affect cancer susceptibility by 

modulating tumor suppressive immune pathways.

In summary, this study reports novel EOC susceptibility regions identified in East Asian 

populations, and a risk spectrum for common variants that includes some population-specific 

regions. Much larger genetic association studies, based on genetic variance catalogued in 

East Asian populations are warranted to characterize the full spectrum of risk variation in 

EOC cases in these populations. Such studies are also needed to define risks associated with 

different EOC histotypes that may partly explain variations in the clinical presentation of 

disease in Asian compared to non-Asian populations.
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HIGHLIGHTS

• This study analyzed genotyping data from >7,000 individuals of Asian 

descent to find risk loci for epithelial ovarian cancer

• We identified two novel genome-wide significant loci, plus evidence of 

association at an additional 28 regions

• eQTL analyses in 404 TCGA tumors highlight ESPNL as a novel 

susceptibility gene for ovarian cancer
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Fig. 1. 
Novel loci associated with EOC risk in Asian women. (a-b) Principal component analysis 

(PCA) of 21,879 EOC cases and 29,224 controls (a) identified a total of 7321 subjects with 

Asian ancestry which were stratified by country-of-origin (b); (c) Clear cell and mucinous 

EOC is more common in Asian women than women of European ancestry. (d-f) Forest plots 

showing the three genome-wide significant risk regions for EOC identified in women of 

Asian ancestry.
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Fig. 2. 
Functional annotation of risk variants at the 6p25.2 risk locus. (a) Regional association plot 

for serous cancers, centered on rs7748275, with genes in the regions indicated in panel (b). 

The grey highlighted region corresponds indicates the interval on chromosome 6 in panel a 

that is shown in panel (c). (c) ChIP-seq in OC-relevant cell types. The locations of the top 6 

candidate causal alleles are indicated. (d) SNP rs6902488 significantly alters binding sites 

for 4 transcription factors. Position weight matrices are shown for each, the height of each 

letter indicates the importance of that base in the motif.
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Fig. 3. 
Risk loci can be stratified by biofeature enrichment patterns. All loci with BFDP <0.5 were 

intersected with 73 biofeature data sets for EOC-relevant cell types. Red color indicates a 

statistically significant enrichment of SNPs within a certain biofeature (rows) for a particular 

locus (columns). Global enrichment for all loci collectively is indicated on the far left of the 

heatmap. Clustering was performed to aggregate loci that exhibit similar patterns of 

enrichment, using the Ward method. CL, cell line; NDR, nucleosome depleted region; T, 

tumor.
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Fig. 4. 
ESPNL expression is associated with rs34307842 genotype. Increased expression is 

associated with the GT genotype, which is associated with increased risk. Other variants that 

are also eQTLs for this gene are listed in Supplementary Table 10.
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Fig. 5. 
Functional analysis of the 2q37 risk locus. (a) Regional association plot for all invasive 

cancers, with genes in the regions indicated in panel (b). (c) ChIP-seq in OC-relevant cell 

types. The locations of the top 6 candidate causal alleles are indicated. (d) SNP rs6902488 

significantly alters binding sites for 4 transcription factors. Position weight matrices are 

shown for each, the height of each letter indicates the importance of that base in the motif.
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