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Summary

Neuronal cell types are the nodes of neural circuits that determine the flow of information within 

the brain. Neuronal morphology, especially the shape of the axonal arbor, provides an essential 

descriptor of cell type and reveals how individual neurons route their output across the brain. 

Despite the importance of morphology, few projection neurons in the mouse brain have been 

reconstructed in their entirety. Here we present a robust and efficient platform for imaging and 
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reconstructing complete neuronal morphologies, including axonal arbors that span substantial 

portions of the brain. We used this platform to reconstruct more than 1,000 projection neurons in 

the motor cortex, thalamus, subiculum, and hypothalamus. Together, the reconstructed neurons 

comprise more than 85 meters of axonal length and are available in a searchable online database. 

Axonal shapes revealed previously unknown subtypes of projection neurons and suggest 

organizational principles of long-range connectivity.

In brief

An efficient pipeline for brain-wide imaging and morphological reconstruction of individual 

neurons, including long-range projection neurons, is presented along with a searchable database 

containing more than 1,000 fully reconstructed neurons in the mouse neocortex, hippocampus, 

thalamus and hypothalamus.

Graphical Abstract

Introduction

Mammalian neurons possess extensive axonal arbors that project over long distances 

(Anderson et al., 2002; Braitenberg and Schüz, 1991; Kita and Kita, 2012; Kuramoto et al., 

2013; Wu et al., 2014). These projections dictate how information flows across brain areas. 

Interareal connections have been studied using tracers that label populations of neurons 

(Gerfen and Sawchenko, 1984; Hunnicutt et al., 2014; Luppi et al., 1990; Markov et al., 
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2014; Oh et al., 2014; Veenman et al., 1992; Zingg et al., 2014) or with functional mapping 

methods at various spatial scales (Greicius et al., 2009; Petreanu et al., 2007). However, 

these methods average across large groups of neurons, including multiple cell types and 

obscure fine-scale spatial organization. Mapping brain-wide connectivity at the single 

neuron level is crucial for delineating cell types and understanding the routing of 

information flow across brain areas. Very few complete morphological reconstructions of 

individual neurons are available, especially for long-range projection neurons (Ascoli and 

Wheeler, 2016; Svoboda, 2011).

Morphological reconstruction is technically challenging because thin axons (diameter: ~100 

nm; Anderson et al., 2002; De Paola et al., 2006; Shepherd and Harris, 1998) travel over 

long distances (centimeters) and across multiple brain regions (Economo et al., 2018; Kita 

and Kita, 2012; Oh et al., 2014). High-contrast, high-resolution, brain-wide imaging is 

therefore required to detect and trace axons in their entirety. Earlier studies using imaging in 

serial sections have reconstructed only small numbers of cells and mostly only partially, 

because of the difficulty of manual tracing across sections (Blasdel and Lund, 1983; Cowan 

and Wilson, 1994; Ghosh et al., 2011; Igarashi et al., 2012; Kawaguchi et al., 1990; 

Kisvárday et al., 1994; Kita and Kita, 2012; Kuramoto et al., 2009, 2015; Oberlaender et al., 

2011; Ohno et al., 2012; Parent and Parent, 2006; Ropireddy et al., 2011; Wittner et al., 

2007; Wu et al., 2014). Methods in which precisely assembled brain volumes are generated, 

for example based on block-face imaging, are more efficient for tracing (Economo et al., 

2016; Gong et al., 2016; Han et al., 2018; Lin et al., 2018; Portera-Cailliau et al., 2005), but 

manual reconstruction has remained a limiting factor. An RNA sequencing-based method 

(MAPSeq; Han et al., 2018; Kebschull et al., 2016) has provided a complementary, higher 

throughput approach to examine single neuron projections. However, this method has two 

limitations: the inherent sensitivity of MAPSeq has not been characterized in detail and the 

spatial resolution is lower by orders of magnitude, because it is limited by the volume of 

tissue that can be micro-dissected for sequencing. Microscopy-based neuronal 

reconstructions therefore remain the ‘Gold Standard’ for analysis of connectivity and spatial 

organization of axonal projections.

We have used serial 2-photon tomography to image the entire brain at sub-micrometer 

resolution, and with sufficient sensitivity to allow manual tracing of fine-scale axonal 

processes across the entire brain (Economo et al., 2016). Here, we improved this method and 

developed a semi-automated, high-throughput reconstruction pipeline. We reconstructed 

more than 1,000 neurons in the neocortex, hippocampus, thalamus and hypothalamus. 

Reconstructions were made available in an online database with extensive visualization and 

query capabilities (www.mouselight.janelia.org). We uncovered new cell types and found 

novel organizational principles governing the connections between brain regions.

Results

High-resolution and high-contrast imaging of the mouse brain

We sparsely labeled neuronal populations by injecting a mixture of low-titer AAV Syn-iCre 

and a high-titer Cre-dependent reporter (eGFP or tDTomato; Figure 1A and Table S1; two 

brains were labeled using other methods, see STAR Methods), resulting in high fluorescent 
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protein expression in approximately 20–30 cells per injection site (Economo et al., 2016; Xu 

et al., 2013). Whole brains were harvested, optically cleared, and imaged with an automated 

two-photon block-face imaging microscope at diffraction-limited resolution and near-

Nyquist sampling (voxel size: 0.3 × 0.3 × 1.0 μm3; Figure 1B). The entire brain was imaged 

as a series of partially overlapping image stacks (approximately 40,000 stacks per brain 

across two channels, 1024 × 1536 × 250 voxels per stack, 15 trillion voxels; imaging time: 

approximately one week; Figure 1C and 1D; see STAR Methods). Image stacks were 

stitched into a single volume with a non-rigid transform calculated from matching features 

within overlapping regions (Figure S1A–E). Stitching was accurate at the sub-micrometer 

level, such that small axonal processes were contiguous across stack boundaries and sections 

(Figure 1E–G).

To enhance the throughput of our pipeline, we increased the number of cells that could be 

reconstructed per imaged brain. First, by injecting up to five separate areas per brain, we 

labeled larger numbers of cells, while retaining sparse labeling in any one brain region 

(Movie S1, Table S1). The fluorescent reporter for each injection site was chosen to 

minimize the overlap of axons of the same color (e.g. eGFP label for thalamus and tdTomato 

for the thalamus-projection zones in cortex). Next, we employed a whole-mount 

immunohistochemical labeling method to amplify the fluorescent signal. This improved the 

signal-to-noise ratio, especially for neurons that appeared dim with native fluorescence, and 

thus allowed for a larger portion of labeled neurons to be reconstructed (Table S2). Finally, 

to ensure optimal image quality throughout the entire sample, we developed a web service 

that monitored the data acquisition of the microscope (Figure S1F–H). Taken together, these 

improvements resulted in a progressive increase in the number of neurons that could be 

reconstructed per imaged brain (> 100 neurons in recent samples; Table S2).

Semi-automated reconstruction of complete neurons

Manual interventions during reconstruction remain a significant bottleneck in generating 

neuronal reconstructions (Economo et al., 2016). Even with specialized custom 

reconstruction software applied to precisely stitched brain volumes, a complex cortical 

neuron previously took approximately 1–3 weeks to be reconstructed in its entirety 

(Economo et al., 2016). To accelerate reconstruction, we developed a semi-automated 

reconstruction pipeline consisting of several components. A key first step in the 

reconstruction workflow is automated segmentation. A classifier trained to identify neurites, 

including axonal and dendritic processes, was applied to the imaged stacks. The derived 

probability map was thresholded, skeletonized, and fitted with line segments (Figure 2A and 

2B; up to 100K segments per brain). Because crossing points were sometimes misidentified 

as branch points by the automated segmentation, segments were “broken” at all branch 

points and close crossing points, to be reconnected later using manual linking. This approach 

provided more accurate reconstructions compared to full automation. Generated segments 

covered the majority of axonal length (93% of total length, based on 27 neurons), keeping 

manual tracing to a minimum.

For manual linking and proofreading, we developed software for efficient three-dimensional 

visualization and annotation (Janelia Workstation; Murphy et al., 2014). The software 
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allowed seamless exploration of the entire mouse brain at multiple resolutions with the 

overlaid auto-generated line segments. Human annotators used the Workstation to complete 

the reconstruction by proofreading the segmentation and linking appropriate segments 

(Movie S2; see STAR Methods). Multiple annotators worked collaboratively on the same 

brain volume concurrently. This semi-automated pipeline resulted in a more than five-fold 

increase in reconstruction speed compared to manual reconstruction, without loss in 

accuracy (manual: 4.5 ± 2.8 mm/hr; Economo et al., 2016; semi-automated: 25.2 ± 11.9 

mm/hr). A typical cortical neuron with 10 centimeters of axon was completed in 

approximately 4 hours and a complex CA3 neuron of 27 centimeters in 8 hours.

Inaccurate reconstructions can arise from poor signal-to-noise ratio or other defects in the 

data. For this reason, we selectively reconstructed neurons with high and consistent 

fluorescent signal throughout the entire axonal arbor (Table S2). In these neurons, axonal 

endpoints were clearly identifiable even at locations far from the soma (Figure 2C, 2D and 

Figure S2), indicating that the entire arbor could be reliably reconstructed. Neurons that did 

not meet these criteria, for instance due to a gradual decrease in fluorescence along the axon, 

were not reconstructed.

Reconstruction errors can also arise from occasional attentional drift of individual annotators 

(Helmstaedter et al., 2011). For example, an annotator may overlook a branch point during 

proofreading and thus miss part of the axonal arbor. To measure these effects, multiple 

annotators (n = 8) independently traced the same cortical neuron (length: 11.5 cm; 274 

branch points) and compared their reconstructions in pairs (Figure 2E). We considered the 

consensus reconstruction across all annotators as ground truth (100%). Reconstructions 

produced by a single annotator were typically accurate to 85.9 ± 9.1% of total axonal length, 

with a low rate of errors, mostly corresponding to missed branch points (1.8 ± 0.7 errors per 

cm; range 1.0 – 2.7; Figure 2F and 2G). Accuracy increased after two annotators produced a 

consensus reconstruction (93.7 ± 4.9% of total length). Adding a third annotator produced 

smaller gains in accuracy (96.5 ± 3.1% of total length; Figure 2H). The reconstructions were 

not degraded by the faster semi-automated reconstruction approach (Figure 2F–H). A similar 

analysis based on four annotators reconstructing four additional neurons produced 

comparable results (Figure 2I). To balance accuracy and throughput, every neuron in our 

database was reconstructed by two annotators. As expected, pairs of reconstructions were 

highly similar for the majority of neurons (87.7 ± 14.3% of total axonal length, n = 1037 

neurons; Figure 2J). Based on the analysis presented above, the consensus of these paired 

reconstructions is expected to exceed 90% of the complete axonal arborization. This 

approach allowed us to accurately reconstruct the neuronal morphology of more than one 

thousand neurons.

Online database of more than 1,000 reconstructed neurons

Reconstructed neurons were registered to the Allen Mouse Common Coordinate Framework 

(CCF v3; Gilbert and Ng, 2018) using a landmark registration approach (Figure S3; see 

STAR Methods). More than 1,000 fully reconstructed and registered neurons were deposited 

in an online resource (www.mouselight.janelia.org; Movie S3). The web interface allows 

neurons to be searched based on Boolean logic using somatic and axonal target locations 
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(Figures 3–6). Neuronal reconstructions can be viewed together with anatomical structures 

in 3D and also downloaded for offline analysis. Currently, the database contains projection 

neurons primarily from the thalamus (Figure 3, 7 and S4), hippocampus (Figure 4), cerebral 

cortex (Figures 5 and 6), and hypothalamus. Together their projections innervate 11% of the 

CCF v3 voxels (25 μm resolution), distributed across all major brain structures.

Our database allows discovery of novel projection classes. For example, the zona incerta 

(ZI) has been associated with diverse functions, including defensive behavior (Chou et al., 

2018), appetite (Zhang and van den Pol, 2017) and sensory gating (Urbain and Deschênes, 

2007). As a group, ZI neurons project to the medulla, midbrain, and thalamus (Oh et al., 

2014; Sita et al., 2007), but little is known about the projections of individual neurons. A 

search for ZI neurons shows that neurons in rostral ZI fall into at least three projection 

classes. The groups project to the periaqueductal grey (PAG) and medulla (Figure 3; n = 

4/12 cells), or PAG and superior colliculus (SC; n = 4/12), or thalamus (4/12 cells). Linking 

these projection subtypes to different behavioral states will require further investigation.

Dorsal subiculum contains at least four projection types

The dorsal subiculum, a major output structure of the hippocampus, has been extensively 

studied for its role in memory, navigation, and motivated behavior (Aggleton and 

Christiansen, 2015). Previous studies have identified a proximal-distal division (with respect 

to CA1) of pyramidal neurons in the dorsal subiculum that differ by gene-expression, 

electrophysiology, and connectivity (Cembrowski et al., 2018a). The database contains a 

large number of subiculum neurons (n = 73 cells; Figure 4A), allowing a detailed analysis (a 

previous analysis was based on 11 neurons; Cembrowski et al., 2018a).

Dorsal subiculum neurons fall into four projection groups (Figure 4B–E and S5). One group, 

consisting of neurons at relatively distal locations (Figure S5B and S5C), project to either 

the retrosplenial cortex (RSP, n = 4/27), hypothalamus (n = 6/27) or both of these areas (n = 

17/27; Figure 4D). A second group, located at relatively proximal locations, project broadly 

to multiple targets, including the nucleus accumbens, lateral septal nucleus, thalamus, 

periaqueductal gray, and hypothalamus (n = 11; Figure 4B). The hypothalamic projections 

of these neurons were missed in previous bulk tracing studies (Cembrowski et al., 2018a), 

likely because neurons in proximal subiculum arborize in portions of the hypothalamus that 

were not targeted by those injections. A third group of subiculum neurons, positioned in 

between the distal and proximal groups, projects to the anterior dorsal thalamus (n = 21, 

Figure 4C). These three cell types overlap with the cell types described in previous studies 

(Cembrowski et al., 2018a, 2018b). A fourth group of subiculum neurons, widely distributed 

across the dorsal subiculum, consists of neurons with primarily local collaterals (n = 14), 

and in some cases one additional, unbranched long-range axon (n = 4; Figure 4E). Because 

neurons in the dorsal subiculum project to half a dozen areas in various combinations, 

previous studies using retrograde tracers in pairwise combinations failed to elucidate these 

complex projection patterns (Kim and Spruston, 2012; Naber and Witter, 1998).
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Motor cortex: a diverse collection of projection types

Projection neurons in the cerebral cortex are known to have complex axonal arborizations 

(Binzegger et al., 2004; Economo et al., 2016, 2018; Han et al., 2018; Kita and Kita, 2012; 

Oberlaender et al., 2011; Shepherd, 2013). Our database contains motor cortex neurons 

corresponding to the major cortical projection classes: (1) intratelencephalic neurons (IT) in 

layers 2–6 (n = 189), (2) pyramidal tract neurons (PT) in layer 5b (n = 37), and (3) 

corticothalamic neurons (CT) in layer 6 (n = 73; Shepherd, 2013). Based on gene expression 

analysis, each class is thought to contain many cell types (Arlotta et al., 2005; Economo et 

al., 2018; Tasic et al., 2018).

IT neurons are some of the most diverse and morphologically complex cells in our database 

(Figure 5A and 5B). Analysis of 175 IT neurons in the database revealed projections that 

were mostly limited to the cortex and striatum, with more minor projections to the 

basolateral amygdala and the claustrum (Figure 5 and S6; Shepherd, 2013). Collectively, IT 

neurons projected to (from strongest to weakest projection) motor cortex, somatosensory 

cortex, insula, ectorhinal cortex, piriform cortex, visual cortex, claustrum, and basolateral 

amygdala. The majority of IT neurons crossed the corpus callosum to project bilaterally (n = 

147/175). The axonal arbors of bilaterally projecting neurons were often strikingly mirror-

symmetric across the midline (Yorke and Caviness, 1975), more so for L5 neurons than the 

others (p < 0.001, one-way ANOVA; L5: 0.36 ± 0.12 Jaccard similarity coefficient, L2/3: 

0.26 ± 0.14, L6: 0.28 ± 0.09; calculated at 1 mm resolution, see STAR Methods). The 

majority of IT neurons also projected to the striatum (n = 148/175), either bilaterally (n = 

97/175), ipsilaterally (n = 37/175), or contralaterally (n = 14/175).

Cortical projection neurons are often referred to by the efferent projection target of interest, 

typically identified by retrograde labeling or antidromic activation (e.g., ‘callosal projecting 

neurons’ or ‘corticostriatal neurons’; Fame et al., 2011; Shepherd, 2013; Turner and 

DeLong, 2000). In our data set, the vast majority of IT neurons project both to the striatum 

and across the corpus callosum. The proportion of axonal length in the striatum or cortex 

varied by more than one order of magnitude and was not dependent on the size of the axonal 

arbor (Figure S6A). In general, these neurons did not fall into discrete clusters and therefore 

defied traditional classifications, projecting instead to multiple targets in almost all possible 

combinations. For example, individual IT neurons can have up to 40 cm of axon and project 

to many distinct cortical areas and the striatum; other IT neurons project to a small subset of 

these areas (Figure 5C and S6B). This diversity in projection patterns is much greater than 

those observed in the subiculum or zona incerta and potentially forms a continuum.

Parallel projections from motor cortex to the thalamus

Our database contains numerous reconstructions from the motor cortex and thalamus (Figure 

5–7 and S6–7), areas that are bidirectionally interconnected (Deschênes et al., 1994; Guo et 

al., 2017; Hunnicutt et al., 2014; Oh et al., 2014). Although the reciprocal connections 

between these areas have been studied, relatively little is known about the projections of 

individual cells.
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Cortical projections to the thalamus originate from layers 5 and 6 (Sherman, 2016). In layer 

5 these projections arise from pyramidal tract (PT) neurons, which define layer 5b, and 

project to the midbrain, brainstem and spinal cord (Figure 6A). Their axons do not cross the 

corpus callosum to the contralateral hemisphere and have limited projections within cortex 

(Shepherd, 2013). Corticothalamic projections from layer 5 originate from a molecularly 

distinct subtype of PT neuron (PT thalamus-projecting) in the upper part of L5b (Figure 6B; 

Economo et al., 2018). These neurons innervate multiple areas of the thalamus, but lack 

arborizations in the medulla that are characteristic of PT neurons located in lower L5b (PT 

medulla-projecting; Movie S4).

Here we further subdivided the PT thalamus-projecting neurons (Figure 6C–E; Movie S4). 

One subgroup (n = 7/23 cells) had extensive axonal ramifications in the parafascicular (PF) 

and mediodorsal (MD) nucleus of the thalamus (Figure 6C). These cells also projected to 

common extra-thalamic targets: the external segment of the globus pallidus (GPe) and the 

nucleus of the posterior commissure (NPC; Figure S7A). Another subgroup projects to other 

parts of the thalamus, such as the ventral medial nucleus (VM), paracentral nucleus (PCN), 

and the posterior complex (PO) and did not project to GPe or NPC (Figure 6C–E and Figure 

S7B). These findings show that thalamus-projecting PT cells in the motor cortex fall into 

projection subtypes that have distinct targets (Movie S4). Additional studies are required to 

determine how these subtypes of thalamus-projecting PT neurons correspond to differences 

in gene expression and function.

We next investigated the organization of corticothalamic axons originating from layer 6 of 

the motor cortex (L6-CT). L6-CT cells project almost exclusively to the thalamus, apart 

from local collaterals in the cortex, and do not cross the corpus callosum (Figure 6F; n = 63 

cells; Thomson, 2010). Compared to layer 5 PT thalamus-projecting neurons, individual L6-

CT projections extended over a larger thalamic area (Figure 6G; L6-CT : area = 1.2 ± 0.4 

mm3, p < 0.001, length = 40.8 ± 12.5 mm, p < 0.001; PT thalamus-projecting: area = 0.7 

± 0.4 mm3, length = 16.9 ± 10.7 mm; calculated at 200 μm resolution; see STAR Methods) 

and branched more within the thalamus (L6-CT = 80.3 ± 49.9 branch points, PT thalamus-

projecting = 34.9 ± 26.7 branch points; p < 0.001).

Previous studies have subdivided L6-CT neurons in somatosensory cortex into two groups 

based on their projections to first-order (e.g. ventral posteromedial nucleus, VPM) or higher-

order thalamus (e.g. PO; Hoerder-Suabedissen et al., 2018; Shima et al., 2016; Thomson, 

2010); only first-order projecting neurons were found to project onto inhibitory neurons in 

the reticular nucleus (RT). In our data set, the L6-CT neurons in motor cortex are 

considerably more diverse than these previous studies suggested. We often observed dense 

projections in both first-order (VAL, VPM) and higher-order (PO, MD, VM) nuclei, either 

with or without arborizations in RT (Figure 6H and 6I). Additional studies will be required 

to determine whether L6-CT neurons in the motor cortex form discrete projection subtypes, 

or are part of a continuum of projection patterns.

L6-CT neurons in the somatosensory cortex project to sensory thalamus in a topographically 

organized manner (Deschênes et al., 1998). Our single-neuron reconstructions reveal a 

similar topographic organization in the motor cortex. L6-CT neurons in the posterior motor 
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cortex sent their axonal projections to lateral regions of the thalamus (Figure S7C; R2 = 

0.31, p < 0.001 linear regression). Furthermore, these posterior neurons mostly remained on 

the ipsilateral side of the thalamus, unlike more anterior neurons that often crossed the 

midline (Figure S7C; R2 = 0.17, p < 0.001 linear regression). Topographic maps organized 

along distinct axes were also seen within targeted thalamic nuclei of L6-CT neurons (Figure 

S7D–F).

VAL thalamus contains fine-scale projection maps

Neurons in the ventral anterior-lateral complex of the thalamus (VAL) project to a large area 

of the ipsilateral motor cortex (Bosch-Bouju et al., 2013), with additional projections to the 

somatosensory cortex (n = 34 cells). Some neurons also arborized in RT (n = 4/34) and/or 

the dorsal striatum (n = 14/34; Figure 7A and 7B; Kuramoto et al., 2009). Individual VAL 

neurons had arborizations within confined areas of the cerebral cortex. These projections 

were not random because groups of neighboring neurons in VAL had similar thalamocortical 

projections (Figure 7C). For example, neurons within the caudomedial VAL had two main 

axonal tufts located in the anterior motor and sensory cortex respectively (n = 18/34 cells; 

Figure 7D). These two branches were positioned around a common plane of symmetry that 

corresponded to the border between the motor and somatosensory cortical areas. The relative 

distance of each tuft to this anatomical border correlated with the neurons mediolateral 

position in VAL (R2 = 0.42, p < 0.01 linear regression; Figure 7E; Movie S5). These 

findings show fine-scale topography between subregions of VAL and cortical areas of 

different modalities. Studying the axonal arbors of individual neurons therefore reveals 

organization of projections that are obscured with traditional bulk labeling approaches.

Discussion

We describe an imaging and reconstruction platform capable of producing complete 

neuronal reconstructions at unprecedented speed and scale. More than 1,000 fully 

reconstructed neurons are available in our online database (www.mouselight.janelia.org). 

Reconstruction of axonal arbors is a valuable step towards generating cellular circuit 

diagrams and classifying neurons based on morphology. Although our pipeline does not 

explicitly detect synapses, axonal arborizations contain an approximately constant density of 

synapses and axonal length is therefore a convenient surrogate for interareal connectivity 

(Braitenberg and Schüz, 1991; Shepherd et al., 2002). Our database represents a unique 

resource for the investigation of interareal connectivity and discovery of cell types based on 

axonal projections. Clustering based on these data identified new projection subtypes 

(Figure 3–6) and topographic gradients of single cell projections (Figure 7 and S7).

Previous large-scale studies of long-range projections have relied on bulk labeling to trace 

projections across brain areas (Hintiryan et al., 2016; Hooks et al., 2018; Hunnicutt et al., 

2014; Oh et al., 2014; Zingg et al., 2014). These approaches effectively average across cell 

types with distinct projections, thus obscuring the detailed organization of individual axonal 

arbors.

Neurons with distinct projection patterns have traditionally been identified based on 

combinatorial retrograde labeling with multiple markers (Betley et al., 2013; Kim and 
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Spruston, 2012; Naber and Witter, 1998; Pan et al., 2010). This approach is cumbersome 

because the number of required injections scales non-linearly with the number of projection 

targets. In addition, the spatial specificity is limited by the confinement of the injected tracer, 

and biases are produced by variable efficiency of tracer uptake in different brain regions and 

by different cell types; tracer uptake by axons of passage may also complicate these 

experiments. These limitations lead to potential errors in the detection of combinatorial 

projections. In contrast, complete neuronal reconstructions provide axonal projection maps 

at the finest levels of detail and unambiguously reveals the diversity of multi-areal projection 

patterns.

We relied on a viral labeling strategy using a low-titer AAV Syn-iCre and a high-titer 

fluorescent reporter to obtain a rich sampling of projection neurons (Table S1 and S2). 

However, this and other labeling techniques have biases in the transduction efficiency for 

different cell types. Our pipeline allows for diverse labeling methods, which counteracts 

these biases (Table S2; Chan et al., 2017; Harris et al., 2014; Xu et al., 2012). 

Reconstructions can be aggregated across brains and labeling methods to produce a more 

comprehensive atlas of neuronal morphologies.

Great progress has been made on methods for single-cell RNA sequencing (scRNA-seq), 

which now provides detailed transcriptomes of individual cells. Large-scale scRNA-seq 

measurements in the neocortex and other structures have identified known cell types and in 

addition also discovered additional transcriptomic clusters, which might correspond to newly 

discovered cell types (Cembrowski et al., 2018b; Shekhar et al., 2016; Tasic et al., 2016, 

2018; Zeisel et al., 2018). Establishing the relationship between transcriptomic cluster and 

cell type requires validation with other types of information, typically neuronal structure. 

For example, the correspondence between transcriptomic clusters and retinal bipolar cells 

with distinct morphology is excellent (Shekhar et al., 2016). Distinct transcriptomic clusters 

of pyramidal tract neurons in the motor cortex correspond to different pyramidal tract 

neurons with axonal arborizations in either the medulla or thalamus (Economo et al., 2018). 

Recordings from these cell types revealed distinct activity that correlated either with the 

planning or execution of goal- directed movements. These studies illustrate how the 

structural cell types in our database can be linked to molecular cell types and neural 

function.

In the future, more efficient methods for linking molecular and morphological information 

will be critical for characterizing neuronal cell types. Since our histological treatments and 

imaging are non-destructive (i.e. they result in a series of preserved brain slices) our pipeline 

is amenable to post-hoc gene expression analysis by in-situ hybridization techniques and 

other types of molecular characterization (Chen et al., 2015; Eng et al., 2017; Shah et al., 

2018). The synergy between large-scale genetic (Tasic et al., 2016; Zeisel et al., 2018) and 

morphological studies is primed to transform our understanding of how the brain is 

organized.

Single-neuron reconstructions have been performed in the past (Igarashi et al., 2012; Kita 

and Kita, 2012; Kuramoto et al., 2009; Lin et al., 2018; Wittner et al., 2007; Wu et al., 

2014), but at low rates and often not to completion. For example, a single CA3 pyramidal 
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neurons in the hippocampus (Wittner et al., 2007) was reconstructed over four months of 

manual tracing; a similar CA3 neuron in the MouseLight database was reconstructed within 

eight hours (Database identifier: AA0420, length = 27.3 cm). Several advances contributed 

to the throughput and accuracy required to produce our data set, including improved tissue 

processing, high-contrast imaging, automated segmentation, and 3d volumetric visualization 

for proofreading.

The precisely assembled image volume generated by our pipeline is amenable to even faster 

reconstructions using more advanced computational approaches. Much progress has been 

made towards fully automated tracing, but accuracy is still limiting (Acciai et al., 2016; Peng 

et al., 2015). In our pipeline, we segmented neurites in an automated manner, but the 

segments were linked into trees by manual proofreading. Combining automated 

segmentation with manual reconstruction allowed us to reconstruct complete neurons, 

including all termination zones, revealing the full complexity of axonal arbors. A complete 

characterization of the cell types of the mouse brain will likely require reconstructions of 

100,000 neurons or more (assuming 1000 brain regions, an average of 10 cell types per brain 

region, and 10 measurements per cell type; Svoboda, 2011) over hundreds of brains using 

diverse labeling techniques. How can the required increase in throughput be achieved? 

Despite the advances presented here the speed of reconstructions is still limiting. One brain 

containing 100 neurons can be imaged in one week per microscope, and the imaging can be 

accelerated and parallelized. In contrast, with our current semi-automated workflow, 

reconstructing 100 neurons requires approximately 400 person-hours (10 person-weeks) of 

manual proofreading. Currently, all decision points (i.e. linking of automatically segmented 

neurites to a tree) are curated manually, which is the limiting step in reconstructions. We 

believe that a 10 to 100-fold acceleration in reconstruction speed is required and may be 

feasible if all but the most difficult decisions are performed by computer algorithms in a 

fully automated manner, for example using convolutional neural networks. Our database of 

gold-standard reconstructions will serve as training data for the machine learning algorithms 

that will be required to achieve these gains. Together with increased speeds in imaging, this 

enhanced reconstruction speed would make the goal of a full characterization of the cell 

types in the mouse brain achievable.

STAR Methods

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jayaram Chandrashekar (chandrashekarj@janelia.hhmi.org).

Experimental model and subject details

Animals—Wild-type C57BL/6 animals were obtained from Charles River Laboratories. 

Rorb-IRES2-Cre (IMSR_JAX: 023526; Harris et al., 2014) and Sim1-Cre (IMSR_JAX: 

006451; Balthasar et al., 2005) transgenic animals were obtained from The Jackson 

Laboratory. Adult females (> 8 weeks) were used for all experiments and were group housed 

with sex-matched littermates. Mice were healthy, had access to ad libitum food and water, 

and were housed in an enriched environment. No animals used in this study were used in 
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previous procedures. All experimental protocols were conducted according to the National 

Institutes of Health guidelines for animal research and were approved by the Institutional 

Animal Care and Use Committee at Howard Hughes Medical Institute, Janelia Research 

Campus (Protocol #14–115).

Method details

Viral labeling—To achieve sparse labeling, we injected adult C57/BL6 mice with a 

combination of highly diluted adeno associated virus expressing Cre-recombinase (AAV 

Syn-iCre) and high-titer reporter virus coding for a fluorescent reporter (AAV CAG-Flex 

eGFP/tDTomato; Figure 1A). Multiple non-overlapping brain areas were labeled in each 

brain (Table S1 and Movie S1). For the Rorb-IRES2-Cre transgenic animal (2017–08-10, 

Table S2), sparsity was achieved using diluted Cre-dependent FLP-recombinase (AAV Syn-

Flex-Flpo) and a FLP-dependent reporter virus (AAV CAG-FRT-eGFP/tDTomato;). The 

Sim1-Cre animal (2018–08-01, Table S2) received a systemic injection via the retro-orbital 

sinus with a mixture of Cre-dependent FLP-recombinase (PHP-eB-Syn-Flex-Flpo) and a 

FLP-dependent reporter virus (PHP-eB-CAG-FRT-3xGFP; Chan et al., 2017). High titer (> 

1012 GC/ml) viruses were obtained from the Janelia Research Campus Molecular Biology 

Core and diluted in sterile water when necessary.

Tissue preparation and clearing

Transfected mice were anesthetized with an overdose of isoflurane and then transcardially 

perfused with a solution of PBS containing 20 U/ml heparin (H3393, Sigma-Aldrich, St. 

Louis, MO) followed by a 4% paraformaldehyde solution in PBS. Brains were extracted and 

post-fixed in 4% paraformaldehyde at 4°C overnight (12–14 hours) and washed in PBS to 

remove all traces of excess fixative (PBS changes at 1 h, 6h, 12h, and 1 day).

For imaging of endogenous fluorescence, brains were delipidated by immersion in CUBIC-1 

reagent for 3–7 days (Economo et al., 2016; Susaki et al., 2015). For amplification by 

immuno- labeling, brains were delipidated with a modified Adipo-Clear protocol (Chi et al., 

2018). Brains were washed with methanol gradient series (20%, 40%, 60%, 80%, Fisher 

#A412SK) in Bin buffer (H2O/0.1% Triton X-100/0.3 M glycine, pH 7; 4 mL/ brain; one 

hour / step). Brains were then immersed in 100% methanol for 1 hour, 100% 

dichloromethane (Sigma #270997) for 1.5 hours, and three times in 100% methanol for 1 

hour. Samples were then treated with a reverse methanol gradient series (80%, 60%, 40%, 

20%) in Bin buffer for 30 minutes each. All procedures were performed on ice. Samples 

were washed in Bin buffer for one hour and left overnight at room temperature; and then 

again washed in PTxwH buffer (PBS/0.1% Triton X-100/0.05% Tween 20/2 μg/ml heparin) 

with fresh solution after one and two hours and then left overnight.

After delipidation, selected samples were incubated in primary antibody dilutions in PTxwH 

for 14 days on a shaker (1:1000, anti-GFP, Abeam, #ab290; 1:600, anti-tDTomato, Sicgen, 

#ab8181). Samples were sequentially washed in 25ml PTxwH for 1, 2, 4, 8, and three times 

for 24 hours. Samples were incubated in secondary antibody dilutions in PTxwH for 14 days 

(Alexa Fluor 488 conjugated donkey-anti-rabbit IgG, 1:400, Invitrogen, #A21206; Alexa 
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Fluor 546 conjugated donkey-anti-goat IgG, 1:400, Invitrogen, #A11056) and washed in 

PTxwH similar to descriptions above.

Brains were embedded in 12% (w/v) gelatin and fixed in 4% paraformaldehyde for 12 hours. 

Index matching for optical clarity was achieved by immersing the samples in solutions of 

40% DMSO in 10 mM PB with increasing concentrations of D-Sorbitol (up to 40/60 w/v; 

see Economo et al., 2016) or in a solution of 40% OptiPrep (D1556, Sigma-Aldrich) in 

DMSO. The final imaging medium had a refractive index of 1.468 which allowed for 

imaging up to depths of 250 μm in the tissue without significant loss of fluorescence 

(Economo et al., 2016).

Microscope

Processed samples were imaged using a resonant scanner two-photon microscope imaging at 

million voxels per second (Figure 1B; Economo et al., 2016). The microscope is integrated 

with a motorized stage (XY: M-511.DD, Z: M-501-DG, Controller: C843; Physike 

Instrumente, Karlsruhe, Germany) and vibratome (Leica 1200S, Leica Microsystems, 

Wetzlar, Germany). Imaging was performed using a 40x/1.3 NA oil-immersion objective 

(#440752, Carl Zeiss, Oberkochen, Germany) attached to a piezo collar (P-725K.103 and 

E-665.CR, Physik Instrumente). Image stacks (385 × 450 × 250 μm3) were collected with a 

voxel size of 0.3 × 0.3 × 1 μm3 in two channels (red and green). The surface of the sample 

was automatically detected using the difference in autofluorescence between the tissue and 

the embedding gelatin. Scanning of the exposed brain block-face was then achieved by 

dividing it into smaller image stacks (Figure 1C). Overlap between adjacent stacks (25 μm) 

allowed feature-based registration and stitching (Figure S1A–E). After the block-face was 

imaged to a depth of 250 μm the vibratome removed 175 μm of tissue, leaving 

approximately 75 μm of overlap across imaged sections. The mouse brain was imaged in 

approximately one week. Signal quality was constant over this time.

To ensure robust and fault-proof processing of our large datasets, we created a custom 

software pipeline that facilitates the multi-step data processing in real time as the images are 

being acquired (Figure S1F–H; https://github.com/MouseLightProject/Mousel_ight-

Acquisition-Pipeline). Success or failure of the processing of each tile for each task was 

tracked, logged, and reported in a graphical user interface (Figure S1H). Each imaged stack 

was analyzed for possible faults in imaging (e.g. air bubble in front of the objective) or 

sectioning (e.g. larger than expected slice thickness). In case of a detected fault the 

microscope was automatically shut down to allow for manual adjustments.

Feature-based volume stitching

A fully imaged brain consists of ~20k imaged stacks that need to be stitched to create a 

coherent volume. Accurate stitching is necessary to eliminate discontinuous neurites at the 

borders, which is critical for reliable reconstruction and automation. Standard methods 

involving linear transformations between adjacent tiles, following by global optimization, do 

not produce micrometer level precision (Bria and lannello, 2012; Chalfoun et al., 2017; 

Emmenlauer et al., 2009; Tsai et al., 2011). To account for non-linear deformations (caused 

by physical sectioning, optical field curvature etc.), we extended the descriptor based 
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stitching framework we described previously (Economo et al., 2016) to all three dimensions 

(Figure S1A–E). First, blob-like objects were detected in individual tiles using a difference 

of Gaussian filter. These descriptors were matched between adjacent tiles in both x, y, and z 

directions using a coherent point drift algorithm (Myronenko and Song, 2010). Matched 

descriptors were then used to estimate a non- rigid transformation which mapped voxel 

locations to a target coordinate space while preserving the spatial ordering. For 

computational efficiency the transformation was represented as a set of barycentric 

transforms of 5×5×4 equally distributed control points in each stack (x, y, and z 

respectively).

3D visualization and reconstruction

For viewing and annotating terabyte-scale image stacks, each dataset (input tiles) was 

resampled into a common coordinate space according to the transforms determined during 

the stitching procedure. This produced a set of non-overlapping image stacks (output tiles) 

that spanned the imaged volume. Resampling was achieved by back-projecting each voxel in 

each output tile to the nearest sampled voxel. In regions where two or more input tiles 

overlapped, the maximum intensity was used for the corresponding location in the output 

tile. The resampling task was implemented on a cluster (64 nodes each with 32 cores and 

512 GB RAM) of Intel CPUs with Advanced Vector Instructions 2 (AVX2) and parallel 

access to high- bandwidth network storage. The input tiles were partitioned into contiguous 

sets and traversed in Morton order to facilitate merging overlaps in memory. Execution was 

dominated by the time required to read and write data to disk. Data were resampled to 0.25 × 

0.25 × 1 μm voxels, and stored on disk along with downsampled octree representations of 

the same volume for visualization at different spatial scales.

The imaged data was viewed and annotated in the Janelia Workstation (JW; https://

github.com/MouseLightProject/workstation; Murphy et al., 2014; Movie S2). The JW allows 

low lag, multi-scale visualization of terabyte-scale image volumes, rendering of sub-

volumes in three dimensions, and ergonomic annotation tools for tracing and proofreading. 

A detailed description of the JW will be published elsewhere.

Semi-automated segmentation

We trained a binary random forest classifier to identify axonal processes using five different 

appearance and shape features (Gaussian, Laplacian, gradient magnitude, difference of 

Gaussian, structure tensor Eigenvalues, Hessian of Gaussian Eigenvalues) at multiple spatial 

scales (σ = 0.3, 1, 1.6, 3.5, and 5 μm; llastik, Sommer et al., 2011). Training sets were 

created by pixel-based classification of axonal processes in regions containing different 

morphological features (axons close to the soma, termination zones etc.). The output of the 

classifier consisted of a probability stack where the value of each pixel reflects the likelihood 

of it belonging to an axon. A morphological skeleton (Lee et al., 1994) was then created by 

extracting the centerline of the classifier output after thresholding (> 0.5). For efficiency 

during visualization, we downsampled the resulting line segments to approximately 20 μm 

spacing in between nodes.
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All segmented neurites were split into linear segments by separating them at their axonal 

branch points (Figure 2A and 2B; Movie S2). Several filtering steps were applied on the 

resulting segmentation to remove incorrectly identified processes. For instance, we used a 

path- length based pruning strategy where spurious branches (<15 μm) were deleted. 

Furthermore, a separate classifier was trained to identify auto-fluorescence originating from 

fine-scale vasculature and non-specific antibody binding. This approach generated up to 

100,000 axonal segments per brain (length after split: 96.5 ± 155.4 μm, before: 263.4 

± 625.6 μm). The coverage of axonal processes by these generated segments was determined 

using fine-scale reconstructions (internode interval <5 μm) of all axonal projections in the 

caudoputamen of one sample and manually assigning fragments to each neuron (without 

merging).

Human annotators started from the soma and reconstructed neurons by linking neurite 

segments (Movie S2). Annotators in addition filled in parts of the neuron that may have been 

missed by the segmentation. The location of branch points and axonal endpoints were 

annotated to ensure that the entire axonal tree was reconstructed. Axons of neurons with 

insufficient expression became progressively dimmer and were eventually indistinguishable 

from the background fluorescence. These neurons were abandoned (median: 19% of cells in 

samples with more than 50 cells). Experienced annotators could identify these neurons after 

approximately 30 minutes of tracing. Two annotators independently reconstructed each 

neuron and compared their work to generate a consensus reconstruction (Figure 2E). Axons 

were distinguished from dendrites by their thickness, branching patterns, lack of dendritic 

spines, and overall length (Braitenberg and Schüz, 1991).

Sample registration

Imaged brains were aligned to the Allen Mouse Common Coordinate Framework (CCF) by 

taking a downsampled version of the entire sample volume (~5 × 5 × 15 μm voxel size) and 

registering it to the averaged Allen anatomical template (10 × 10 ×10 μm voxel size; Figure 

S3A and S3B) using the 3D Slicer software platform (slicer.org, Kikinis et al., 2014). First, 

parts of the brain that were not present in the anatomical template (e.g. the anterior olfactory 

bulb and posterior cerebellum/spinal cord), as well as the imaged gelatin, were cropped out 

of the sample volume. An initial automated intensity-based affine registration was then 

performed to align the sample to the anatomical template (BRAINSFit module, Johnson et 

al., 2007). An iterative landmark-registration processes, using thin-plate splines 

approximation, was then used to achieve a more precise registration to the template 

(LandmarkRegistration module, 110 ± 60 μm variation between independent registrations of 

the same sample). All registration steps were combined to generate a single displacement 

vector field which was used to align reconstructed neurons to the CCF. To determine the 

accuracy of the registration we measured the offset after registration between manually 

annotated anatomical boundaries and the Allen CCF. We found that the observed registration 

error was typically below 100 μm (Figure S3G).

Quantification and statistical analysis

All statistical analysis was performed in Matlab using custom made scripts. Unless stated 

otherwise, center and dispersion of bar plots represent mean ± SEM and descriptive statistics 
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in the main text represent mean ± std. Significance was defined as p < 0.05, with the specific 

statistical test provided in main text or within associated figure legend. Sample sizes (n) can 

refer to the number of samples, brains, or cells and is clarified in the associated text. 

Significance conventions are as follows: NS: p ≥ 0.05; *: p < 0.05; **: p < 0.01; ***: p < 

0.001 associated sample sizes are provided in the main text or within the figure legend. All 

reported position information is in Allen CCF coordinates.

Axonal length within an anatomical area was measured by taking all nodes within the given 

area and summing the distances to their parent nodes. Neuron order for all shown area 

heatmaps were determined using an average linkage hierarchical clustering algorithm based 

on Spearman correlation distance measures (except for Figure 5B and 6H which used 

Euclidean and Pearson correlation distances respectively). To minimize the influence of 

‘axons-of-passage’ within the thalamus the number of axonal branch points and ends were 

used for clustering corticothalamic neurons. The weighted centroid of axonal projections 

was calculated by linearly resampling the axonal tree graph at 1 μm interval between 

connected nodes. Nodes within the area of interest were then selected using 3D meshes from 

the Allen CCF and their positions were averaged to derive the centroid. To exclude en 

passant axons, only neurons with at least three axonal ends in the area of interest were 

considered. Axonal area size was calculated by dividing the brain area of interest into 

isotropic voxels (200 × 200 × 200 μm3) and counting the number of voxels that an axon 

passed through. Bilateral symmetry of IT projections in the cortex was measured by 

similarly dividing the brain into isotropic voxels (at a coarser level of 1 × 1 × 1 mm3) and 

mirroring one hemisphere onto the other. Each voxel was scored for axon traversal on the 

ipsilateral and contralateral side. Symmetry was then calculated using the Jaccard similarity 

coefficient dividing the number of voxels that were positive for both hemispheres with the 

total number of positive voxels.

Data and software availability

All reconstructed neurons are available for download from the MouseLight NeuronBrowser 

(http://ml-neuronbrowser.janelia.org/). Matlab code for the performed analysis is available 

online (https://github.com/MouseLightProject/Analysis-Paper).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Efficient pipeline for brain-wide imaging and reconstruction of individual neurons

Searchable database containing more than 1,000 fully reconstructed neurons

In some brain areas projection neurons fall into discrete classes

Other projection neurons form a continuum of projection types
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Figure 1. 
Imaging pipeline. (A) Animals were injected in targeted brain areas with a combination of a 

low-titer AAV Syn-iCre and a high-titer AAV CAG-Flex-(eGFP/tDTomato). (B) Two-photon 

microscope with an integrated vibratome. Inset, sequential imaging of partially overlapping 

image stacks. (C) Image stacks overlapped in x, y, and z. (D) Rendered brain volume after 

stitching (sample 2016–10-31 in Table S2). (E) Horizontal maximum intensity projection 

through a 1300 × 2000 × 600 μm3 volume of the motor cortex containing labeled somata and 

neurites. Horizontal dashed lines mark physical tissue sections; vertical dashed line 
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represents stack boundaries. Dashed box is region shown in F. (F) Example of boundary 

region between two adjacent image stacks before (left) and after stitching (right). Dashed 

line indicates overlap region. (G) Residual stitching error in the lateral and axial directions. 

See also Table S1, S2, Figure S1, and Movie S1.
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Figure 2. 
Complete semi-automated reconstruction of individual neurons. (A) Automated 

segmentation. Left, raw maximum intensity image of axons in the thalamus. Middle, 

probability map output from classifier. Right, segmentation result, with each detected 

segment depicted in a different color. (B) Coronal section through a sample with overlaid 

segmented neurites. (C) Left, sagittal view of a reconstructed cortical neuron. Arrows 

indicate location of axon endings shown on the right. Right, maximum projection of axon 

endings several millimeters away from the soma (1: 4.1 mm; 2: 4.9 mm; 3: 6.5 mm; 4: 4.6 

Winnubst et al. Page 25

Cell. Author manuscript; available in PMC 2020 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mm). Numbers in top right show individual signal-to-noise ratios. (D) Distribution of image 

signal-to-noise ratio for axon endings (difference in intensity between the axon ending and 

surrounding background, divided by the standard deviation of background). (E) Establishing 

consensus in reconstructions produced by two annotators. Top, example reconstruction of a 

single neuron. Black, agreement between two annotators; green and magenta, unique 

segments detected by one of the two annotators. Inset, higher magnification view of dashed 

box on the left. Bottom, images of the areas of confusion numbered in the inset shown 

above. Colored outlines represent the reconstructions of the two annotators. (1) False-

negative error, or a missed branch. (2) False-positive error consisting of an erroneously 

appended branch. (F) Frequency of each error-type for manual and semiautomated 

reconstructions. (G) Length distribution of missed neuronal branches for manual and semi-

automated reconstructions. (H) Increase in accuracy as a function of the number of 

annotators reaching consensus. Accuracy is the proportion of axonal length that was 

correctly reconstructed. The consensus reconstruction from all eight annotators was defined 

as 100% accurate. (I) Same analysis as shown in H for 5 neurons across the brain with 

reconstructions from 4 annotators. (J) Cumulative distribution of reconstruction similarity 

between two annotators. Similarity is the proportion of axonal length present in the 

reconstructions of both annotators. Error bars ± SEM. ***: p < 0.001. See also Figure S2, 

S3, and Movie S2.
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Figure 3. 
Zona incerta neurons. (A) Example queries (top) and 3d visualizations (bottom) for three 

projection groups in the zona incerta (ZI). Left, ZI neurons with axonal projections in the 

medulla. Middle, ZI neurons with projections in the superior colliculus but not the medulla. 

Right, ZI neurons with projections in the thalamus and not the periaqueductal gray. Inset 

shows perspective of shown area relative to the entire brain. (B) Examples of single ZI 

neurons belonging to the projection groups shown in A. Axons are color coded according to 

anatomical position (PAG: periaqueductal gray, SC: superior colliculus, ZI: zona incerta). 

Dendrites are shown in red. See also Figure S4 and movie S3.

Winnubst et al. Page 27

Cell. Author manuscript; available in PMC 2020 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Subiculum neurons. (A) Example query requesting all neurons with somata in the subiculum 

(top) and the resulting 3d visualization (bottom). Inset, higher magnification view of area in 

dashed box showing the dendrites of the same cells (B) Examples of broad-projecting 

subiculum neurons with their axons color coded by anatomical position (HPF: hippocampal 

formation, PAG: periaqueductal gray, HY: hypothalamus, TH: thalamus, STR: striatum, 

RSP: retrosplenial cortex). Innervation in striatum is mostly confined to the lateral septum 

and nucleus accumbens. Dendrites are shown in red. (C) Thalamus-projecting neurons. (D) 

Hypothalamus/retrosplenial cortex projecting neurons. (E) Local-projecting neurons. Inset 

shows long-range axonal end of a local-projecting neuron that lacks varicosities. See also 

Figure S5.
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Figure 5. 
Motor cortex intratelencephalic neurons. (A) Search query (top) and 3d visualization 

(bottom) for intratelencephalic (IT) neurons in the motor cortex classified by lack of axons 

in thalamus or pons. Inset, higher magnification view of area in dashed box showing the 

dendrites of the same cells. (B) Innervation of telencephalic targets by IT neurons. Rows 

correspond to projection targets. Columns represent individual IT neurons. Color denotes the 

axonal length for that cell in a specific area. (C) Horizontal view of individual IT neurons 

with axons color coded according to their anatomical position. Dendrites are shown in red. 

See also Figure S6.
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Figure 6. 
Thalamus-projecting neurons in the motor cortex. (A) Search query (top) and 3d 

visualization (bottom) for pyramidal tract (PT) neurons in the motor cortex with axons in the 

pons. (B) Sagittal view of single PT neurons that project to the thalamus (PT thalamus- 

projecting; green) or medulla (PT medulla-projecting; magenta) respectively. (C) PT neuron 

projections to different nuclei of the thalamus. Rows represent thalamic nuclei (PF: 

parafascicular nucleus, MD: mediodorsal nucleus, VM: ventral medial nucleus, PCN: 

paracentral nucleus, VAL: ventral anterior-lateral complex, PO: posterior complex). 
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Columns correspond to individual neurons. The color of the heat map denotes the total 

number of axonal ends and branch points. The dashed white line separates neurons with 

dense innervation of the PF (PF-projecting) and those without (Other). (D) Left, sagittal 

view of PF-projecting neurons in shades of blue. Right, example image of axon in PF with 

varicosities. (E) Same area as in D, with PT thalamus-projecting neurons that do not project 

to PF in shades of red. (F) Search query (top) and 3d visualization (bottom) of layer 6 CT 

(L6-CT) neurons in the motor cortex. Neurons are identified by the presence of axons in the 

thalamus and the lack of projections to the pons. (G) Horizontal view of single L6-CT 

neurons and their axonal projections to the thalamus (green). Dendrites are red. (H) L6-CT 

neuron projections to thalamus. Rows, thalamic nuclei (PO: posterior complex, MD: 

mediodorsal nucleus, VM: ventral medial nucleus of the thalamus, VAL: ventral anterior-

lateral complex of the thalamus, VPM: ventral posteromedial nucleus of the thalamus, PCN: 

paracentral nucleus, RT: reticular nucleus); columns represent individual neurons. The color 

of the heat map indicates the number of axon branches and ends. (I) Thalamic projections of 

example neurons (arrowheads in H). Left, dashed lines indicate the coronal views on the 

right. Greyscale images are from the Allen anatomical template. See also Figure S7 and 

Movie S4.
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Figure 7. 
Cortical projections from neurons in the VAL complex of the thalamus. (A) Six VAL 

neurons and their axonal projections. (B) Coronal view of the same neurons. Dashed lines 

show position of cortical layers. (C) Left, sagittal view of two groups of VAL neurons with 

similar projection patterns in the posterior (red; n = 3 cells) or anterior (green; n = 3 cells) 

motor cortex. Right, higher magnification view of dashed box on the left. (D) Horizontal 

view of cortical projections of three neurons in caudomedial VAL, color coded according to 

their medial lateral position. White outline show locations of motor (MO) and sensory cortex 

(SS). (E) Relationship between somatic medial-lateral position and the average distance of 

the axonal centroid in the motor (MO) and sensory cortex (SS) to the border of those two 

areas (illustrated by inset). Positions are in CCF coordinates. Greyscale images are from the 

Allen anatomical template. See also Movie S5.
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