Table 4.
Performance comparison of all methods on CYP interactions of DS3.
Method | AUC | AUPR | F-measure | Recall | Precision |
---|---|---|---|---|---|
Substructure-based label propagation model | 0.952 | 0.126 | 0.206 | 0.278 | 0.161 |
Side-effect-based label propagation model | 0.953 | 0.120 | 0.199 | 0.278 | 0.156 |
Vilar’s substructure-based model | 0.953 | 0.126 | 0.196 | 0.279 | 0.152 |
Classifier ensemble method | 0.990 | 0.541 | 0.553 | 0.566 | 0.546 |
Weighted average ensemble method | 0.695 | 0.484 | 0.198 | 0.201 | 0.201 |
NDD | 0.994 | 0.830 | 0.772 | 0.770 | 0.775 |
RF | 0.737 | 0.092 | 0.161 | 0.216 | 0.132 |
LR | 0.977 | 0.487 | 0.524 | 0.589 | 0.475 |
Adaptive boosting | 0.830 | 0.143 | 0.215 | 0.259 | 0.185 |
LDA | 0.953 | 0.327 | 0.388 | 0.363 | 0.425 |
QDA | 0.709 | 0.317 | 0.259 | 0.446 | 0.184 |
KNN | 0.590 | 0.064 | 0.039 | 0.008 | 0.190 |
The best value of each criterion is shown in bold.