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Aberrant T cell development is a pivotal risk factor for autoim-
mune disease; however, the underlying molecular mechanism of
T cell overactivation is poorly understood. Here, we identified NF–
κB-inducing kinase (NIK) and IkB kinase α (IKKα) in thymic epithe-
lial cells (TECs) as essential regulators of T cell development.
Mouse TEC-specific ablation of either NIK or IKKα resulted in se-
vere T cell-mediated inflammation, injury, and fibrosis in the liver
and lung, leading to premature death within 18 d of age. NIK or
IKKα deficiency abrogated medullary TEC development, and led
to breakdown of central tolerance, production of autoreactive
T cells, and fatal autoimmune destruction in the liver and lung.
TEC-specific ablation of NIK or IKKα also impaired thymic T cell de-
velopment from the double-negative through the double-positive
stages and inhibited peripheral B cell development. These results
unravel a hitherto unrecognized essential role of TEC-intrinsic NIK
and IKKα pathways in autoimmunity and T cell-instigated chronic
liver and lung diseases.

NIK and IKKalpha | autoimmune disease | thymic epithelial cells |
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Liver and lung diseases are an important cause of mortality and
morbidity and are fueled by inflammation (1–3). Recent re-

search highlights a pathogenic contribution of adaptive immu-
nity, particularly T cell-triggered destruction, to liver and/or lung
diseases (1–3); however, the underlying mechanism of T cell
activation is poorly understood. Naïve T cell development is
controlled by thymic epithelial cells (TECs). Cortical TECs
(cTECs) control thymic seeding of lymphocyte stem cells and
subsequent thymocyte proliferation and differentiation; medul-
lary TECs (mTECs) are responsible for negative selection and
establishment of central tolerance to remove autoreactive T cells
(4). Reciprocally, developing thymocytes also profoundly influ-
ence the growth and differentiation of cTECs and mTECs
through secreting various cytokines, including receptor activator
of NF-κB ligand (RANKL), lymphotoxin β (LTβ), and CD40L
(4). Accordingly, ablation of RANKL, LTβ, CD40L, or their
cognate receptors blocks mTEC development, resulting in au-
toimmune disease (5–9). However, mTEC-intrinsic pathways
mediating thymocyte–mTEC crosstalk remain elusive.
RANKL, LTβ, and CD40L activate the noncanonical NF–

kB2 pathway in immune cells (10). These cytokines stimulate
NF–κB-inducing kinase (NIK), also known as MAP3K14. NIK
phosphorylates and activates IkB kinase α (IKKα), also called
CHUK. IKKα in turn phosphorylates NF–kB2 precursor p100,
generating mature p52 that binds to RelB and activates target
genes. Global inactivation of NIK abrogates thymic medullary
development in mice, leading to autoimmune disease (11, 12).
Importantly, human NIKPro565Arg and NIKVal345Met variants are
linked to profound immune dysfunctions (13, 14). Thus, NIK is
an essential regulator of the immune system in both mice and

humans. However, NIK target cells remain elusive. We postu-
lated that mTEC NIK/IKKα pathways might mediate thymo-
cyte–mTEC crosstalk, shaping mTEC growth and differentiation.
To test this hypothesis, we generated and characterized TEC-
specific NIK (NIKΔTEC) and IKKα (IKKαΔTEC) knockout mice.
Using these mice, we firmly established a pivotal role of the
mTEC-intrinsic NIK/IKKα pathway in mTEC development and
establishment of central tolerance. We also unraveled mTEC–
liver and mTEC–lung axes involved in liver and lung diseases.

Results
NIKΔTEC and IKKαΔTEC Mice Die Prematurely.NIKΔTEC and IKKαΔTEC
mice were generated by crossing NIKf/f and IKKαf/f mice with
Foxn1–Cre drivers, respectively. NIKf/f, IKKαf/f, and Foxn1–Cre
mice were described previously (15–17). Foxn1+ TEC progenitors
are known to give rise to both cTECs and mTECs (18, 19). We
confirmed that in NIKΔTEC mice, NIK was ablated specifically in
TECs but not livers, lungs, spleens, kidneys, and gastrointestinal
tracts (GI) (SI Appendix, Fig. S1 A and B). Immunoreactivity to
NF–kB2 p52 (a surrogate marker for NIK activation) was high in
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the thymic medulla of NIKf/f and IKKαf/f but not NIKΔTEC and
IKKαΔTEC mice (SI Appendix, Fig. S1 C and D). Remarkably,
NIKΔTEC male and female mice died prematurely within 18 d of

age (Fig. 1A). NIKΔTEC pups displayed severe growth retardation
and life-threatening hypoglycemia (Fig. 1B). The levels of
plasma alanine aminotransferase (ALT), a liver injury marker,
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Fig. 1. TEC-specific ablation of NIK or IKKα causes hypoglycemia and premature death. (A) Survival rates. Male NIKΔTEC, n = 7; male NIKf/f, n = 10; female
NIKΔTEC, n = 5; female NIKf/f, n = 5. (B) Body weight, nonfasting blood glucose, and ALT levels in males at 15 to 17 d of age. NIKΔTEC, n = 6; NIKf/f, n = 7. (C)
Survival rates. IKKαΔTEC, n = 6; IKKαf/f, n = 5. (D) Body weight, nonfasting blood glucose, and plasma ALT levels in males at 15 to 17 d of age. IKKαΔTEC, n = 4;
IKKαf/f, n = 5. Data are presented as mean ± SEM. *P < 0.05, 2-tailed unpaired Student’s t test.
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Fig. 2. NIKΔTEC and IKKαΔTEC mice develop autoim-
mune hepatitis. (A and E) Representative liver sec-
tions (n = 4 per group). (B) Flow cytometric plots of
liver T cells. Numbers represent percentiles (normal-
ized to CD45+ lymphocytes). (C) Flow cytometric as-
sessments of liver CD45+ lymphocytes (normalized to
liver weight). NIKΔTEC, n = 3; NIKf/f, n = 3. (D) Flow
cytometric assessments of T cell subpopulations in
males at 10 d of age. NIKΔTEC, n = 3 to 4; NIKf/f, n =
4 to 6. (A–C and E) Males at 15 to 17 d of age. Data
are presented as mean ± SEM. *P < 0.05, 2-tailed
unpaired Student’s t test.
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were significantly higher in NIKΔTEC mice relative to NIKf/f litter-
mates (Fig. 1B). Likewise, IKKαΔTEC mice largely phenocopied
NIKΔTEC mice (Fig. 1 C and D). These results demonstrate that
TEC-intrinsic NIK and IKKα are required for postnatal survival.

NIKΔTEC and IKKαΔTEC Mice Develop Severe Autoimmune Hepatitis,
Liver Injury, and Fibrosis. Impaired liver function prompted us to
examine liver integrity and injury in NIKΔTEC and IKKαΔTEC
mice. Strikingly, the liver was disorganized and heavily infiltrated
with CD4 T cells and CD8 T cells in NIKΔTEC mice at 15 to 17 d
of age (Fig. 2A). Flow cytometric analysis confirmed that the
numbers of total lymphocytes, CD4 T cells, and CD8 T cells, but
not the frequencies of CD4 and CD8 T cells (normalized to
CD45+ lymphocytes), in the liver were substantially higher in
NIKΔTEC relative to NIKf/f mice (Fig. 2 B and C). In NIKΔTEC

mice, liver T cells displayed activated phenotypes, expressing
CD69 (SI Appendix, Fig. S2 A and B). Accordingly, proin-
flammatory INFγ+CD4+, TNFα+CD4+, IL17+CD4+, INFγ+CD8+,
and TNFα+CD8+ subpopulations were significantly higher in
NIKΔTEC than in NIKf/f mice (Fig. 2D and SI Appendix, Fig. S2C).
Foxp3+CD4+ Treg cells were also elevated in NIKΔTEC mice (Fig.
2D). Likewise, IKKαΔTEC mice also developed severe autoim-
mune hepatitis and massive hepatic infiltrations of CD4 T cells
and CD8 T cells, as assessed by immunostaining of liver sections
(Fig. 2E). Flow cytometric analysis further confirmed that liver
CD4 and CD8 T cells were not only elevated but also activated (SI
Appendix, Fig. S2D). The number of liver F4/80+ Kupffer cells/
macrophages was also abnormally higher in both NIKΔTEC and
IKKαΔTEC mice (Fig. 2 A and E). Inflammation is known to
augment liver injury and fibrosis. Accordingly, the number of liver
TUNEL+ apoptotic cells and Sirius red+ fibrosis areas were sub-
stantially higher in NIKΔTEC (relative to NIKf/f) and IKKαΔTEC
(relative to IKKαf/f) mice (Fig. 3 A–D). The levels of cleaved
caspase 3 (apoptosis marker), RIP3 (necrosis marker), and
α-smooth muscle actin (αSMA, fibrosis marker) in liver extracts

were also drastically higher in NIKΔTEC than in NIKf/f mice
(Fig. 3E). These data unveil a TEC–liver axis involved in liver
autoimmune disease.

NIKΔTEC and IKKαΔTEC Mice Develop Lung Autoimmune Disease. We
next examined autoimmune inflammation in other vital organs of
NIKΔTEC and IKKαΔTEC mice at 15 to 17 d of age. In NIKΔTEC

mice, the lung was disrupted and heavily infiltrated with CD4 T cells,
CD8 T cells, and F4/80+ macrophages (Fig. 4A). Flow cytometric
analysis confirmed that INFγ+CD4+, TNFα+CD4+, IL17+CD4+,
INFγ+CD8+, and TNFα+CD8+ subpopulations were significantly
expanded in NIKΔTEC mice compared to NIKf/f littermates (Fig. 4B
and SI Appendix, Fig. S3 A–C). NIKΔTEC mice developed lung fi-
brosis, as assessed by Sirius red staining of lung sections (Fig. 4A).
The levels of cleaved caspase 3, RIP3, and αSMA in lung extracts
were drastically higher in NIKΔTEC relative to NIKf/f littermates
(Fig. 4C). IKKαΔTEC mice, like NIKΔTEC mice, also developed
severe lung inflammation, injury, and fibrosis (Fig. 4D). The
levels of cleaved caspase 3, RIP3, and αSMA in both lung and
liver extracts were drastically higher in IKKαΔTEC than in IKKαf/f
mice (SI Appendix, Fig. S3D). Notably, autoimmune inflamma-
tion was mild in the kidneys and intestines of NIKΔTEC and
IKKαΔTEC mice (SI Appendix, Fig. S4 A and B). These results un-
cover an unrecognized TEC–lung axis involved in lung autoimmune
disease.

Peripheral B Cell Development Is Impaired in NIKΔTEC and IKKαΔTEC

Mice. Considering the critical role of CD4 T cells in B cell dif-
ferentiation, we assessed B cells in spleens and lymph nodes at
15 to 17 d of age. The spleens (Fig. 5A) and lymph nodes (SI
Appendix, Fig. S5A) of NIKΔTEC mice lacked morphologically
defined lymphoid follicles and germinal centers. The frequency
and number of B220+ B cells were dramatically lower in the
spleens (Fig. 5 B and C) and lymph nodes (SI Appendix, Fig.
S5B) of NIKΔTEC relative to NIKf/f mice. The frequency of
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spleen IgM+ B cells was significantly lower, while their proliferation
and survival were relatively normal in NIKΔTEC mice (Fig. 5C
and SI Appendix, Fig. S5C). These results suggest that B cell
maturation is impaired in NIKΔTEC mice. Notably, spleen CD4
and CD8 T cells were also significantly lower in NIKΔTEC than in
NIKf/f mice (Fig. 5D). Follicular helper (Tfh) T cells are in-
strumental to B cell growth and maturation, prompting us to
assess CD4+CXCR5+PD-1+ Tfh cells (20). The frequency and
number of Tfh cells were significantly lower in NIKΔTEC than in
NIKf/f littermates (Fig. 5E and SI Appendix, Fig. S5D). Likewise,
IKKαΔTEC mice also displayed peripheral B cell deficiency, as
assessed by immunostaining of spleen and lymph node sections
(SI Appendix, Fig. S6A). Flow cytometric analysis confirmed that
the numbers of total B cells as well as IgM+ subpopulation in the
spleen were lower in IKKαΔTEC than in IKKαf/f mice (Fig. 5F).
The number of spleen Tfh cells was also lower in IKKαΔTEC

relative to IKKαf/f littermates (SI Appendix, Fig. S6B). These data
suggest that the TEC-intrinsic NIK/IKKα pathway promotes pe-

ripheral B cell development, presumably through Tfh and/or related
CD4 T cells.

Thymocyte Development Is Impaired in NIKΔTEC Mice. Given the
importance of TECs in T cell development, we examined thymocyte
development stages in NIKΔTEC mice at 15 to 17 d of age. Thymus
weight and total thymocyte number were dramatically lower in
NIKΔTEC than in NIKf/f littermates (Fig. 6A). Flow cytometric
analysis demonstrated that the frequency of CD4−CD8− double-
negative (DN) thymocytes was significantly higher, while the fre-
quency of CD4+CD8+ double-positive (DP) thymocytes was sub-
stantially lower, in NIKΔTEC mice relative to NIKf/f littermates
(Fig. 6 B and C). Therefore, thymocyte differentiation likely ar-
rests between DN and DP stages. The frequency of CD25−CD44+

DN1 but not CD25+CD44+ DN2 cells was significantly higher in
NIKΔTEC relative to NIKf/f mice (Fig. 6D), suggesting that DN
differentiation is blocked between DN1 to DN2 stages. The fre-
quency of CD25+CD44− DN3 thymocytes was significantly lower,
while DN2 frequency was relatively normal in NIKΔTEC mice (Fig.
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6D), suggesting that DN differentiation is also inhibited between
DN2 and DN3 stages. To gain insight into the underlying mech-
anism, we assessed thymocyte proliferation (Ki67 staining) and
death (Annexin V staining). DN1 proliferation was higher in
NIKΔTEC mice (Fig. 6E), likely contributing to increased DN1
frequency. DN2 proliferation was undetectable. DN3, DN4, and
DP proliferations were comparable between NIKΔTEC and NIKf/f

mice (Fig. 6E). DN1, DN2, DN4, and DP death was significantly
higher in NIKΔTEC relative to NIKf/f mice (Fig. 6E), contributing
to thymocyte reduction in NIKΔTEC mice. Notably, the number of
thymic Foxp3+ Treg cells was lower in NIKΔTEC mice (Fig. 6F). To
exclude the possibility that the observed thymic phenotypes might
be caused nonspecifically by sickness, we examined NIKΔTEC pups
at 10 d of age when body weight and blood glucose were slightly
reduced (SI Appendix, Fig. S7A). Thymic development was simi-
larly impaired in these NIKΔTEC pups (SI Appendix, Fig. S7 B and
C). The spleens of NIKΔTEC mice were also deficient of B cells (SI
Appendix, Fig. S7D). Collectively, these results indicate that in ad-

dition to promoting negative selection, TEC-intrinsic NIK pathways
are also involved in the regulation of thymocyte expansion and
positive selection.

NIK and IKKα Pathways Directly Promote TEC Precursor Proliferation
and mTEC Expansion. We next sought to interrogate the mecha-
nism by which NIK/IKKα pathways regulate TEC development.
Remarkably, thymic medulla were absent in NIKΔTEC mice (Fig.
7A and SI Appendix, Fig. S7E). Mature mTECs were also un-
detectable in NIKΔTEC mice, as assessed using antibodies against
autoimmune regulator (Aire), keratin 5 (K5), and ulex europeus
agglutinin-1 (UEA-1) (Fig. 7A). We next assessed TEC progenitor
cells using flow cytometry (Fig. 7B). The frequencies of mTECs
(CD45−EpCAM+CD205−Cld4+) but not cTECs (CD45−EpCAM+

CD205+Cld4−) were markedly lower in NIKΔTEC than in NIKf/f

mice (Fig. 7C). The numbers of mTECs, cTECs, and total TECs
were also significantly lower in NIKΔTEC mice (Fig. 7 D and
E). The frequencies of mTEC and activated cTECs [i.e., major
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histocompatibility complex (MHC) IIhigh, RANKhigh, and CD40high

cells] were significantly lower in NIKΔTEC relative to NIKf/f mice
(Fig. 7 C and F). These results indicate that cTEC development is
also impaired in NIKΔTEC mice, contributing to suppression of
cortical thymocyte development.
To further interrogate the mechanism responsible for mTEC

deficiency in NIKΔTEC mice, we assessed bipotent (CD45−EpCAM+

Sca1+CD49f+MHC IIlow) and mTEC lineage-committed precursors
(CD45−EpCAM+CD205−Cld4+MHC II−) using flow cytometry
(18, 21–25). The numbers of both bipotent and mTEC lineage-
committed precursors were substantially lower in NIKΔTEC rel-
ative to NIKf/f mice (Fig. 7 G and H). Furthermore, mTEC
precursor proliferation, but not death, was significantly lower in
NIKΔTEC than in NIKf/f mice (Fig. 7I). In contrast, the pro-
liferation and death rates of cTEC precursors (CD45−EpCAM+

CD205+Cld4−MHC II−) were comparable between NIKΔTEC and
NIKf/f mice (SI Appendix, Fig. S8A). Taken together, these results
suggest that NIK pathways cell-autonomously support the pro-
liferation of bipotent and mTEC-committed precursors, thereby

promoting thymic medullary development and establishment
of central tolerance.
IKKαΔTEC mice, like NIKΔTEC mice, also displayed severe thymic

atrophy (markedly reduced thymus weight and thymocyte num-
ber) (SI Appendix, Fig. S8B) and completely lacked thymic me-
dulla and Aire+, K5+, and UEA-1+ mTECs (SI Appendix, Fig.
S8C). The numbers of developing thymocytes (e.g., DN1, DN2,
DN3, DN4, DP), and CD4 and CD8 T cells were also signifi-
cantly lower in IKKαΔTEC mice relative to IKKαf/f littermates (SI
Appendix, Fig. S8 D and E). These results suggest that IKKα acts
downstream of NIK to promote TEC growth and maturation and
thymic T cell development.

Discussion
NIK has been extensively studied for its ability to activate the
noncanonical NF–κB2 pathway. Using loss-of-function mutation
(aly/aly) and global knockout mouse models, NIK was found to
be required for peripheral lymph organ development (26–28).
NIK-deficient thymus grafts cause autoimmune disorders in
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recipient mice (11, 12), indicating that thymic NIK is required for
suppression of autoimmunity. However, NIK target cells in the
thymus are undefined. In this study, we identified TECs as
critical endogenous targets of NIK and IKKα pathways, using
NIKΔTEC and IKKαΔTEC mice.
We found that NIKΔTEC and IKKαΔTEC mice died prema-

turely within 18 d of age. Of note, a human homozygous loss-of-
function NIKPro565Arg variant is also linked to child death (13). A
homozygous NIKVal345Met variant is associated with severe child
illness (14). Thus, TEC-intrinsic NIK/IKKα pathways crucially
support life in both mice and humans. Strikingly, NIKΔTEC and
IKKαΔTEC mice developed severe T cell-triggered inflammation,
injury, and fibrosis in lungs and livers, leading to neonatal death.
These findings unravel previously unrecognized TEC–liver and
TEC–lung axes that critically promote liver and lung diseases,
respectively.
We provided multiple lines of evidence showing that mTEC-

intrinsic NIK/IKKα pathways pivotally support thymic medullary
development and negative selection. NIKΔTEC and IKKαΔTEC
mice lacked medulla and mature mTECs expressing Aire, UEA-1,
and K5. Deficiency of mTECs led to breakdown of central tol-
erance and production of autoreactive T cells in NIKΔTEC and

IKKαΔTEC mice. Consequently, NIKΔTEC and IKKαΔTEC mice
developed severe autoimmune liver and lung diseases, resulting
in premature death. mTECs arise from both bipotent and
mTEC-committed precursors (18, 21–24). Ablation of TEC NIK
markedly decreased the numbers of both bipotent and mTEC-
committed precursors, at least in part by inhibiting precursor
proliferation. Of note, developing thymocytes secrete RANKL,
CD40L, and LTβ that promote mTEC growth, differentiation,
and maturation (5–7). TEC-intrinsic NIK/IKKα pathways likely
mediate these cytokine signaling, thereby supporting mTEC growth
and differentiation and mTEC-controlled central tolerance.
NIKΔTEC and IKKαΔTEC mice displayed profound defects in

cortical thymocyte development and peripheral B cell develop-
ment. The numbers of DN2, DN3, DN4, and DP thymocytes were
dramatically lower in NIKΔTEC and IKKαΔTEC mice. Thymocyte
development arrested between DN1 and DN2 stages and between
DN2 and DN3 stages. Of note, cTEC activities, as assessed by
expression of MHC II, RANK, and CD40, were impaired in
NIKΔTEC mice, raising the possibility that cTEC-intrinsic NIK/
IKKα pathways may be involved in promoting double-negative
thymocyte growth and differentiation and positive selection.
It is worth mentioning that during preparation of this work,
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TEC-specific NIK knockout mice were described by another
group (29), but αβ T cells, TECs, livers, and lungs were not ex-
amined. We also found that NIKΔTEC and IKKαΔTEC mice lacked
lymphoid follicles and germinal centers in spleens and lymph
nodes. Consistently, these mice had markedly reduced B cells in
their spleens and lymph nodes. Spleen Tfh cell number was re-
duced in NIKΔTEC and IKKαΔTEC mice, raising the possibility that
TEC-intrinsic NIK/IKKα pathways may stimulate commitments of
thymocytes to Tfh and/or related CD4 T-lineage cells that in turn
promote peripheral B cell development.
In conclusion, we have identified TEC NIK and IKKα as es-

sential regulators of TEC development and T cell central toler-
ance. Inactivation of TEC-intrinsic NIK/IKKα pathways alone is
sufficient to pathogenically activate autoimmunity, leading to
fatal autoimmune liver disease and lung disease. The thymic
NIK/IKKα pathways may serve as a potential therapeutic target
for the treatment of autoimmune diseases, including chronic
liver and lung diseases.

Materials and Methods
Animals. Animal experiments were conducted following the protocols ap-
proved by the University of Michigan Institutional Animal Care and Use
Committee (IACUC). NIKf/f, IKKαf/f, and Foxn1–Cre mice (C57BL/6 background)
were characterized previously (15–17). Mice were housed on a 12-h light–dark
cycle and fed a normal chow diet (9% fat; Lab Diet, St. Louis, MO) ad libitum
with free access to water.

Blood Analysis. Bloodglucose andALT activityweremeasured using glucometers
(Bayer Corp., Pittsburgh, PA) and an ALT reagent set (Pointe Scientific Inc.,
Canton, MI), respectively (30).

Immunoblotting and Immunostaining. Tissue samples were homogenized in
lysis buffer (50 mM Tris, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 2 mM EGTA,
1 mM Na3VO4, 100 mM NaF, 10 mM Na4P2O7, 1 mM benzamidine, 10 μg/mL
aprotinin, 10 μg/mL leupeptin; 1 mM phenylmethylsulfonyl fluoride), re-

solved by SDS/PAGE, and immunoblotted as described previously (12). Tissue-
frozen sections were prepared using a Leica cryostat (Leica Biosystems
Nussloch GmbH, Nussloch, Germany), fixed in 4% paraformaldehyde, blocked
with 5% normal goat serum (Life Technologies) supplemented with 1% BSA,
and incubated with antibodies at 4 °C overnight. Antibodies were listed in SI
Appendix, Table S1.

Hematoxylin and Eosin, Sirius Red Staining, and TUNEL Assays. Tissue paraffin
sections were stained with hematoxylin and eosin (H&E) or 0.1% Sirius-red
(Sigma, 365548) and 0.1% Fast-green (Sigma, F7252) as described previously
(12). Tissue-frozen sections were fixed with 4% paraformaldehyde and then
subjected to TUNEL assays using an In Situ Cell Death Detection Kit (Roche
Diagnostics, Indianapolis, IN, 11684817910).

Flow Cytometry. We followed similar methods described previously (12) and
in SI Appendix.

Thymic Epithelial Cell Isolation. Thymi were isolated, minced, and incubated at
37 °C for 40 min in PBS buffer supplemented with collagenase D (1 mg/mL)
and Dispase II (1 mg/mL). Adjacent tissues were removed prior to collagenase
treatment. Thymic epithelial cells were enriched on a discontinuous Percoll
density gradient (densities 1.07, 1.05, and 1.01) and subjected to flow
cytometric analysis.

Statistical Analysis. Data were presented as means ± SEM. Differences be-
tween groups were analyzed with 2-tailed Student’s t test. P < 0.05 was
considered statistically significant.
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