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Compound extremes such as cooccurring soil drought (low soil
moisture) and atmospheric aridity (high vapor pressure deficit) can
be disastrous for natural and societal systems. Soil drought and
atmospheric aridity are 2 main physiological stressors driving wide-
spread vegetation mortality and reduced terrestrial carbon uptake.
Here, we empirically demonstrate that strong negative coupling
between soil moisture and vapor pressure deficit occurs globally,
indicating high probability of cooccurring soil drought and atmo-
spheric aridity. Using the Global Land Atmosphere Coupling Experi-
ment (GLACE)-CMIP5 experiment, we further show that concurrent
soil drought and atmospheric aridity are greatly exacerbated by land–
atmosphere feedbacks. The feedback of soil drought on the atmo-
sphere is largely responsible for enabling atmospheric aridity
extremes. In addition, the soil moisture–precipitation feedback acts
to amplify precipitation and soil moisture deficits in most regions.
CMIP5 models further show that the frequency of concurrent soil
drought and atmospheric aridity enhanced by land–atmosphere feed-
backs is projected to increase in the 21st century. Importantly, land–
atmosphere feedbacks will greatly increase the intensity of both soil
drought and atmospheric aridity beyond that expected from changes
in mean climate alone.
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Compound drought, heat and aridity events have recently re-
ceived more attention because of their devastating impacts

on the environment, economy and society (1, 2). Low soil moisture
(SM) and high atmospheric vapor pressure deficit (VPD), an in-
dicator of atmospheric aridity, have been recognized as 2 main
stresses on ecosystem productivity during droughts (3). These
stresses can substantially reduce terrestrial carbon uptake and
food production (4–6) and can drive widespread tree mortality (7,
8). Recently, it has been shown that low SM and high VPD typi-
cally cooccur, and the compound low-SM and high-VPD events
are projected to be more frequent and more extreme in the future,
which would strongly limit the capacity of continents to act as a
carbon sink (9). Understanding the mechanisms underpinning
compound drought and aridity events, specifically compound SM
and VPD extremes, is of great importance to manage and mini-
mize the risks associated with climate change (10).
Climate extremes are often interpreted as the result of large-scale

atmospheric circulation and sea surface temperature anomalies
(11, 12). For example, tropospheric warming induced by the El
Niño Southern Oscillation and atmospheric blocking are key
processes for drought and heatwave initiations (13, 14). In ad-
dition to large-scale atmospheric circulation anomalies forced by
the ocean, land–atmosphere (LA) feedbacks initiated by SM
anomalies can strongly modulate near-surface heat and aridity
(15, 16), and also promote large-scale atmospheric circulation
anomalies remotely (17, 18). Sustained SM deficit induced by
negative precipitation anomaly and the related strong sensible

heat flux indeed can cause extremely high temperature (16, 19).
Lower evapotranspiration due to soil drying may also reduce
atmospheric moisture, further increasing VPD. In turn, high VPD
enhances the atmosphere’s evaporative demand, which can exac-
erbate SM depletion (20). Additionally, SM anomalies can induce
precipitation anomalies, which may act to amplify or alleviate SM
droughts (21). Given the potential importance of LA feedbacks in
the occurrence of soil droughts and atmospheric aridity, it is crucial
to systematically investigate the role of LA feedbacks in the oc-
currence of compound drought and aridity events.
LA feedbacks are expected to be enhanced by climate warm-

ing, as surface fluxes will be more sensitive to SM variability (22).
The enhanced LA feedbacks may lead to stronger correlation
between SM and VPD and hence more frequent compound
drought and aridity events. As a result of anthropogenic warming,
the intensities of soil droughts and atmospheric aridity are pro-
jected to increase (23, 24). The magnitude of intensity changes
may also depend on LA feedbacks, which could impact the in-
tensities of soil droughts and atmospheric aridity simultaneously,
in addition to the changes driven by the long-term climate
warming. Therefore, LA feedbacks might be critical for the
changes in the frequency and intensity of compound drought and
aridity events under future climate change.

Significance

Soil drought and atmospheric aridity can be disastrous for
ecosystems and society. This study demonstrates the critical
role of land–atmosphere feedbacks in driving cooccurring soil
drought and atmospheric aridity. The frequency and intensity
of atmospheric aridity are greatly reduced without the feed-
back of soil moisture to atmospheric temperature and humid-
ity. Soil moisture can also impact precipitation to amplify soil
moisture deficits under dry conditions. These land–atmosphere
processes lead to high probability of concurrent soil drought
and atmospheric aridity. Compared to the historical period,
models project future frequency and intensity of concurrent
soil drought and atmospheric aridity to be further enhanced by
land–atmosphere feedbacks, which may pose large risks to
ecosystem services and human well-being in the future.
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In this study, we aim to assess the contributions of LA feed-
backs to the compound drought and aridity events. As soil
droughts can last for months to years, while atmospheric aridity
typically occurs for weeks to months, we assess the compound
drought and aridity events at the monthly scale. We first show
that strong SM–VPD coupling occurs globally, using monthly
VPD from the Modern-Era Retrospective analysis for Research
and Applications, Version 2 (MERRA-2) (25) and observa-
tionally constrained SM from the Global Land Evaporation
Amsterdam Model (GLEAM) dataset (26), with important im-
plications for the occurrence of compound drought and aridity
events. We then use the Global Land-Atmosphere Climate
Experiment-Coupled Model Intercomparison Project phase 5
(GLACE-CMIP5) experiment (27) to systematically assess the
impacts of LA processes on concurrent soil drought and atmo-
spheric aridity. This experiment includes pairs of transient sim-
ulations with and without interactive SM, while the boundary
conditions are the same for each model (Materials and Methods).
It thus offers a unique opportunity to isolate the role of SM–

atmosphere interactions from the driving role of ocean–atmo-
sphere variability. We further investigate the contributions of LA
feedbacks to the frequency and intensity of compound drought
and aridity events between historical and future periods in 26
CMIP5 models. Our findings demonstrate the fundamental role
of LA feedbacks in the occurrence and exacerbation of com-
pound drought and aridity events, both in the present and
future climate.

SM–VPD Coupling and Cooccurring Low SM and High VPD
in Observational Datasets
We use the Pearson’s correlation coefficient between monthly
SM and VPD [r(SM,VPD)] to measure the SM–VPD correlation
in the warm season (the 3 mo with highest mean temperature; SI
Appendix, Fig. S1). We find negative r(SM,VPD) globally, for
both root-zone SM and surface SM, indicating that lower SM
tends to be accompanied by higher VPD in the warm season
(Fig. 1A and SI Appendix, Fig. S2A). In addition, surface SM is
more strongly coupled with VPD than root-zone SM in most
regions. The importance of the strong SM–VPD coupling for
cooccurring SM and VPD extremes is supported by the bimodal
distribution of SM and VPD toward both extremes: low SM–high
VPD and high SM–low VPD (Fig. 1B and SI Appendix, Fig.
S2B). The high probability in the top-left bin in Fig. 1B and SI
Appendix, Fig. S2B indicates that the frequency of compound low
SM and high VPD is much higher than that expected if SM and
VPD were uncoupled. Therefore, identifying the mechanisms of
the SM–VPD coupling, especially the bimodal SM–VPD distri-
bution, is crucial for our understanding of the occurrence of the
compound drought and aridity events.

LA Feedbacks in Concurrent Soil Drought and
Atmospheric Aridity
The GLACE-CMIP5 experiment consists of transient climate-
change experiments from several climate models (Materials and
Methods). In each model, a reference simulation (REF, similar
to CMIP5 simulations) was performed with fully coupled SM
responding to precipitation and evaporative demand. This ref-
erence simulation was then compared to an idealized simulation
(expB) in which SM was prescribed, i.e., uncoupled from the
atmosphere. The prescribed SM in the expB simulation pre-
serves the long-term trend and seasonal cycle of SM in the REF
simulation, but removes the subseasonal and interannual vari-
ability of SM in response to the atmosphere (see SI Appendix,
Fig. S3 for an illustration of the methodology). Since the atmo-
spheric model was driven by identical forcing (e.g., sea surface
temperatures, sea ice, land use, and radiative forcing) in both
simulations, the difference between the 2 simulations highlights
the impact of SM variability on the atmosphere.
We measure the SM–VPD correlation in the warm season

from 1981 to 2080. Negative SM–VPD correlation is found
globally in REF (Fig. 2A), which is consistent with the observa-
tional relationship (Fig. 1A). Further, concurrent SM and VPD
extremes occur more frequently in regions with more negative
SM–VPD correlations in REF (Fig. 2G). The bimodal distribu-
tion of SM and VPD is also evident in REF (Fig. 2E and SI
Appendix, Fig. S4 A–C for each model), indicating that the
models with fully coupled SM can realistically simulate the
compound SM and VPD extremes. However, the SM–VPD bi-
modality is not found in expB (Fig. 2F and SI Appendix, Fig. S4
D–F). In expB, VPD variability is driven only by the atmosphere;
without the feedback of SM variability to VPD, particularly
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Fig. 1. Relationship between GLEAM root-zone SM and MERRA-2 VPD. (A)
Correlation coefficient between root-zone SM and VPD during the period
1980–2017 (warm season in SI Appendix, Fig. S1). (B) Mean probability of
each percentile bin of root-zone SM and VPD across all land grid cells.
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Fig. 2. SM-VPD relationship in GLACE-CMIP5 expB and REF simulations. (A)
Correlation coefficient between SM and VPD [r(SM,VPD)] in REF during the
period 1981–2080 (warm season). (B) Ratio of the frequency of extreme high
VPD (above 95th percentile VPD in REF) between expB and REF. (C and D)
Difference in (C) 95th percentile VPD (hPa) and (D) mean VPD (hPa) between
REF and expB. (E and F) Mean probability of each percentile bin of VPD and
SM across all grid cells in (E) REF and (F) expB. The percentile bins are sorted
according to SM and VPD values in REF, and the bins are consistent in REF
and expB. (G) Spatial relationship between r(SM,VPD) and the probability of
concurrent VPD and SM extremes (above 95th percentile VPD and below 5th
percentile SM) in REF simulations.
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under dry soil conditions, the frequency and intensity of extreme
high VPD in expB are greatly reduced in most regions (Fig. 2 B
and C). This result indicates that the feedback of SM on VPD is
largely responsible for enabling aridity extremes. In addition, LA
feedbacks enhance mean VPD in most regions (Fig. 2D), largely
because the positive VPD response to low SM is larger than the
negative VPD response to high SM (because of the exponential
Clausius–Clapeyron relationship with temperature and lower
sensitivity of evapotranspiration to SM at higher SM conditions).
We have demonstrated that large-scale atmospheric variability

alone does not lead to extreme high VPD, which is enabled by
local SM extremes. SM variability is induced by atmospheric
dynamics, especially precipitation variability, but SM can also
affect precipitation through its regulation of the water exchange
and energy partitioning between the land surface and the at-
mosphere (21). Compared to REF, we find the frequency of
extreme low precipitation (below 5th, 10th, and 15th percentiles
of precipitation in REF) in expB is greatly reduced in most re-
gions (SI Appendix, Fig. S5), especially in the Northern Hemi-
sphere where VPD extremes are highly exacerbated by SM
variability. This result indicates that the extreme low SM is not
only attributed to atmospheric circulation anomalies, but also to
local physical processes as SM–precipitation interactions also
lead to more frequent extreme low SM and precipitation con-
ditions (28). This is because low SM reduces evapotranspiration
and increases sensible heat. Reduced evapotranspiration de-
creases moisture recycling and increased sensible heat, in some
cases, may further enhance atmospheric stability and inhibit
cloud formation and precipitation generation (21). These results
highlight the importance of LA feedbacks in the occurrence of
compound drought and aridity events and the key role of dry SM
conditions in enhancing extreme VPD conditions and the mutual
amplification of SM and precipitation deficits.

SM–VPD Correlation and Compound Drought and
Aridity Events
We further assess the frequency of compound drought and
aridity events in CMIP5 models (listed in SI Appendix, Table S1)
during the historical (1881–1980) and future (1981–2080) pe-
riods. The dependence of SM and VPD in the warm season is
modeled with copulas (29) to derive the cooccurrence probability
of extreme events. A compound drought and aridity event is
defined as a month when mean VPD is above its 95th percentile
and mean SM is below its 5th percentile. We use the probability
multiplication factor (PMF) to measure the increase in the oc-
currence frequency of compound extreme events compared to
the frequency if these extremes were assumed independent (P =
0.05 × 0.05 = 0.0025). PMF is defined as the ratio of the joint
probability of extreme low SM and high VPD and the probability
if they were assumed independent, and a PMF of 1 therefore
represents no increase in the cooccurrence probability.
Consistent with the GLACE-CMIP5 results, we find more

frequent compound SM and VPD extremes (compared to if they
were independent) in regions with more negative SM–VPD
correlations in CMIP5 models (Fig. 3). The spatial patterns of
the SM–VPD correlation and PMF are almost identical between
the historical and future periods (Fig. 3 A–D). By comparison,
negative SM–VPD correlation (PMF) becomes stronger (higher)
in most mid- and high-latitude regions, but weaker (lower) in
tropical regions in future simulations (SI Appendix, Fig. S6). To
predict the dependence of PMF on the SM–VPD correlation, we
use a linear relationship between r(SM,VPD) and the natural
logarithm of PMF [exponentially increasing with r(SM,VPD)]
across all grid cells of the land area (excluding Greenland and
Antarctica in all analyses), with high explanatory power (R2 = 0.77
for historical simulations and R2 = 0.79 for future simulations)
(Fig. 3 E and F). Comparing the functions between the 2 periods,
we find future PMF becomes less sensitive to r(SM,VPD) (i.e.,

linear dependency between SM and VPD), but more strongly
impacted by tail dependence in extreme deviations (SI Appendix,
Eq. S7 and Table S2), which is modeled by copulas (30). The high
explanatory power of the PMF-r(SM,VPD) function demonstrates
that the frequency of compound extreme events can be well cap-
tured by the SM–VPD correlation in both periods.
The SM–VPD correlation depends on the correlation between

SM and temperature as well as that between SM and relative
humidity. Interestingly, we find stronger SM–relative humidity
correlation than SM–temperature correlation, and higher oc-
currence frequency of compound SM and relative humidity ex-
tremes than that of compound SM and temperature extremes,
except in the northern high latitudes (SI Appendix, Fig. S7).
These results are consistent with recent results (15) that the
association between soil dryness and atmospheric dryness is
tighter than that between soil dryness and atmospheric heating.
This is because atmospheric dryness is enhanced not only by the
increased sensible heat flux, but also the associated drying of the
boundary layer induced by reduced evapotranspiration and in-
creased boundary layer dry and warm air entrainment (31).

Changes in the Frequency and Intensity of Compound
Drought and Aridity Events Due to LA Feedbacks
We further remove the component of r(SM,VPD) due to the
trends and seasonal cycles (warm season) of SM and VPD,
R(SMt,VPDt), which may be related to the regional climatology
and factors such as increased greenhouse gases. In this way, we
isolate the contribution of the correlated subseasonal and in-
terannual variations in SM and VPD, R(SMv,VPDv), induced by
the atmospheric circulation dynamics and LA feedbacks (Fig. 4
A–F). R(SMv,VPDv) strongly depends on SM variability, i.e., the
larger the SD of SMv, the stronger the R(SMv,VPDv) (SI Ap-
pendix, Fig. S8). This result further confirms the GLACE-CMIP5
result that SM variability is largely responsible for the SM–

VPD feedback.
Given the linear function established between r(SM,VPD) and

the natural logarithm of PMF (SI Appendix, Table S2), we de-
compose PMF into the contribution from the correlated SM and
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VPD variations (PMFv) and that from the long-term trends and
seasonality of SM and VPD (PMFt) (SI Appendix, Methods).
PMFv measures the extent to which the compound extreme
events are exacerbated by the SM–VPD feedback, with necessary
impact of atmospheric circulation dynamics on SM extremes.
The CMIP5 results show that the high probability of compound
extreme events is mainly associated with the correlated SM and
VPD variations [R(SMv,VPDv)], although the trends and sea-
sonality of SM and VPD [R(SMt,VPDt)] also play a small part
(Fig. 4 G–L). This result confirms a widespread SM–VPD
feedback that promotes compound drought and aridity events.
We find relatively low PMFv in some monsoonal regions, such as
Brazil, West and Southeast Africa. In these regions, VPD and
SM are strongly influenced by moisture transport from the ocean
in the warm season (32). As a result, the contribution of sea-
sonality is relatively large on the occurrence of compound SM
and VPD extremes (SI Appendix, Fig. S9). Low PMFv also exists
in some very dry regions such as the Sahara Desert and the
Arabian Peninsula because SM is too low to induce variations in
evapotranspiration and climatic variables.
Compared to the historical period, future PMFv is slightly

enhanced across 72% of the land area, although R(SMv,VPDv) is
weaker in the future (Fig. 4 A–F). This is because of reduced
dependence of PMF on the SM–VPD correlation, i.e., smaller
sensitivity of PMF to r(SM,VPD) (Fig. 3 E and F), and stronger
tail dependence in extreme deviations induced by large-scale
atmospheric dynamics and LA feedbacks. PMFt also becomes
larger across 68% of the land area, mainly due to the negative
trend of warm-season SM and positive trend of VPD in most
regions in the future period (SI Appendix, Fig. S9). The in-
tensities of SM and VPD extremes are greatly enhanced, with
much higher (lower) thresholds and mean values of extreme high
VPD (low SM) in the future (SI Appendix, Fig. S10). After
subtracting the changes in mean SM and VPD due to the long-

term climate change, the thresholds and mean values of SM and
VPD for compound extreme events still become more extreme
(Fig. 5). Specifically, the threshold and mean values of extreme
high VPD increase by 18 ± 9% and 28 ± 15% (relative to mean
VPD in the historical period), respectively, with the highest in-
creases located in the Amazon and Europe (Fig. 5 C and D). The
increase of extreme high VPD occurs even in the regions where
the extreme low SM increases (less intense SM drought) in the
future. This is because, as future temperature rises, VPD is
projected to become increasingly sensitive to SM variability,
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especially under low SM conditions. These results indicate that
LA feedbacks will greatly exacerbate future extreme aridity be-
yond that induced by mean climate change alone. The combi-
nation of a slight increase in the frequency and large increases in
the intensity of compound SM and VPD extremes induced by LA
feedbacks indicates large risks of compound drought and aridity
events in the future.

Discussion
Compound drought and aridity events can be attributable to both
large-scale atmospheric dynamics and local LA feedbacks. Large-
scale atmospheric circulation anomalies (e.g., a high-pressure
system that blocks precipitation and promotes heat via enhanced
sunshine and subsidence) may trigger climate extremes (13, 33, 34)
and extreme low SM. For compound extreme events assessed at
the monthly scale, our results show exacerbation by SM–climate
feedbacks, as atmospheric circulation anomalies alone cannot
generate substantial compound extreme events (Fig. 2). Reduced
SM due to initial precipitation deficit can enhance the heating and
drying of the near-surface atmosphere (16, 19), leading to high
VPD values; further, it can decrease moisture recycling and the
likelihood of cloud/precipitation generation in some cases (21),
resulting in a positive feedback to SM itself and hence the exac-
erbation of compound soil drought and atmospheric aridity. We
note that the impacts of atmospheric circulation dynamics and LA
feedbacks on compound drought and aridity events are inter-
twined since SM variability induced by atmospheric circulation
dynamics is necessary for the SM–climate feedback, and SM itself
can also affect atmospheric circulation dynamics (17). Yet, the
experimental simulations in GLACE-CMIP5 demonstrate the
strong enhancement of compound drought and aridity events by
LA feedbacks.
The crucial role of LA feedbacks in promoting compound

drought and aridity events has important implications for the
occurrence of flash droughts and prolonged droughts, which
occur at shorter or longer timescales than the compound ex-
treme events (monthly scale) assessed in this study. The de-
pendence of extreme high VPD on low SM promotes rapid
drought intensification, i.e., flash droughts, which occur due to
quick SM depletion and atmosphere heating and drying (35).
Extreme high VPD may also precede and drive SM depletion to
trigger flash droughts (35, 36). Declining vegetation health and its
weakening regulation on water and energy exchanges also accel-
erate the development of flash droughts (37). The regions with
strong LA feedbacks are also more prone to prolonged droughts:
indeed, atmospheric dynamics on their own do not have much
memory, but LA feedbacks induce memory that is likely important
in promoting prolonged droughts, possibly including the infamous
megadroughts known from proxy records to have occurred re-
peatedly over the past millennium in Europe (16), Asia (12), and
North America (38). In addition, the heightened atmospheric
aridity tends to drive more wildfires during soil droughts (39),
especially in a future with strong aridity intensification.
Models project LA feedbacks to increase the frequency and

especially the intensity of compound drought and aridity events
in the future (Figs. 4 and 5). The strength of LA feedbacks,
measured by R(SMv,VPDv), is not projected to increase, prob-
ably because of the relatively stable magnitude of SM variability
between historical and future periods (SI Appendix, Fig. S8).
Thus, we find only a slight increase in the frequency of com-
pound drought and aridity events enhanced by LA feedbacks
(i.e., PMFv) because of stronger tail dependence in extreme
deviations in future simulations. We note the attribution analysis
of PMF relies on the relationship between PMF and r(SM,VPD)
(Fig. 3 E and F and SI Appendix, Table S2). Although r(SM,VPD)
can well predict PMF in both periods, this relationship may
vary slightly across space due to varying dependence structures
(i.e., copulas) between SM and VPD, which may lead to some

uncertainties in the attribution results. It should also be noted
that the CMIP5 models simulate weaker SM–VPD correlations
than those obtained from the observationally constrained data
(Figs. 1 and 3). Therefore, the simulated frequencies of historical
and future compound drought and aridity events may be
underestimated. On the other hand, LA processes strongly en-
hance the responses of SM and VPD extremes to anthropogenic
warming, leading to more intense compound extreme events.
This is because higher temperature enhances both saturated
water vapor and evaporative demand. Therefore, VPD will be
more sensitive to soil drying and in turn amplify SM deficits.
The increases in the frequency and especially intensity of

compound drought and aridity events could have dramatic im-
pacts on humans and natural systems (9). VPD and SM stresses
can directly limit plant stomatal conductance and carbon uptake,
and even trigger vegetation mortality (3, 7, 40). Future rising
CO2 may reduce plant stomatal conductance and evaporative
water loss, slowing down the development of soil drought, but
exacerbating atmospheric aridity (15). Thus, rising CO2 may
weaken the negative SM–VPD coupling, as shown in Fig. 4C.
The CO2 fertilization effect is expected to enhance photosyn-
thetic carbon assimilation, but this effect may be largely offset by
intensified compound drought and aridity events, increased
respiration losses due to rising temperature, and vegetation
mortality (9, 41). The strengthened risks of compound drought
and aridity events may result in substantial decreases in agri-
cultural production (6, 42) and continental carbon storage (9) if
terrestrial ecosystems cannot adapt to future climate changes.
This study highlights the importance of SM variability in en-

abling a series of processes and feedback loops affecting near-
surface climate. There is thus a crucial need to better quantify
and evaluate the representation of such processes in climate
models. In particular, accurate model representation of both SM
variability and associated feedbacks appears indispensable to
provide reliable simulations of the frequency, duration, and in-
tensity of compound drought and aridity events and of their
changes in a warmer climate, and ultimately to mitigate future
risks associated with these events.

Materials and Methods
Datasets.Weused GLEAM SM andMERRA-2 VPD in thewarm season of 1980–
2017 to assess the relationship between SM and VPD (SI Appendix, GLEAM
Dataset and MERRA-2 Reanalysis). The experimental simulations (expB) with
prescribed SM and the reference simulations (REF) with interactive SM in 3
models (i.e., ACCESS, ECHAM6, and GFDL) participating the GLACE-CMIP5
experiment were used to isolate the impacts of SM-atmosphere feedbacks
on the occurrence of compound drought and aridity events (SI Appendix,
GLACE-CMIP5 Experiment). We further used 26 CMIP5 models (SI Appendix,
Table S1) to evaluate the contributions of LA feedbacks to the changes in
the frequency and intensity of compound drought and aridity events be-
tween historical (1881–1980) and future (1981–2080, RCP8.5 scenario) sim-
ulations (SI Appendix, CMIP5 Model Simulations).

PMF. The dependence structure of SM and VPD was modeled with bivariate
copulas (29), which have been widely used to assess the relationship be-
tween dependent variables (43, 44). The copulas can overcome the short-
comings of counting the cooccurrence rate of extreme low SM and high VPD
with few samples (44), especially in the regions where SM and VPD are
weakly or not coupled. Here, we have the joint probability distribution of
SM and VPD

FSM,VPDðx, yÞ= PðSM≤ x,VPD≤ yÞ, [1]

and the marginal cumulative distribution functions FSMðxÞ= PðSM≤ xÞ and
FVPDðyÞ= PðVPD≤ yÞ. We use a bivariate copula C to describe the joint
probability distribution of SM and VPD as

FSM,VPDðx, yÞ=C½FSMðxÞ, FVPDðyÞ�=Cðu, vÞ, [2]

where FSMðxÞ and FVPDðyÞ are transformed into 2 uniformly distributed ran-
dom variables u and v ranging from 0 to 1 (i.e., the normalized ranks of SM
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and VPD). As we define compound extreme events with VPD above its 95th
percentile and SM below its 5th percentile, the joint probability of the
compound extreme event is given by

Pðu< 0.05∩ v > 0.95Þ = Pðu< 0.05Þ− Pðu< 0.05∩ v ≤ 0.95Þ
= 0.05−Cð0.05,   0.95Þ. [3]

To model the joint probability distribution, we considered commonly used
bivariate copula families (Gaussian copula, Student’s t copula, and Archi-
medean copulas) and tested their goodness of fit according to the Bayesian
Information Criterion (45). In each grid cell, the copula with the best fit was
selected to represent the joint probability distribution of SM and VPD. These
analyses were performed using the R package, VineCopula (46).

With the joint probability distribution of SM and VPD, we derived the
occurrence probability of compound extreme events using Eq. 3. The PMF was
defined as the ratio of the joint probability derived from the copula with the
best fit and that assuming independent distributions, for the compound extreme
events. We derive the joint probability of independent distributions from the
independent copula: P = 0.05−Cð0.05,   0.95Þ= 0.05− 0.05× 0.95= 0.0025. The
independent copula is commonly used as a scale factor to transform a low joint
probability to a ratio that measures the dependence strength of bivariate ex-
tremes (9, 43). We also counted the joint occurrence rate of extreme events

based on model simulations and calculated the PMF in a similar method. We
compared the PMF derived with copulas and by counting and found that the
copulas could capture the occurrence frequency of compound extreme events
well (SI Appendix, Fig. S11). We also calculated the PMF for the concurrent
SM and temperature extremes, and the SM and relative humidity extremes
using copulas.
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