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Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare
and debilitating childhood disease that presents with recurrent growth
of papillomas in the upper airway. Two common human papillo-
maviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it
is still not understood why only a small proportion of children develop
JRRP following exposure to these common viruses.We report 2 siblings
with a syndromic form of JRRP associated with mild dermatologic
abnormalities. Whole-exome sequencing of the patients revealed
a private homozygous mutation in NLRP1, encoding Nucleotide-
Binding Domain Leucine-Rich Repeat Family Pyrin Domain-
Containing 1. We find the NLRP1 mutant allele to be gain of function
(GOF) for inflammasome activation, as demonstrated by the induc-
tion of inflammasome complex oligomerization and IL-1β secretion in
an overexpression system. Moreover, patient-derived keratinocytes
secrete elevated levels of IL-1β at baseline. Finally, both patients
displayed elevated levels of inflammasome-induced cytokines in
the serum. Six NLRP1 GOF mutations have previously been described
to underlie 3 allelic Mendelian diseases with differing phenotypes
and modes of inheritance. Our results demonstrate that an autosomal
recessive, syndromic form of JRRP can be associated with an NLRP1
GOF mutation.
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Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a
rare childhood disease characterized by the recurrent growth

of papillomas in the respiratory tract. The epidemiology of JRRP
varies slightly across studies, with an incidence of ∼0.2 to 4/
100,000 children and a prevalence of ∼1 to 4/100,000 children
depending on the study (1–4). Papillomas are most commonly
found in the larynx but may occur anywhere from the mouth to
the bronchi (5). Children typically present within the first years
of life (most commonly between age 2 and 4 y) with hoarseness
or, in more severe cases, respiratory distress or stridor and airway
obstruction, and endoscopic examination reveals papillomatous

growths in the upper airway (3, 6). The clinical course varies
widely in terms of the location and extent of papillomas, speed
of recurrence following resection, and duration of the illness
(median 4.4 y) (4, 5).
JRRP is associated with infection of the upper airway by human

papillomaviruses (HPVs) of the α genus, with infection thought to
occur by vertical transmission at birth and with a childhood onset
of the lesions (7, 8). Indeed, an adult-onset form of this disease
also exists (referred to as adult-onset recurrent respiratory
papillomatosis) with a similar but usually milder phenotype; in these
cases, HPV is probably acquired by sexual transmission (9, 10).

Significance

Recurrent respiratory papillomatosis is a disease caused by the
human papillomavirus that leads to growth of warts in the
throat. We report 2 brothers with a form of this disease that
involves a mutation in the NLRP1 gene. This study provides a
genetic explanation for our patients’ disease and suggests that
other people may suffer from the same genetic disease. It also
expands our understanding of diseases caused by mutations
in NLRP1.
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The standard of care remains surgical removal of the papillomas
(usually by laser ablation) to keep the airway patent, with patients
requiring a median of 4.4 (range 0.2 to 19.3) surgical procedures
per year, attesting to the medical burden of this disease (4, 11).
Spontaneous remission occurs in approximately one-half of children
by adulthood (4, 12, 13). In rare cases, papillomas may progress
to malignant squamous cell carcinoma, which can be fatal (14, 15).
HPV-6 and HPV-11 are the strains of HPV usually detected in

papillomas, although other rare α-HPVs have also been reported
(16–19). HPV-6 and HPV-11 are very closely related α-HPVs
and are also the most common cause of genital warts (20). The
reported incidence of detectable HPVs in cohorts of patients
with JRRP varies from 53% to 100% (16–19). Exposure to HPV
in the birth canal is common, while JRRP is rare, suggesting the
importance of host factors in the disease. Indeed, cross-sectional
studies of cervical HPV carriage rates demonstrate an HPV-6 +
HPV-11 prevalence of 6.4% in women age 14–19 y (21), and a
longitudinal study (mean follow-up, 5.8 y) found a cumulative
prevalence of 91.1% of women with detectable cervical HPV-6
or -11 DNA at some point during the study period (22). More-
over, patients with JRRP do not exhibit increased susceptibility
to other types of infectious agents, including viruses, and are not
more susceptible to HPV infections at other body sites. Similarly,
JRRP has not been reported to be a feature of any wider syndrome
and is not seen in primary immunodeficiencies that cause sus-
ceptibility to HPVs at other body sites, such as DOCK8 defi-
ciency and other T cell defects (α-HPVs), WHIM (α-HPVs), and
epidermodysplasia verruciformis (β-HPVs) (23–25). However, anal-
ysis of patients with JRRP has revealed mild immunologic anomalies,
including Th2 polarization, restricted Vβ TCR repertoires in CD4
and CD8 T cells, and natural killer cell dysfunction (26), as well
as Langerhans cell hyporesponsiveness to IL-36γ (27), suggesting
immunologic susceptibility to JRRP. This rare manifestation of
infection by a common virus is reminiscent of other viral diseases
striking otherwise healthy children, including conditions caused
by other HPVs, which can be due to inborn defects of immunity
(24, 28–31). We studied 2 patients with JRRP, testing the hy-
pothesis that monogenic inborn errors of immunity could underlie
their JRRP.

Results
Clinical Phenotype. We studied 2 brothers with JRRP, herein iden-
tified as patient 1 (P1) and patient 2 (P2), of Belgian ancestry
born to consanguineous (first-cousin) parents (Fig. 1A). There
were no other siblings. P1 developed hoarseness and recurrent
laryngitis at age 5 y. Direct laryngoscopy revealed papillomas in
the glottis and supraglottis (Fig. 1B). He required 8 surgical
ablations of laryngeal lesions over the next year and continues to
require multiple ablations each year, with decreasing frequency.
P2 developed hoarseness shortly after birth, and laryngeal
papillomatosis was diagnosed at age 20 mo. His disease has been
less severe than that of P1, and he has required 2 to 3 ablations per
year. Careful retrospective review of their medical history revealed
the same mild dermatologic abnormalities in both brothers, in-
cluding a small number of palmar and plantar warts; keratosis
pilaris on the lower back, buttocks, and thighs; and atrophoderma
vermiculata on the face, none of which required medical treat-
ment (Fig. 1B); see the case reports in SI Appendix for full details.
Dermatologic abnormalities are not typically seen in other pa-
tients with JRRP, which is isolated; therefore, these 2 patients had
a syndromic form of JRRP. The parents did not have any notable
medical history, specifically no history of RRP or dermatologic
disease. Histologically, larynx lesions exhibited a papillomatous
morphology with focal areas of koilocytosis and scattered bi-
nucleated cells, typical of lesions in RRP and pathognomonic of
HPV infection (32). (Fig. 1C). Papillomas from P1 (9 specimens)
and P2 (2 specimens) tested negative for HPV-6 and HPV-11,

consistent with studies of cohorts in which HPV is not detected
in every patient (16–19).

Genetic Analysis. We performed whole-exome sequencing (WES)
on P1, P2, and both parents (I.1 and I.2; Fig. 1A). WES showed a
high homozygosity rate in P1 (3.56%) and P2 (5.13%) (33),
consistent with the known parental consanguinity. Principal
component analysis confirmed the patients’ European ancestry
(33). In light of this consanguinity, we hypothesized that a rare
variant, homozygous in both patients and heterozygous in both
parents, might be responsible for the patients’ phenotype. We se-
lected variants predicted to result in a missense, nonsense, indel, or
splice site mutation with a minor allele frequency of <0.01 in public
databases (ExAC, 1000 Genomes, and NHLBI-ESP6500). Fi-
nally, we excluded variants in genes with a Gene Damage Index
(GDI) >13.38 (34), variants with a combined annotation-
dependent depletion (CADD) score less than the mutation sig-
nificance cutoff (MSC) (35), and variants in our blacklist with an
in-house frequency of >0.01 (36) (SI Appendix, Fig. S1A). This
yielded 5 homozygous variants across 5 genes (SI Appendix, Fig.
S1B). Two of these were present in homozygosity in healthy in-
dividuals in ExAC, suggesting they are unrelated to the patient’s
phenotype; another was in an unknown gene (ZNF417); and
another was in a gene implicated in cardiac conduction defects
(KCNH2) (37). The best candidate was a homozygous missense
mutation in Nucleotide-Binding Domain, Leucine-Rich Repeat
Family Pyrin Domain-Containing 1 (NLRP1), c.2819C > A (for
transcript variant 1; NBCI NM_033004), p.T755N (herein T755N).
NLRP1 isoform 1, composed of 1,473 amino acids, acts as a
sensor for the innate immune complex known as the inflam-
masome (38) and is expressed across a variety of tissues and
cell types (https://www.proteinatlas.org/ENSG00000091592-NLRP1/).
T755N is slightly N-terminal to the leucine-rich repeat (LRR)
domain (Fig. 1D). Homozygosity of the NLRP1 T755N allele in
P1 and P2 and its familial segregation with the disease was
confirmed by Sanger sequencing (SI Appendix, Fig. S1C). Using a
similar variant-filtering strategy for the less likely X-linked pattern
of inheritance did not yield any candidate variants (SI Appendix,
Fig. S1D). Similarly, there were no de novo mutations shared by
the 2 patients. Thus, these findings suggested that homozygosity
for NLRP1 T755N might be the genetic etiology of JRRP in P1
and P2.

Population Genetics of NLRP1. The NLRP1 variant T755N is not
found in any public database (gnomAD, Bravo/TOPMED) or in
our in-house cohort of >5,000 unrelated individuals with a va-
riety of infectious diseases. T755N is predicted to be damaging
by CADD, with a high score of 23.1, above the 99% confidence
interval MSC value of 3.313 (35). The T755 residue of NLRP1 is
highly conserved across species (Fig. 1E). NLRP1 has a GDI of
9.374, indicating a medium amount of mutational burden in the
general population (34), and is under low to moderate negative
selection, with a McDonald–Kreitman Neutrality Index of 0.400
and a residual variation intolerance score in the 95th percentile
of the least intolerant genes (39); however, previous studies have
shown that autosomal recessive disease-causing genes are not
under purifying selection (40). In gnomAD, there are 40 missense
mutations found in homozygosity in 1 or more individuals, 23 of
which have a CADD score greater than the MSC. No predicted
loss-of-function (LOF) variants are found in homozygosity in
gnomAD, and the pRec (probability of being intolerant of ho-
mozygous, but not heterozygous, LOF variants) is 0.95 (41).
Collectively, these findings suggest that T755N is likely to be
damaging to NLRP1 protein function.

NLRP1 T755N Is Gain of Function and Reduces the Threshold for
Inflammasome Activation In Vitro. Germline gain-of-function
(GOF) mutations in NLRP1 have been recently discovered to
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cause 3 Mendelian diseases of the skin. Multiple self-healing
palmoplantar carcinoma (MSPC), described in 3 families, follows
an autosomal dominant (AD) pattern of inheritance, with all 3
mutations (A54T, A66V, and M77T) in the pyrin (PYR) domain
(42, 43). Familial keratosis lichenoides chronica (FKLC), described
in 1 family, follows a codominant pattern of inheritance with a
mutation (F787_R843del) immediately N terminal to the LRR
domain (Fig. 1D) (43). Autoinflammation with arthritis and
dyskeratosis (AIADK), described in 2 families, follows autoso-
mal recessive (AR) (R726W) or AD (P1214R) inheritance, with
mutations in the N-terminal LRR and function-to-find (FIIND)
domains, respectively (44). In vitro, MSPC and FKLC disease-
causing alleles display a similar GOF magnitude despite their
different modes of inheritance (AD vs. codominant) (43). Because
P1 and P2 had skin abnormalities similar to those seen in FKLC,
we hypothesized that NRLP1 T755N would also be GOF.
We first confirmed that both NLRP1 wild type (WT) and T755N

cDNAs were expressed normally by transfecting them in HEK293T
cells (Fig. 2A). Published NLRP1 GOF alleles spontaneously
oligomerize and induce secretion of IL-1β in keratinocytes (43).
When NLRP1 T755N was overexpressed in HEK293T cells that

do not express other inflammasome components, it spontaneously
oligomerized, similar to previously described NLRP1 GOF vari-
ants M77T and F787_R843del and in contrast to the WT NLRP1
(Fig. 2B). This oligomerization of T755N is partially dependent on
the autocleavage site, amino acid F1212 within the FIIND domain,
as the noncleavable mutation F1212A reduced the amount of
oligomerized NLRP1 T755N (Fig. 2B, lane 6). Taken together, these
results suggest that the T755N mutant behaves in a similar fashion
biochemically with the other NLRP1 GOF mutants in causing in-
creased inflammasome activation via spontaneous oligomerization.
In addition, overexpression of NLRP1 T755N in immortalized
keratinocytes led to elevated production of secreted IL-1β, similar
to that in previously described GOF alleles (Fig. 2C), which was
dependent on cleavage, as seen in other NLRP1 GOF alleles (Fig.
2C). The magnitude of functional gain was similar in alleles that
follow AD (M77T), codominant (F787_R843del), and AR inheri-
tance (T755N) (Fig. 2 B and C). In summary, these findings dem-
onstrate that NLRP1 T755N can cause increased inflammasome
activation in vitro, suggesting that this allele is GOF and thus
probably pathogenic.
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Fig. 1. A private homozygous missense mutation in siblings with JRRP and dermatologic abnormalities. (A) Pedigree showing NLRP1 genotype of individuals.
(B) Clinical images of P1 showing (from left to right) larynx papillomas, atrophoderma vermiculata on cheeks, plantar warts, and keratosis pilaris on buttocks
and thighs. (C) Micrographs of a larynx papilloma from P1 showing (from left to right) gross morphology of papillomas, areas of binucleated cells (Insets:
enlarged), and focal areas of koilocytosis (arrows). (D) Schematic representation of NLRP1 protein showing functional domains, location of patients’ T755N
mutations (red), and location of previously described NLRP1 mutations (blue) and their mode of inheritance (AD, AR, or codominant [CoD]). (E) Protein
sequencing alignment of human NLRP1 to known orthologs, showing conservation of T755.
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Primary Keratinocytes from P1 and P2 Demonstrate Spontaneous
Activation of the Inflammasome. We derived primary keratinocyte
cell lines from skin biopsy specimens taken from P2 and I.1
(NLRP1 genotypes T755N/T755N and WT/T755N, respectively).
NLRP1 mRNA and protein were expressed to similar levels in P2,
I.1, and 3 healthy control primary keratinocyte lines (Fig. 3A),
confirming that the NLRP1 T755N allele is expressed at normal
levels in healthy heterozygous and patient-derived cells. We next
confirmed that T755N and WT NLRP1 mRNA are expressed in
keratinocytes in proportion to their genotype. Cloning of a partial
NLRP1 cDNA encompassing T755 showed that in heterozygous
cells from I.1, ∼50% of the transcripts were WT and ∼50% were
T755N (Fig. 3B), suggesting that mRNA of the T755N NLRP1
allele is expressed at levels equal to WT. Keratinocytes from P2
and I.1 released IL-1β into the supernatants, suggesting baseline
activation of the inflammasome at a functional level (Fig. 3C). In
contrast, basal IL-1β release was not seen in control cells (Fig.
3C). When these cells were stimulated with Val-boroPro (talabostat,
a DPP9 inhibitor shown to activate the NLRP1 inflammasome)
(45, 46), control and heterozygous keratinocytes released large
amounts of IL-1β, while release of IL-1β in keratinocytes from P2 was
unchanged (Fig. 3C). Similar results were observed for IL-18 (Fig.
3D). The abrogation of talabostat responsiveness in keratinocytes
from P2 suggests that the mechanism of GOF in this allele is due
to a decrease in DPP9 inhibition. Taken together, these results
demonstrate that keratinocytes homozygous for NLRP1 T755N
display inflammasome activation at the basal level.

P1 and P2 Display Elevated Serum Cytokine Levels Consistent with
Spontaneous Inflammasome Activation In Vivo. We tested whether
P1 and P2 had any clinical markers of spontaneous inflamma-
some activation. Patient serum was first tested for elevation of
IL-1β and IL-18, the 2 cytokines that may be produced on acti-
vation of the inflammasome (47, 48). Both patients showed el-
evation of IL-18, but not of IL-1β, in repeated analyses (Fig. 4A),

similar to previously reports of patients with homozygous
NLRP1 GOF mutations near the LRR region of the protein (43,
44). Such a divergence of IL-18 and IL-1β elevation in the blood
is also seen in other inflammasome activation disorders, such as
NLRC4-mediated autoinflammation (49), and may underlie the
phenotypic differences between inflammasome disorders and
disease stage (50). Both P1 and P2 also showed elevated TNF-α,
which is induced by IL-1β and IL-18 in many cell types and may
mediate further up-regulation of inflammasome components
(51), although IL-6 was not elevated (Fig. 4A), as was also seen in
the previously described FKLC patient with a homozygous NLRP1
F787_R853del GOF mutation (43). Serum IL-1RA was also ele-
vated in P1 and P2 (Fig. 4A), consistent with chronic inflammasome
activation. Serum cytokine levels were not elevated in the hetero-
zygous parents (SI Appendix, Fig. S2), consistent with the absence of
any clinical manifestations. Stimulation of patient and healthy
control peripheral blood mononuclear cells (PBMCs) with lipo-
polysaccharide (LPS) or heat-killed Listeria monocytogenes (HKLM),
2 Toll-like receptor agonists that trigger IL-1β production in an
NLRP1-independent manner (52), led to similar levels of IL-1β
production in patients and controls (Fig. 4B), suggesting a normal
response to TLR ligands. These data demonstrate that the sera of
P1 and P2 showed signs of inflammasome activation in vivo.

Discussion
Here we have described a homozygous NLRP1mutation in siblings
with a syndromic form of JRRP. Six other NLRP1 GOF muta-
tions were previously shown to underlie 3 allelic conditions—MSPC,
FKLC, and AIADK—which have overlapping but distinct phe-
notypes that all include dermatologic abnormalities. MSPC pre-
sents with severe dermatologic abnormalities, including palmoplantar
keratoacanthomas, and corneal lesions (42, 43); FKLC manifests
as palmoplantar warts and lichenoid papules on the lower trunk
and extremities (43); and AIADK involves variable dermatologic
abnormalities accompanied by systemic autoinflammation with
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arthritis (44). Phenotypically, P1 and P2 do not have evidence of
the systemic inflammatory symptoms of AIADK or the severe
dermatologic manifestations of MSPC. They have dermatologic
abnormalities at the mild end of the spectrum, most similar to
those in FKLC, and their most notable clinical feature is JRRP.
There is a degree of variable expressivity between P1 and P2,
with differing JRRP severity despite their close genetic re-
latedness and shared environment. The variability of disease in
the 6 previously described kindreds, with at least 3 phenotypes, is
unexplained and may result from differences between the GOF
alleles themselves or modifier genes. Conversely, the absence of
overt JRRP in other NLRP1 GOF syndromes, with the possible
exception of 1 patient with AIADK with uncharacterized larynx
lesions (44), suggests that there is incomplete penetrance.
Genetically, the NLPR1 GOF-mediated diseases vary in mode

of inheritance. MSPC is AD, due to mutations in the PYR do-
main, while FKLC follows codominant inheritance due to a
mutation N terminal to the LRR domain (hereinafter N-LRR)
and AIADK follows an AD or AR inheritance depending on the
mutation. As we have shown here, the T755N mutation in the N-
LRR region underlies an AR pattern of inheritance. Interestingly,
JRRP was apparently described in 1 AIADK patient harboring a
biallelic mutation in the N-terminal LRR domain (R726W) (44).
In mice, NLRP1B is activated after cleavage by bacterial proteases,
leading to degradation of the N-terminal fragment of NLRP1B and
activation of inflammasomes by the disinhibited C-terminal frag-
ment (53, 54), suggesting that NLRP1 GOF mutations may perturb
this process. However, the mechanism whereby these human NLRP1
mutations lead to GOF is not fully understood, and neither is
how certain alleles underlie dominant, codominant, or recessive

phenotypes. Although the mutations cluster to different regions of
the protein, the cellular and biochemical experiments reported
here and elsewhere (43) show no differences between GOF alleles
in the magnitude of functional gain, suggesting that other, perhaps
domain-specific, aspects of NLRP1 function contribute to the
diversity of phenotypes. Indeed, all mutations described to date fit
a domain-specific hypothesis, with variants underlying AD inher-
itance in the PYR and FIIND domains and those with codominant
or AR inheritance restricted to the N-LRR region (Fig. 1C and
Table 1). It is also interesting that NLRP1 GOF can underlie an
AR phenotype, as human GOF mutations underlying a recessive
phenotype are extremely rare. To our knowledge, this has only
been described in CASR mutations in hypocalcemic hypopara-
thyroidism, where GOF mutations may underlie both AD and
AR patterns of inheritance (55). Interestingly, the AR and AD
inherited mutations lead to the same disease, although like NLRP1,
the AD and AR mutations localize to different regions of the
protein (55). Recent findings suggest that familial Mediterranean
fever (FMF) caused by mutations in the MEFV gene and long
thought to be exclusively AR, can also be AD, as evidenced by
knock-in mice engineered to express the human B30.2 domain of
MEFV harboring mutations found in patients with AR FMF (56).
The mechanism whereby heterozygous carriers of the T755N
allele remain clinically unaffected and exhibit normal serum
cytokines (SI Appendix, Fig. S2) while displaying GOF in cellular
assays (Fig. 3 C andD) is unclear. This may be due to the sensitivity
of the in vitro assays, the impact of other negative regulatory signals
present in vivo, or perhaps a result of the remaining WT allele
maintaining responsiveness to DPP9-mediated inhibition of NLRP1
activation.
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Beyond NLRP1, the role of HPV in our patients’ JRRP re-
mains unclear, as we did not detect the typical causative strains
HPV-6 and -11. JRRP without detectable HPV-6 or -11 has been
described previously (16–19), but whether our present findings
are due to failed detection or truly HPV-6/11–negative disease is
unclear. One hypothesis is that infection of our patients’ re-
spiratory epithelial keratinocytes by HPV triggers exaggerated
activation of the NLRP1 inflammasome due to their GOF allele,
leading to IL-1 family cytokine-mediated keratinocyte pro-
liferation and papilloma formation (43, 57) and also increased
inflammasome-mediated suppression of the virus, leading to
undetectable viral levels or even viral clearance. Indeed, there is
evidence of host–pathogen interaction between the IL-1β axis
and HPV (58, 59). In this model, NLRP1 GOF underlies JRRP
mainly because of its expression in keratinocytes. Consistently,
none of the many inborn errors of leukocytes underlie JRRP (23,
60). Nevertheless, we do not exclude the possibility that other
cell types contribute to HPV-driven JRRP in patients with GOF
mutations in NLRP1. The alternative hypothesis is that certain
NLRP1 GOF alleles, especially in homozygosity, lead to hyper-
proliferative lesions in the upper airway by themselves, manifesting
as HPV-negative JRRP. The genetic diagnosis of an NLRP1 GOF

syndrome should be considered in patients presenting with JRRP
(regardless of HPV status), especially in those with a syndromic
form with concurrent skin abnormalities. Although there are no
current therapies for these NLRP1-mediated diseases, anti–IL-1
or anti–IL-18 (e.g., IL-18BP) therapies have demonstrated promise
for other autoinflammatory inflammasome disorders (61–63) and
may be a reasonable therapeutic approach for these patients.
In addition to RRP, isolated susceptibility to HPV has also been

described in epidermodysplasia verruciformis (EV) and “tree man”
syndrome (TMS; a syndrome distinct from but frequently in-
correctly referred to as EV). Interestingly, these syndromes vary
in their anatomic site of disease, morphology of warts, and
dominant causative strains of HPV. While RRP displays isolated
susceptibility to α-HPVs (most commonly HPV-6 and -11) in the
upper airway, EV is characterized by susceptibility to β-HPVs in
the skin manifesting as flat warts (24, 25, 64), and TMS is charac-
terized by susceptibility to α-HPVs (usually HPV-2) and manifests as
bulky hyperkeratotic “cutaneous horns” primary on the hands
and feet (65–67). Despite the shared HPV susceptibility, a com-
bination of these phenotypes has never been described in a single
individual, suggesting that the mechanism of disease are distinct,
likely due to the diversity of HPV strains, their tissue tropisms,
and the strain- and tissue-specific mechanisms of host immunity to
these viruses. This is consistent with the differences between the
known underlying genotypes. Indeed, EV is due to biallelic null
mutations in TMC6, TMC8, and CIB1, the products of which form
a complex that governs keratinocyte-intrinsic immunity to β-HPVs
(24, 25, 64). It is intriguing that GOF mutations in NLRP1 and
LOF mutations in EVER1-EVER2-CIB1 disrupt immunity to
α-HPVs and β-HPVs in respiratory and cutaneous keratinocytes,
respectively. It will be important to decipher more genetic defects
underlying these and other isolated susceptibilities to HPVs, in-
cluding α-HPV–driven cervical cancer (68).

Methods
Patient Recruitment and Human Subject Protections. All studies were per-
formed in accordance with institutional and municipal guidelines. Approval
for this studywasobtained from the FrenchComité de Protection des Personnes,
L’Agence Nationale de Sécurité du Médicament et des Produits de Santé,
INSERM (protocol C10-13), and The Rockefeller University Institutional Review
Board (protocol JCA-0700). Patient consent was obtained for use of clinical
information and specimens.

WES and Sanger Sequencing. Genomic DNA was extracted from blood. WES
was performed at the New York Genome Center. Alignment to the GRCh37
reference genome was done with BWA-MEM 0.7.12 (69), and variant calling
was done using Genome Analysis Toolkit Unified Genotyper version 3.4–46
(70). Annotated variants were filtered by allele frequency in public databases
(1000 Genomes [http://www.1000genomes.org], NHLBI-EVS [https://evs.gs.
washington.edu/EVS/], ExAC [http://exac.broadinstitute.org], and gnomAD
[https://gnomad.broadinstitute.org/ and with criteria developed in the
laboratory) (34–36). In silico prediction of deleterious of variants was performed
with CADD (http://genetics.bwh.harvard.edu/pph2/). Estimated homozygosity
from WES data were performed as described previously (33). The NLRP1
variant c.2819C > A was confirmed by Sanger sequencing. PCR amplification
was performed with gene-specific primers flanking the variant of interest
(forward: acaaaacgttcctgacacaagtg; reverse: ctcaggtcactcgggcttatg). Sequencing
was performed with BigDye Terminator V1.1 chemistry (Thermo Fisher Scien-
tific) and analyzed on an ABI 3730 DNA sequencer (Thermo Fisher Scientific).
Sequence alignment was performed using SnapGene software.

Cloning of NLRP1 Constructs. Full-length NLRP1 transcript variant 1 cDNA that
matched the NCBI reference sequence NM_033004.4 was cloned by first
amplifying NLRP1 frommultiple in-housemade SV40-immortalized fibroblast
cDNApreparations using Pfupolymerase (Agilent), additionofAoverhangswith
Taq polymerase (Thermo Fisher Scientific) (forward: atggctggcggagcctggggccg;
reverse: tcagctgctgagtggcaggagtccctttttgctgccc), agarose gel purification of the
expected 4.5-kb band using the Qiagen QIAquick Gel Extraction Kit, and TA
cloning into pGEM-T Easy plasmid (Promega). Multiple cloneswere fully Sanger-
sequenced to identify a reference sequence transcript variant 1. This was
subcloned by PCR amplification (Pfu; Agilent) in 2 pieces (amino acids 1 to
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755 and 755 to end) into EcoRI- and XhoI-digested (New England Biolabs)
pCDNA3.1(+) plasmid (Invitrogen) using the Cold Fusion Cloning Kit (System
Biosciences) with primers that either matched theWT sequence or introduced a
T755N mutation using the primers listed in SI Appendix, Table S1. Plasmids
were prepared for transfection with the Qiagen Maxiprep Kit. All open
reading frames were completely Sanger-sequenced before use with primers
listed in SI Appendix, Table S1 using BigDye Terminator V1.1 chemistry
(Thermo Fisher Scientific), analyzed on an ABI 3730 DNA sequencer (Thermo
Fisher Scientific), and aligned using SnapGene software. For the experiments
shown in Fig. 2 B and C, NLRP1 constructs were as described previously (43)
and contained a C-terminal HA tag.

Cell Lines, Cell Culture, and Transfections. HEK293T cells were purchased from
American Type Culture Collection (CRL-3216) andwere cultured in DMEMand
Glutamax (Invitrogen) plus 10% FCS. The patients’ primary keratinocytes
were derived from skin biopsy specimen as described previously (24). Control
keratinocytes were single- donor adult human epidermal keratinocytes
(Lonza; catalog no. 00192627, donors 34014, 30214, and 34015). Keratinocytes
were maintained on mitomycin-C–inactivated 3T3-J2 feeder cells in Complete
Green medium (DMEM/Ham’s F-12 in a 2:1 ratio supplemented with 10% FBS,
180 nM adenine, 10 ng/mL EGF, 0.4 μg/mL hydrocortisone, 8.47 ng/mL cholera
toxin, 5 μg/mL insulin, 1.36 ng/mL triiodothyronine, and 10 μM ROCK inhibitor
Y-27632). Immortalized N/TERT-1 keratinocytes (a gift from J. G. Rheinwald to
F.L.Z.) were cultured in KSFMmedia (Life Technologies) supplementedwith 300 μM
CaCl2 as described previously (43). Transient transfection of HEK293T cells was
performed using Lipofectamine 2000 (Life Technologies) at a 2:1 ratio according
to the manufacturer’s instructions. Transfection of immortalized keratinocytes
was performed using FuGENE HD (Promega) at a 3:1 ratio according to the
manufacturer’s instructions. In the indicated experiments, keratinocytes were
stimulated with 3 uM talabostat (MedChemExpress) for 16 h before analysis.

Western Blot Analysis. Cells were lysed in RIPA buffer with cOmplete protease
inhibitor (Roche), and protein was quantified using the BCA protein assay
(Pierce). For standard denaturing polyacrylamide gel electrophoresis (PAGE),
lysate was subjected to reducing sodium dodecyl sulfate (SDS)-PAGE using
Tris-glycine buffers and then transferred to PVDF membranes (Immobilon),
followed by detection with primary antibody against NLRP1 (R&D Systems;
AF6788) and secondary anti–sheep HRP (R&D Systems; HAF016). Anti-GAPDH
(Santa Cruz Biotechnology; FL-335) served as a loading control. Membranes
were developed and detected using ECL Western blotting substrate (Pierce)
and imaged on an Amersham Imager 600 (GE Healthcare). Blue natural

PAGE (BN-PAGE) was performed with the Novex NativePAGE Bis-Tris gel
system (Thermo Fisher Scientific) as described previously (43).

Quantitative PCR. RNA was extracted from keratinocytes at indicated time
points using TRIzol reagent (Invitrogen) according to the manufacturer’s
instructions. cDNA was synthesized with the SuperScript III First-Strand
Synthesis System (Thermo Fisher Scientific) with random hexamers according
to the manufacturer’s instructions. Quantitative PCR (qPCR) was performed
using TaqMan Universal PCR Master mix with the following FAM-MGB con-
jugated TaqMan Gene Expression Assays (Thermo Fisher Scientific) for NLRP1
(Hs00248187_m1) duplexed with VIC-MGB RNase P TaqMan Assay (4403328)
as an endogenous control. qPCR was run on an Applied Biosystems 7500 Fast
Real-Time PCR system. Gene expression was quantified by the 2-ddCt method.

Cytokine Measurements. Human IL-1β, ILR1Ra, IL-6, TNF-α, and IL-18 cytokine
levels were determined in serum of P1 and P2 and 2 healthy controls by a
magnetic bead-based multiplex assay using Luminex technology (Bio-Rad).
GraphPad Prism 6.0 software was used for data analysis. ELISA for IL-1β (BD
Biosciences) and IL-18 (R&D Systems) was performed on tissue culture
supernatants according to the manufacturer’s instructions.

PBMC Purification and Stimulation with TLR Ligands. PBMCs were isolated
using Leucosep tubes (Greiner Bio-One) containing Ficoll density gradient
medium. Cells were stored in RPMI-1640medium supplementedwithGlutaMAX
(Gibco; 61870044) enriched with 10% FCS (Sigma-Aldrich; F7524) containing
10% DMSO (Sigma-Aldrich; D2650) at −150 °C until further use. PBMCs were
thawed in 37 °C preheated complete medium (RPMI-1640 medium supple-
mented with GlutaMAX, 10% FCS, and 1% penicillin-streptomycin [10,000 U/mL;
Gibco; 15140122], 1 mM sodium pyruvate [Gibco; 11360070], 1% nones-
sential amino acids [Gibco; 11140035], and 50 μM 2-mercaptoethanol
[Gibco; 31350010]). In the setting of functional testing, cells were left to
recuperate for 30 min at 37 °C and 5% CO2 after removal of DMSO. PBMCs
were stimulated for 24 h with TLR ligands, including HKLM (10e8/mL and
10e7/mL) and LPS (100 ng/mL and 10 ng/mL) (InvivoGen).
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Yes? 44

Inflammatory arthritis
Uveitis (1 of 2 patients)
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Respiratory papillomatosis (1 of 2 patients)
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T755N N-LRR AR JRRP Recurrent respiratory papillomatosis Yes This study
Keratosis pilaris on legs and lower trunk
Palmoplantar wart-like hyperkeratotic papules
Atrophoderma vermiculata on cheeks
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