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Sulfur fluoride exchange (SuFEx) has emerged as the new gener-
ation of click chemistry. We report here a SuFEx-enabled, agnostic
approach for the discovery and optimization of covalent inhibi-
tors of human neutrophil elastase (hNE). Evaluation of our ever-
growing collection of SuFExable compounds toward various bio-
logical assays unexpectedly revealed a selective and covalent hNE
inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization
of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl
fluorosulfate with IC50 0.24 μM and greater than 833-fold selectivity
over the homologous neutrophil serine protease, cathepsin G. The
optimized, yet simple benzenoid probe only modified active hNE
and not its denatured form.
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Sulfur fluoride exchange (SuFEx)—the new-generation click
chemistry, since first introduced in 2014 (1), has quickly

found diverse applications across an array of fields (DOI:
10.1039/C8CS00960K), including chemical synthesis (2–12),
material science (13–19), chemical biology (20–32), and drug
discovery (33, 34). SuFEx creates robust intermolecular links be-
tween modules. The fidelity of SuFEx stems from the ability of
otherwise very stable high oxidation state sulfur fluorides (35–39)
to exchange the S–F bonds with incoming nucleophiles on sepa-
rate modules under SuFEx catalysis conditions. The resulting new
sulfur hub sites constitute permanent connections. These unique
SuFEx reactions are thought to be made possible by the strict
requirements needed to stabilize the departing fluoride ion in its
transit away from the strong original covalent bond to sulfur. The
facilitating agents are “H+

” or “R3Si
+.” The process especially

favors a 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU)-type amine
catalyst (13, 40, 41), and is also thought to involve bifluoride
counterion species (16, 17, 42).
In the context of selective in vitro or in vivo covalent capture

of proteins by compounds containing a S-F bond that can un-
dergo SuFEx reaction (i.e., SuFExable compounds), examples
are rapidly accumulating (20–31). However, we are still far from
making strong a priori inferences about the various factors that
might relate to a given capture’s occurrence. That said, there is
one remarkable fact shared by all these SuFEx-based protein
captures, namely that the exchangeable S–F bonds in these
probes are among the most demure electrophiles known to
chemistry (1, 36–39). For example, no reaction occurred in the
neat mixture of refluxing benzenesulfonyl fluoride (4 mL, ∼33
mmol) and aniline (45 mL, ∼500 mmol) at 184 °C for 3 h (35).
Under the same conditions, electrophiles commonly studied as
covalent “warheads” in medicinal chemistry including epoxide,
acrylamide, vinyl sulfone, chloroacetamide, chloromethyl ketone,
β-lactam, maleimide, and fluorophosphate do not survive (SI
Appendix, Table S3).
Only a correctly folded and functionally active protein can

serve as a “catalyst” (43) for a SuFEx capture event upon one of
its own nucleophilic amino acid side chains (Fig. 1A). These
enzymic SuFEx capture reactions are, we posit, the result of a

unique ensemble of factors between the naturally folded protein
and its correct partner probe’s latent S–F electrophilic site.
When the perfect S–F probe for a given protein encounters the
denatured form of the latter, there is no detectable reaction (24,
33). In fact, in our experience with many S–F capture probes and
various denatured proteins, even including entire denatured
proteomes, is that misfolded proteins simply do not react with
S–F electrophiles at all (24). Among the main factors present in the
natural proteins to facilitate extraction and transport of fluoride
will be special groups, e.g., arginine side chains juxtaposed to
provide just so, hydrogen bonding networks (33). The latter are
closely related to local electric fields, electrostatic effects which are
unique for all natural proteins (44–47). Thus, it is not hard to
imagine that the transit of “F−

” away from a SuFExable probe in a
capture event could be a very subtle outcome of electric field pulses
for the specific reactant pair at hand. And yet, the enormous range
of reactivity of, e.g., PhSO2–F (stable in “refluxing aniline test,”
vide supra), does argue for something quite special going on with
these nearly inert S–F-based covalent probes.
In this light, the awakening of a SuFExable probe by the cap-

tured protein (24, 33) mirrors very closely our earlier femtomolar,
freeze-frame, yet reversible, inhibitors made inside acetylcholin-
esterase (AChE) as a “reaction vessel” (48–51), regarding the little
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understood, yet enormous rate acceleration achieved by the AChE
protein. We named these enzyme templating processes in situ
click chemistry, more recently also termed kinetic target-guided
synthesis (52–54).
Taking inspiration from the original click chemistry manifesto

(55) that molecular diversity can be achieved with ease through
the connection of small modules, using just a few good reactions,
in sequences of usually no more than 3 steps, we demonstrate
here 2 distinct but logically connected, sequential SuFEx-enabled
entities: 1) efficient construction of a pool of SuFExable com-
pounds via click chemistry principles, and 2) bioprospecting this
library for covalent capture agents for important protein targets.
The expectation, based on previous experience, is that evaluation
of a SuFEx library often turns up a few hits. The latter can then be

followed up by short and simple syntheses of analogs for structure–
activity relationship evaluation. This “compound-bank” mode of
the SuFEx-enabled platform, itself contributes to the ever-growing
library of SuFExable modules and candidates, and like “com-
pounding interest,” rewards the principle library with expanding
opportunities for discovering new kinds of phenotypic modula-
tors, including useful new functions for medicines in the long
term (Fig. 1B).
Over the past 5 y, we (1, 5, 8, 56) and others (12, 57–60) have

found a collection of efficient methods to synthesize SuFExable
compounds from either simple or complex organic molecules
using highly connective SuFEx core electrophiles (e.g., SO2F2,
O = SF4, CH2 = CHSO2F). Collective work within the Sharpless
laboratory continues to build a library of SuFExable small mod-
ules. There are >1,000 compounds in this collection. The indi-
vidual compounds are dissolved as 10 mM dimethyl sulfoxide
(DMSO) stock solutions and stored in −20 °C freezer, with most
being stable at −20 °C as evidenced by periodic inspection by
liquid chromatography-mass spectrometry (LC-MS) of randomly
sampled compounds over 3 y. Thanks to the great stability of the
SuFExable S–F links toward water and oxygen, the oldest library
deposits (as DMSO solutions) are still pure. To date, the library
and/or its sublibraries have been screened with collaborators at
Scripps Research against multiple targets. Here we report a case
study using the SuFEx-enabled approach to the discovery of se-
lective, covalent inhibitors of human neutrophil elastase (hNE).
hNE, a member of the serine protease superfamily, is aber-

rantly active in cystic fibrosis, chronic obstructive pulmonary
disease, and inflammatory bowel diseases (61–77). This protease
is therefore a key target for the development of antiinflammatory
agents to combat these diseases. Alkyl and aryl sulfonyl fluorides
have a long history as rather promiscuous covalent inhibitors of
serine proteases (78–87). In the late 1970s, the Powers group

Fig. 1. Overview. (A) The SuFExable probes (e.g., sulfonyl fluoride) only
capture a specific, naturally folded protein where a nucleophilic side chain
(Nu) and hydrogen bonding donors (HBDs, including amino acid side chains
and bound or free water) constitute such precise networks that meet the
local geometric and electrostatic requirements (dipole moment changes in
transition state) for the protein’s own SuFEx reaction. (B) Schematic of the
SuFExable library-enabled covalent lead compound discovery process.

Fig. 2. Efficient SuFEx derivatization of abundant building blocks yields a
SuFExable library with 4 subset groups, categorized according to their S–F
links’ inherent reactivity. (A) Aryl sulfonyl fluorides (Subset I). (B) Aryl
fluorosulfates (Subset II). (C) Alkyl sulfonyl fluorides (Subset III). (D) (E)-Vinyl
sulfonyl fluorides (Subset IV). Ar, aryl, or heteroaryl; NEt3, triethylamine; R1,2,
H, alkyl, aryl, or heteroaryl; R3, alkenyl, aryl, or heteroaryl; Pd(OAc)2, palla-
dium (II) acetate; AgTFA, silver (I) trifluoroacetate.
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demonstrated the intrinsic reactivity differences across several
serine proteases, including elastase, with 2-amido(peptido)
benzenesulfonyl fluoride inhibitors (88, 89). Their results en-
couraged us to investigate our library of SuFExable compounds
as potential covalent inhibitors of hNE.

Results and Discussion
A set of 105 compounds (SI Appendix, Table S1), many of which
appear to be new compounds, were selected without bias, to
form a primary library for the screen against hNE. The selected
compounds can be categorized into 4 subsets by the nature of S–F
functional groups (Fig. 2). Each group tends to have its own
intrinsic zone of reactivity in acid–base environments. To give a
general impression, the relative rate measured on a representa-
tive molecule of each subset under SuFEx catalysis was found to
be 28.5 (I), 1.0 (II, reference), 14.1 (III), and 4.1 (IV), re-
spectively (SI Appendix, Fig. S6). Aryl sulfonyl fluorides (I), de-
spite their own extreme resistance toward nucleophiles, top the
SuFEx reactivity hierarchy among the 4 subsets, while aryl
fluorosulfates (II) lie at the bottom.
Elastase (5 nM) was incubated with each entry of the primary

SuFEx library (final compound concentration 200 μM) for 10
min at room temperature prior to the addition of peptide sub-
strate MeOSuc-AAPV-AMC (50 μM). Increase in fluorescence
was measured for 30 min at 30-s intervals. The assay was well
behaved, as evidenced by a Z′ of 0.86, and signal-to-background

of ∼3,000:1. Reasoning that a covalent inhibitor, which targets a
catalytic residue, should completely inactivate the enzyme at
high compound concentration (200 μM), a high threshold (95%)
was chosen for hit identification. Under this criterion, the screen
yielded 7 hits as probable covalent inhibitors (Fig. 3A, 6.7%
overall hit rate and 23% hit rate within subset I). All 7 com-
pounds belong to subset I, which suggests a rough cutoff based
on the S-link’s inherent reactivity. After validation by NMR, LC-
MS, and dose-dependent response, benzene-1,2-disulfonyl fluoride
(1) proved to be the leading candidate, inhibiting hNE with IC50 =
3.3 ± 1.0 μM (Fig. 3 B and C).
The covalent inhibition of hNE by 1 was examined by high-

resolution matrix-assisted laser desorption/ionization-time of
flight (MALDI-TOF) mass spectrometry (Fig. 4A). Incubation
of 1 (exact mass 242 Da) with hNE yielded a peak shift from the
protein mass by 222 Da. Increased mass corresponds to: 1) a single
molecule of 1 covalently captured by hNE; 2) the loss of 1
hydrogen from the protease (possibly from the catalytic ser-
ine); and (3) the loss of 1 fluorine from 1.
We also subjected hNE to cocrystallization with 1 in order to

corroborate the covalent binding. The structure was determined
using molecular replacement with Protein Data Bank (PDB) ID
code 5adw and the cocomplex was refined to 2.33-Å resolution
(SI Appendix, Table S2). Importantly the naive Fo-Fc electron
density maps contoured to 4σ clearly position 1, as a result of the
strong diffraction of sulfurs (Fig. 4B). The aryl group of 1 is
nestled into a hydrophobic pocket consisting of residues Phe192
and Val216 and the compound is covalently bound to the cata-
lytic Ser195, as highlighted by continuous electron density and

Fig. 3. Screen of the primary SuFEx library toward elastase inhibitory ac-
tivity. (A) Initial screen with 105 SuFExable compounds yielded 7 hits
with >95% inhibition at 200 μM. (B) Dose–response curves of hit compounds
(1–7, and phenylmethanesulfonyl fluoride [PMSF] as a reference inhibitor)
against hNE (AAPV-AMC fluorescence assay). Each compound was assessed
over a 2-fold logarithmic dilution series. (C) Structures and IC50 values of
compounds 1–7 and PMSF. IC50 values were measured based on 10-min in-
cubation and are shown in mean ± SD (n ≥ 3).

Fig. 4. Compound 1 (exact mass 241.95) is a covalent inhibitor of hNE. (A)
MALDI-TOF mass spectrometry evidence of covalent complex hNE:1 forma-
tion. (B) Naive Fo-Fc map contoured at 1.5σ (green) and 4σ (magenta) clearly
delineates the binding orientation of 1 to Ser195 and the specific location of
the sulfur groups, respectively. Residue of 1 is shown as a stick model with
yellow carbon, red oxygen, light-blue fluorine, mustard sulfur. (C) Active site
residues that provide potential hydrogen bonds (black dashes), repulsive
interactions (brown dash), and hydrophobic residues that bind 1 (gray
elastase carbon, nitrogen blue). (D) Schematic of bond distances between 1
and elastase with potential hydrogen bonds (black dashes) and negative
repulsive interactions (brown dash) with bond distances in Å. The covalent
bond (red) between Ser195 and the sulfur of 1 were set at 1.57 Å during
structure refinement.
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a bond distance of ∼1.6 Å (Fig. 4 C andD). The covalent inhibition
of hNE via sulfonylation by 1 appeared to be permanent—dialyzing
away small molecules after incubation did not recover enzyme
function (SI Appendix, Fig. S2).
Considering the monocovalent attachment mode of 1, with the

second –SO2F intact, it was envisaged that 1 of the 2 sulfonyl
fluoride groups could be substituted so as to perhaps improve the
capture rate, and/or selective binding (Table 1). A set of ben-
zenesulfonyl fluoride cores carrying ortho-substituents (8–24)
was therefore examined. Compounds 8–18 (90) were synthesized
by the efficient aqueous potassium bifluoride exchange pro-
cedure from commercially available sulfonyl chlorides but
showed poorer reactivity/binding with hNE. The monovinylogous
derivative 19 was a more active inhibitor with IC50 = 2.2 ±
0.7 μM. The ortho-sulfamoyl benzenesulfonyl fluorides (20, 21)
led to considerably lower activity. A recently developed potas-
sium bifluoride catalyzed SuFEx perfluoroalkylation of aryl sul-
fonyl fluorides (91) enabled us to quickly convert 1 to the
monoperfluoroalkyl sulfones (22, 23). Compound 22 with the
ortho-triflyl group was identified as a better lead molecule with
IC50 = 1.1 ± 0.1 μM. To our surprise, a simple benzenoid com-
pound 24, where the ortho-substituent is another SuFEx func-
tionality, aryl fluorosulfate, emerged as the best agent to date
with much improved potency, IC50 = 0.24 ± 0.02 μM.

Next, we tested the lead compounds (1, 19, 22, and 24) against
a panel of serine proteases; we found that three (1, 22, and 24)
among the four effective hNE inhibitors did not inactivate the
homologous serine protease, human cathepsin G (hCG), which
has 37% sequence identity with hNE and a highly similar crystal
structure [root-mean-square deviation (rmsd) = 0.82 Å, max
rmsd = 5.89 Å for 180 out of 218 Cα residues of hNE]. Unlike
PMSF (PhCH2SO2F) long known for ablating the hydrolytic
activity of almost all serine proteases, the compounds 1, 22, and
24 identified in this study showed 58 and >182, and >833-fold
specificity for hNE over hCG, respectively (Table 2). The se-
lective inhibition of hNE could be partly attributed to a proximity
factor as suggested by molecular modeling using a reactive
docking protocol (SI Appendix, Fig. S5)
High-resolution MALDI-TOF mass spectrometry study sup-

ports the covalent inhibition mechanism of the more potent and
selective agents 22 and 24 to be sulfonylation of hNE (maroon
peaks, +273 Da for 22, and +238 Da for 24). In both cases, we
observed the hNE dehydration product peak (M – 18, turquoise)
suggesting both agents to effect the covalent modification at the
same catalytic serine as 1 did (29, 32, 92–94). To further dem-
onstrate the stringent dependence of SuFEx reactions on pro-
tein’s tertiary structure, compounds 22 and 24 were incubated,
respectively, with inactive denatured hNE and no covalent
modification of the enzyme was found (Fig. 5).
To conclude, we have demonstrated a SuFEx library-enabled

approach to discover covalent deactivators of an enzyme’s
function, the protein at hand being human neutrophil elastase.
Its structure is known, including complexed with (ir)reversible
inhibitors in the active site, but the library of sulfonyl fluorides
used in the screen was chosen without regard to any enzy-
me:potential ligand relationships. In other words, agnostic of
structural considerations, our approach rapidly identified 2
SuFExable probes (22, 24) that found and captured their own
protein, hNE in this instance. This useful sulfur fluoride library
is being used and augmented regularly at Scripps Research,

Table 1. Optimization of the original hit 1 by examining 2-
substituted benzenesulfonyl fluoride

*IC50 values were measured based on 10-min incubation and are shown in
mean ± SD (n ≥ 3).

Table 2. Selectivity of the lead compounds 1, 19, 22, and 24
against hNE and hCG

*IC50 values were measured based on 10-min incubation and are shown in
mean ± SD (n ≥ 3).
†S value denotes the selectivity, defined by the ratio of IC50 (hCG) over IC50

(hNE).
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and it will hopefully contribute to future SuFEx-driven covalent
drug discovery endeavors.

Materials and Methods
General Procedure I for the Preparation of Aryl Sulfonyl Fluorides (Fig. 2A). Aryl
sulfonyl chloride (commercially available from Sigma-Aldrich or synthesized
according to known procedures) dissolved in acetonitrile (Fisher HPLC grade,
0.5–1 M) was treated with saturated potassium bifluoride aqueous solution
(Sigma-Aldrich, ∼5 M, 1.5–2.5 equiv). The emulsion was stirred vigorously for
1–4 h before being partitioned between ethyl acetate and water. The or-
ganic solution was collected, dried over anhydrous sodium sulfate (Na2SO4),
concentrated, and purified by column chromatography, if necessary, to yield
the desired aryl sulfonyl fluoride (33 examples, 90–100% isolated yield).

General Procedure II for the Preparation of Aryl Fluorosulfates (Fig. 2B). Phe-
nols (Sigma-Aldrich), and triethylamine (Alfa Aesar, 1.5 equiv) were dissolved
in dichloromethane (DCM) (Fisher). The flask sealedwith a rubber septumwas
evacuated, and sulfuryl fluoride gas (SynQuest Laboratories, Inc.) in a balloon
was introduced to the flask via a needle. The reaction was stirred vigorously
for 2 h. Upon completion, solvent was removed in vacuo. The residue was
partitioned between ethyl acetate and water. The organic phase was washed
with brine, dried over anhydrous Na2SO4, then concentrated and purified by
flash column chromatography to give the desired aryl fluorosulfate (32 ex-
amples, 82–99% isolated yield).

General Procedure III for the Preparation of Alkyl Sulfonyl Fluorides (Fig. 2C).
To a solution of primary or secondary alkyl amine (Sigma-Aldrich, or Combi-
Blocks) in DCM or glacial acetic acid (Sigma-Aldrich, 0.5–1 M), ethenesulfonyl
fluoride (ESF) (homemade, 2.2 equiv) (56) was added dropwise. The mixture
was stirred at room temperature for 6–12 h. Upon completion, volatiles were

removed in vacuo. The residue was purified by flash column chromatography
to give the desired sulfonyl fluoride adducts of primary or secondary amines
(30 examples, 85–98% isolated yield).

General Procedure IV for the Preparation of Vinyl Sulfonyl Fluorides (Fig. 2D).
An oven-dried Schlenk tube was charged with (hetero)aryl iodide (Sigma-
Aldrich, or Combi-Blocks), AgTFA (Acros, 1.2 equiv), Pd(OAc)2 (Alfa Aesar,
2 mol %), acetone (anhydrous over 4-Å molecular sieves, Acros), and ESF
(homemade, 2 equiv) were added. The resulting mixture was refluxed at
60 °C. Upon full conversion of (hetero)aryl iodide (6–12 h), solvent was re-
moved in vacuo. The crude was purified by flash column chromatography to
give the desired product (10 examples, 59–99% yield).

Protease Activity Assays and SuFExable Library Screen. hNE activity was
measured in a total volume of 100 μL in a reaction buffer of phosphate-
buffered saline (PBS) (pH 7.4) and 0.05% (vol/vol) Nonidet P 40 Substitute
(Sigma). Final composition of each reaction was 5 nM hNE (Elastin Products
Corp.), 50 μM MeOSuc-AAPV-AMC substrate (Millipore), ∼2.5% DMSO
(Fisher), and various concentrations of fragments as inhibitors. Elastase was
incubated with various concentrations of inhibitors for 10 min at room
temperature before addition of MeOSuc-AAPV-AMC. Residual proteolytic
activity was measured at 25 °C using an Envision microplate reader for a
total of 30 min at 30-s intervals. Only data points reflecting linear substrate
conversion were used to determine relative protease activity. IC50 values
were obtained by fitting the data to a dose–response inhibition, log (in-
hibitor) vs. response–variable slope (4 parameters) using GraphPad Prism 8.
The physicochemical parameters were obtained from a reference, and the
correlation analysis was carried out using GraphPad Prism 8.

MALDI-TOF Mass Spectrometry of SuFExable Probes Bound to Neutrophil
Elastase. Elastase was resuspended in 50 mM sodium acetate (pH 4.5),
100 mM NaCl to 0.2 mg/mL final concentration. DMSO solution of each
compound (10 mM) was diluted 1:10 in the above buffer, then added in a
compound:hNE ratio = 3:1 and incubated at rt for 1 h prior to analysis by
MALDI-TOF mass spectrometry.

Crystallization and X-Ray Data Collection. Inhibitor 1 was added in a 1.2 molar
excess to hNE [10 mg/mL in 10 mM Hepes (pH 6.5)], incubated for 1 h at
25 °C, and immediately used for crystallization. Crystals were grown by sit-
ting drop-vapor diffusion by mixing equal volumes (1.5 μL) of hNE:1 complex
and reservoir solution consisting of 0.3 M ammonium citrate (pH 5.0), 14% (wt/vol)
PEG 3350 at 25 °C. Data were collected on single, flash-cooled crystals at 100 K
in cryoprotectant consisting of 0.2 M ammonium citrate (pH 5.0), 20% (wt/vol)
PEG 3350, and 20% (vol/vol) glycerol, and were processed with HKL2000 in
orthorhombic space group P212121. The calculated Matthews’ coefficient
(VM = 2.77 Å3Da−1) suggested 4 monomers per asymmetric unit with a solvent
content of 56%. X-ray data were collected to 2.33-Å resolution on beamline
12.2 at the Stanford Synchrotron Radiation Lightsource.
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