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Abstract

Background: Epigenetic age, as defined by DNA methylation, may be influenced by air 

pollution exposure.

Objective: To evaluate the relationship between NO2, particulate matter (PM), PM components 

and accelerated epigenetic age.

Methods: In a sample of non-Hispanic white women living in the contiguous U.S. (n = 2747), 

we estimated residential exposure to PM2.5, PM10 and NO2 using a model incorporating land-use 

regression and kriging. Predictive k-means was used to assign participants to clusters representing 

different PM2.5 component profiles. We measured DNA methylation (DNAm) in blood using 

the Illumina's Infinium HumanMethylation450 BeadChip and calculated DNAm age using the 

Hannum, Horvath and Levine epigenetic clocks. Age acceleration was defined based on residuals 

after regressing DNAm age on chronological age. We estimated associations between interquartile 

range (IQR) increases in pollutants and age acceleration using linear regression. For PM2.5, we 

stratified by cluster membership. We examined epigenome-wide associations using robust linear 

regression models corrected with false discovery rate q-values.

Results: NO2 was inversely associated with age acceleration using the Hannum clock (β = −0.24, 

95% Cl: − 0.47, −0.02). No associations were observed for PM10. For PM2.5, the association 

with age acceleration varied by PM2.5 component cluster. For example, with the Levine clock, 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
*Corresponding author at: Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, 
NC 27709-2233, USA. alexandra.white@nih.gov (A.J. White). 

Declaration of Competing Interest
The authors report no conflicts of interest.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2019.105071.

HHS Public Access
Author manuscript
Environ Int. Author manuscript; available in PMC 2020 November 01.

Published in final edited form as:
Environ Int. 2019 November ; 132: 105071. doi:10.1016/j.envint.2019.105071.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.envint.2019.105071


an IQR increase in PM2.5 was associated with an over 6-year age acceleration in a cluster that 

has relatively high fractions of crustal elements relative to overall PM2.5 (β = 6.57, 95% CI: 

2.68, 10.47), and an almost 2-year acceleration in a cluster characterized by relatively low sulfur 

fractions (β = 1.88, 95% CI: 0.51, 3.25). In a cluster distinguished by lower relative nitrate 

concentrations, PM2.5 was inversely associated with age acceleration (β = −1.33, 95% CI: −2.43, 

−0.23). Across the epigenome, NO2 was associated with methylation at 2 CpG sites.

Conclusion: Air pollution was associated with epigenetic age, a marker of mortality and disease 

risk, among certain PM2.5 component profiles.
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1. Introduction

Air pollution is a global public health issue that is estimated to contribute to 7 million deaths 

worldwide per year (World Health Organization, 2016). Air pollution is associated with a 

higher risk of aging-related health outcomes including cardiovascular disease and cancer 

(Loomis et al., 2013). Biologic age metrics have been demonstrated to be biomarkers of 

risk for cardiovascular disease, cancer and mortality (Blackburn et al., 2015; Hertel et al., 

2016; Holly et al., 2013; Klemera and Doubal, 2006; Kresovich et al., 2019; Levine, 2013; 

Peters et al., 2015). Biologic changes stemming from prolonged air pollution exposure may 

be detectable in DNA methylation (DNAm) patterns, as suggested by both epigenome-wide 

association studies (Chi et al., 2016; de FC Lichtenfels et al., 2018; Lee et al., 2019; 

Panni et al., 2016; Plusquin et al., 2017) as well studies that incorporate epigenetic aging 

metrics (Nwanaji-Enwerem et al., 2016; Nwanaji-Enwerem et al., 2017; Ward-Caviness et 

al., 2016).

Estimates of epigenetic age, or “epigenetic clocks”, are derived from DNAm at a small set 

of CpG sites that predict chronological age (Hannum et al., 2013; Horvath, 2013). Levine 

et al., extended this approach by designing an epigenetic clock that predicted “PhenoAge”, 

a biologic age metric determined from both chronological age and mortality-related blood 

parameters (Levine et al., 2018). “Age acceleration” is defined as having an estimated 

epigenetic age that exceeds an individual’s chronological age. Epigenetic age acceleration 

has been associated with lifestyle and environmental factors including cigarette smoking 

(Gao et al., 2016) and socioeconomic status (Dhingra et al., 2018; Hughes et al., 2018). 

Some evidence has suggested that air pollution may be associated with age acceleration 

(Nwanaji-Enwerem et al., 2016; Nwanaji-Enwerem et al., 2017; Ward-Caviness et al., 

2016). However, these studies did not evaluate the Levine epigenetic clock, which, because 

it is influenced by clinical aging-related phenotypes, may be a better marker of disease-risk 

than prior epigenetic clocks.

Particulate matter < 10 μm (PM10) and < 2.5 μm in diameter (PM2.5) are measures of total 

particle mass per unit volume defined by size and do not distinguish the actual composition 

of those particles. Due to differences in sources of air pollution exposure, meteorology, 

and other factors, PM2.5 varies in composition by geographic region (Bell et al., 2007). 
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Associations between PM2.5 and health outcomes including cardiovascular disease (Brook 

et al., 2010) and mortality (Franklin et al., 2008) have been shown to vary by PM2.5 

component profiles. In this study, we evaluated the hypothesis that air pollution is associated 

with epigenetic age acceleration, allowing for possible heterogeneity in the effect of PM2.5 

on epigenetic age by clustering individuals according to compositional profiles determined 

using predictive k-means clustering (Keller et al., 2017). Age acceleration was primarily 

defined using the Levine clock (Levine et al., 2018) although we considered associations 

with two other established epigenetic clocks, the Hannum and Horvath clocks (Hannum et 

al., 2013; Horvath, 2013). Using an epigenome-wide association study (EWAS), we also 

examined whether air pollution was associated with individual CpG sites.

2. Methods

2.1. Study population

The Sister Study is a nationwide prospective cohort study of women recruited between 

2003 and 2009 who were living in the United States, including Puerto Rico (Sandler 

et al., 2017). Women ages 35–74 were eligible for this study if they had a sister with 

breast cancer but no history of breast cancer themselves. Participants completed a two-part 

computer-assisted telephone interview and had a home visit with a trained study examiner 

who collected a fasting blood sample. Study participants are contacted annually for health 

updates and complete detailed follow-up questionnaires every 2–3 years. Questionnaires 

included information on residential history, demographics and lifestyle factors among other 

topics. Written informed consent was obtained from all study participants. The Sister Study 

was approved by the National Institute of Environmental Health Institutional Review Board.

Blood DNAm was originally assessed as part of a case-cohort study of women with breast 

cancer (Xu et al., 2019). The DNAm case-cohort was limited to women who were non

Hispanic white and had an available blood sample collected at baseline, when they were 

breast cancer-free. The case-cohort consisted of a total of 2878 women (including 1542 who 

developed breast cancer during follow-up and a subcohort composed of a random sample of 

1336 women, 74 of who had also become incident cases). The data used here was from data 

release version 5.0.1.

2.2. Air pollution exposure assessment

Annual average outdoor air pollution concentrations (PM2.5, PM10, NO2) were estimated 

for study participants' residential addresses during the 12 months prior to enrollment. Air 

pollution concentrations were estimated by a cross-validated universal kriging models using 

US Environmental Protection Agency (EPA) Air Quality System (AQS) monitoring data 

from 2006 (PM2.5 and NO2) and 2000 (PM10) (Sampson et al., 2013; Young et al., 2016). 

The years of monitoring data were selected as they were either prior to or during the 

enrollment period and these are consistent with previous research in this study population 

(Reding et al., 2015). These models incorporate spatial smoothing and information from 

geographic covariates, some of which were determined using satellite observations. We 

excluded 6 women who lived outside the contiguous US and 4 whose addresses were 
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not successfully geocoded. For NO2, air pollution estimates were missing for 2 additional 

women whose addresses had incomplete satellite coverage.

The PM2.5 component clusters were derived using covariate-adapted predictive k-means 

clustering, as previously described (Keller et al., 2017). 2010 PM2.5 component data 

were obtained from 130 US EPA AQS monitoring locations that measured the mass 

concentrations for 22 PM2.5 component species including elemental carbon (EC), organic 

carbon (OC), NO3
−, SO4

2−, Al, As, Br, Cd, Ca, Co, Cr, Cu, Fe, K, Mn, Na, S, Si, Se, 

Ni, V and Zn. This year of data was selected due to improved precision and decreased 

bias with new instrumentation and analysis methods (Spada and Hyslop, 2018). Most 

components were measured once every six days. An annual average was computed for 

each component at each monitoring location. Mass concentrations were then converted to 

mass fractions by dividing the annual average of each species by the annual average PM2.5 

at that location. Component mass fractions were log transformed. Clustering was used 

here to categorize monitor locations into a pre-defined number of (k) clusters based upon 

similarities in particulate matter component observations. Geographic covariates (such as 

measures of land-cover, road networks, vegetative index and population density, etc.) were 

included in the model to improve prediction of the clusters. This approach then predicts 

cluster membership at individual participant residential location using geographic covariates. 

The final selected model had 8 clusters, although Cluster 8 was not included in the effect 

measure modification analysis due to small sample size. These clusters identify groups of 

women expected to be similar with regards to residential ambient PM2.5 composition.

2.3. DNA methylation assessment

DNA processing procedures have been described previously (O'Brien et al., 2018; Xu et 

al., 2019). The DNA was analyzed on Illumina HumanMethylation450 BeadChips following 

the manufacturer's protocol and using high throughput robotics to minimize batch effects. 

Methylation data preprocessing and quality control using the ENmix R software package 

(Xu et al., 2016) has been described. After quality control and preprocessing measures, 

the final number of included CpGs was 423,500. β-Values for methylation were calculated 

using the fluorescence intensities for unmethylated (U) and methylated (M) alleles and the 

formula β = M/(M + U + 100). β-Values were then transformed on the logit scale to be 

M-values. M-values were used in all statistical tests. 102 samples failed methylation quality 

control leaving 2776 women with available genome-wide methylation data. This resulted in 

a sample size of 2764 women with available air pollution and DNA methylation data.

2.4. Statistical analysis

We conducted a cross-sectional analysis to evaluate the association between air pollution 

and epigenetic age acceleration. We considered interquartile range increases in air pollutants 

based on specific years (2006 PM2.5 IQR = 3.5 μg/m3, 2000 PM10 IQR = 5.7 μg/m3, 2006 

NO2 IQR = 6.3 ppb) as our exposure measure of interest. All models were adjusted for 

a priori selected covariates including future case status (invasive breast cancer or ductal 

carcinoma in situ, no breast cancer), education (high school or less, some college or 

technical school, college degree or more), smoking status (current, former, never), hormone 
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therapy use (ever, never). For hormone therapy use, 7 participants with missing data were 

excluded from the analysis.

Although women were free of breast cancer at the time of blood draw, we previously 

observed that age acceleration was related to breast cancer risk (Kresovich et al., 2019). 

Therefore, in addition to adjustment for future case status, we conducted a sensitivity 

analysis using inverse probability weighted sampling fractions to account for the sampling 

design.

We calculated DNAm age using the weights provided by the clock developers, as previously 

described (Kresovich et al., 2019; White et al., 2019). We regressed DNAm age measures 

on the participant's chronological age at blood draw and used the resulting residuals as the 

metric of biologic age acceleration, which are, by design, independent of chronological age. 

Age acceleration was calculated with and without adjustment for blood cell composition 

(BCC). The Houseman method was used to estimate BCC, which was used in sensitivity 

analyses to control for effects on methylation due to differences in the relative sizes of 

blood cell type populations (Houseman et al., 2012). We used linear regression to estimate 

the association between an IQR increase in air pollutants and epigenetic age acceleration, 

adjusting for the covariates listed above. We excluded women who had age acceleration 

estimates that were ≥ 4 standard deviations above or below the mean for any of the 

epigenetic clocks (N = 10), resulting in an analytic sample size of 2747.

To evaluate effect measure modification by PM2.5 components, we estimated associations 

between PM2.5 and epigenetic age acceleration metrics stratified by membership in 

predicted spatial clusters defined by differences in PM2.5 components. We tested for effect 

modification using a likelihood ratio test to compare models with and without interaction 

terms between PM2.5 concentrations and PM2.5 component clusters.

As a sensitivity analysis to address potential residual confounding by socioeconomic status, 

we additionally adjusted our analyses for household income per person living in the home, 

and census-tract-level education (defined as the percentage of adults above the age of 25 

with a bachelor's degree) and census-tract-level income (defined as median family income). 

We also stratified the association between PM2.5 and epigenetic aging within cluster by 

study enrollment year (2003–2005, 2006–2009).

For the EWAS, to examine associations between air pollution and DNAm at individual CpG 

sites we conducted robust linear regression. We adjusted for confounders (age at baseline, 

education, smoking status, hormone therapy use, future breast cancer case status), as well 

as blood cell composition. Technical variation and batch effects were controlled for with 

six surrogate variables based on non-negative control probes, plate, and DNA extraction 

method. We conducted a sensitivity analysis limiting the EWAS to include only the CpG 

sites that were used to estimate the three epigenetic clocks (n = 870). To correct for multiple 

testing, we estimated the false discovery rate (FDR) (Storey and Tibshirani, 2003). We 

considered findings to be notable with a q < 0.05. All analyses were conducted using SAS 

9.3 (Cary, NC) and R (R Core Team, 2013).
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3. Results

Study participant characteristics are shown in Table 1. Briefly, women were on average 57 

years old, over half had a college degree or higher and only 7% were current smokers. The 

average exposure was 8.8 μg/m3 for PM2.5, 21.9 μg/m3 for PM10 and 9.9 ppb for NO2.

An IQR increase in NO2 was inversely associated with age acceleration defined by the 

Hannum clock (β = −0.24, 95% CI: −0.47, − 0.02), although this association was not evident 

for either the Levine or Horvath clocks. We observed little to no epigenetic age acceleration 

for PM2.5 or PM10 across the three clocks (Table 2). Although after adjustment for BCC, 

for an IQR increase in PM10, we observed evidence of epigenetic age acceleration using 

the Levine clock (β = 0.22, 95% CI: 0.01, 0.43) (Supplemental Table 1). In a sensitivity 

analysis, the association for PM10 with the Levine clock was unchanged with adjustment 

for age acceleration defined using the Hannum and Horvath clocks. Point estimates and 

directions of associations were similar when applying sampling weights (Supplemental 

Table 2).

We next considered the relationship between PM2.5 and age acceleration by PM2.5 

component cluster. Study population characteristics by PM2.5 component cluster identifiers 

are also provided in Table 1. Most women were assigned to cluster 1 or 2. There was 

some variability in demographic and lifestyle factors across clusters. For example, women 

in Clusters 5 and 6 were slightly older than women in the other clusters. Women in 

Cluster 7 were less likely to be current smokers and Cluster 3 women were more likely 

to use postmenopausal hormones compared to the other clusters. The geographic location 

of women by cluster assignment is shown in Fig. 1. Profiles of the relative composition of 

selected PM2.5 components are shown in Fig. 2.

We observed substantial effect measure modification by PM2.5 component clusters for the 

association between PM2.5 and age acceleration defined using both the Levine clock (Table 

3; p for heterogeneity = < 0.001) and the Hannum clock (p for heterogeneity = 0.03). Using 

the Levine clock, age acceleration was observed to be associated with PM2.5 for women 

who were members of Cluster 5 (β = 1.88, 95%CI: 0.51, 3.25) and Cluster 7 (β = 6.57, 

95% CI: 2.68, 10.47). Women in cluster 5 were located in both in the Pacific Northwest 

and the Southwest and the cluster profile was characterized by relatively high mass fraction 

proportions across most components, except for sulfur. Cluster 7 was a Central-Western 

cluster, characterized by high proportions of crustal elements including silicon which is 

representative of the surface soil in that region. An elevated, but imprecise, estimate was 

also observed for Cluster 6 (β = 3.96, 95% CI: −1.24, 9.16), which is characterized by high 

fractions of iron and other metals, indicative of industrial emissions. Using the Hannum 

clock, accelerated epigenetic age was observed for women who were members of Cluster 4 

(β = 0.74, 95% CI: −0.14, 1.63). Cluster 4 encompasses monitors located in California and 

is characterized by having low relative sulfur levels and large fractions of sodium and nitrate 

(agricultural emissions).

In contrast, an inverse association with epigenetic age acceleration using the Levine clock 

was observed in relation to an IQR increase in PM2.5 among women who were in Cluster 
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3 (β = −1.33, 95% CI: −2.43, −0.23). This inverse association among women in Cluster 3 

was evident across all three clocks. This cluster was located in the Southeastern US and 

characterized by low fractions of nitrate. Effect estimates by cluster were similar although 

slightly less pronounced with adjustment for blood cell composition (data not shown). There 

was no evidence of heterogeneity by component cluster membership for the associations 

between PM2.5 and epigenetic age acceleration using the Horvath clock. Our results did 

not notably change with further adjustment for socioeconomic status indicators, including 

household income and census-tract-level education and income (Supplemental Table 3).

When stratifying by enrollment year (Supplemental Table 4), we observed some consistent 

patterns of associations despite small sample sizes in certain clusters. For example, the 

inverse association between PM2.5 and epigenetic aging among women in Cluster 3 for 

all three clocks was consistent across enrollment years. For the Levine clock, the p-value 

for interaction term remained statistically significant and the positive associations among 

women in Clusters 5 and 7 were evident for both 2003–2005 and 2006–2009. However, for 

the Hannum clock, the p-value for the interaction term was not significant for women who 

enrolled from 2003 to 2005.

In the EWAS analysis, no CpGs were identified to be associated with either PM10 or PM2.5. 

We observed only 2 CpGs to be associated with an IQR increase in NO2 (Supplemental 

Table 5). The CpG with the lowest p-value for NO2 was in a gene an intergenic region 

on chromosome 10 (cg06544185). An IQR increase in NO2 was associated with slightly 

higher methylation at this site (β = 0.003, p = 1.95 × 10−7 and q = 0.04). The other CpG 

identified was on chromosome 7 in the ACHE gene in a CpG island region upstream of the 

transcription start site (cg02607340). At this CpG, an IQR increase in NO2 was associated 

with lower methylation (β = −0.0074, p = 2.23 × 10−7 and q = 0.04). These two CpGs 

were not members of any of the three epigenetic clocks. In our sensitivity analysis, limiting 

the EWAS to only CpGs that were included in the calculation of the epigenetic clocks, 

we observed only a single CpG to be inversely associated with an IQR increase in PM10 

(cg22920873; β = −0.002, p = 1.22 × 10−5 and q = 0.009). This CpG is on chromosome 

7 in the C7orf55 gene in a CpG island region downstream from the transcription start 

site. The cg22920873 is involved in the Horvath clock with a coefficient of 0.1143748. 

In this sensitivity analysis, we observed no associations with exposure to either PM2.5 or 

NO2. An exploratory enrichment analysis among the clock CpGs that were associated (p < 

0.05) with PM10 suggested > 40 enriched (FDR < 0.05) Gene Ontology biological process 

pathways, several of which included > 10 genes with significant CpGs (anatomical structure 

development, regulation of developmental process and regulation of cell communication).

4. Discussion

There was no overall association between PM2.5 and age acceleration, but we did observe 

significant heterogeneity in the association between PM2.5 and age acceleration across 

clusters defined by PM2.5 component profiles: for example, among women in two distinct 

PM2.5 component clusters, an IQR increase in PM2.5 was associated with a 2 and 6-year 

higher age acceleration using the Levine clock. Unexpectedly, PM2.5 was also inversely 

associated with age acceleration as estimated by all three clocks among women in another 
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cluster. We observed very little evidence of age acceleration in relation to exposure to PM10 

or NO2, although we did observe an inverse association for NO2 exposure in relation to age 

acceleration defined by the Hannum clock. Although our epigenome-wide analysis found 

very few significant CpGs, our epigenetic age results suggest that integrated measures of 

DNAm, such as epigenetic age clocks, may identify methylation differences in relation to 

exposures such as air pollution that would not be detected at an individual CpG level.

Our findings provide a more detailed and complex characterization of the possible 

association between air pollution exposure and epigenetic age acceleration. The Cooperative 

Health Research in the Region of Augsburg (KORA) study (n = 1777) observed that an 

IQR increase in PM2.5 (0.97 μg/m3) was associated with ~0.3 year higher age acceleration 

defined using the Horvath clock (Ward-Caviness et al., 2016). When they restricted analyses 

to women, exposure to both NOx and black carbon, but not PM10, were associated with 

advanced epigenetic age (Ward-Caviness et al., 2016). In the Normative Aging Study (NAS; 

n = 589), an elderly cohort of men, a 1 μg/m3 increase in PM2.5 was associated with 

accelerated epigenetic age characterized by the Horvath clock (Nwanaji-Enwerem et al., 

2016). In contrast, we did not observe associations in our study population for overall PM2.5 

exposure and age acceleration calculated using either the Horvath clock or the Hannum 

clock. This lack of consistency may be due to lower exposure levels in our population. For 

example, our mean exposure levels (PM2.5 mean = 10.4 μg/m3) are lower than in the KORA 

population (PM2.5 mean = 14 μg/m3).

We observed considerable heterogeneity across PM2.5 component cluster membership. 

PM2.5 is a heterogeneous mixture that varies geographically due to varying sources of 

PM and other factors. The clusters provide a more comprehensive exposure assessment 

by incorporating additional information regarding the components of the complex PM2.5 

mixture. Age acceleration was observed for exposure to PM2.5 among women assigned 

to Clusters 5 and 7 (Levine clock) and Cluster 4 (Hannum clock). Women in Cluster 

5, a Pacific Northwest and Western-based cluster, would be expected to have higher 

organic carbon and lower sulfate exposure, which is likely indicative of wood smoke, a 

predominant heating source in the region, and wild fires. The component profile of Cluster 

7, another Western-based cluster, is driven by the PM2.5 components indicative of surface 

soil. Women in Cluster 4, which encompasses the California monitors, would be expected 

to have exposures with lower relative sulfur levels and larger fractions of sodium and 

nitrate (agricultural emissions, marine aerosols and traffic). For women in Cluster 3, PM2.5 

was associated with consistent inverse relationships with age acceleration across all three 

epigenetic clocks. Women in this Southeast-based cluster would be expected to have lower 

nitrate relative to sulfate levels. In a subsequent study within the NAS, the authors evaluated 

five PM2.5 component species (EC, OC, sulfate, nitrate and ammonium) using a LASSO 

model and concluded that their association with Horvath-defined accelerated epigenetic age 

was driven by the components sulfate and ammonium (Nwanaji-Enwerem et al., 2017). Our 

findings likely differ from Nwanji-Enwerem et al., due to the inclusion of many more PM 

components and the use of clustering to identify component profiles rather than focusing on 

identifying the individual drivers of the association.
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In our analyses, we observed both positive and inverse associations with epigenetic age 

acceleration. In the KORA study, air pollution was positively associated with epigenetic age 

acceleration in women, but inversely related to age acceleration in men (Ward-Caviness et 

al.,2016. Although positive age acceleration is more consistently associated with negative 

health effects, inverse associations with epigenetic aging may also be indicative of adverse 

outcomes, as has been observed with psychosocial stress (Boks et al., 2015).

Different markers of air pollution have been previously related to locus-specific and global 

measures of DNA methylation (Martin and Fry, 2018). Previous studies have also used 

the Illumina's Infinium HumanMethylation450 BeadChip array to evaluate the relationship 

between ambient air pollution and methylation across the epigenome in adults (Chi et al., 

2016; de FC Lichtenfels et al., 2018; Lee et al., 2019; Panni et al., 2016; Plusquin et al., 

2017). Both short-term exposure to PM (Panni et al., 2016) and exposure in the prior year 

(Chi et al., 2016) has been found to be associated with methylation at individual CpGs. 

Long-term NO2, but not PM, exposure was reported to be associated with overall global 

hypomethylation (Plusquin et al., 2017) and individual CpG sites (de FC Lichtenfels et 

al., 2018; Plusquin et al., 2017), but individual CpG site associations did not persist after 

meta-analysis or in validation datasets (de FC Lichtenfels et al., 2018; Plusquin et al.,2017. 

In a population of Korean adults, both PM10 and NO2 were associated with a number of 

methylated sites, including some previously published CpGs (Lee et al., 2019). The two 

CpGs identified in our population to be associated with NO2 in our study were not reported 

by these prior studies.

Our study population was limited to non-Hispanic women, each of whom had a first-degree 

family history of breast cancer. Thus, the magnitude of the associations with epigenetic age 

may not be fully generalizable to all women. However, women did not have breast cancer 

at the time of blood draw and adjusting for future development of breast cancer and using 

sampling weights had little impact on our results.

We estimated average exposures for the geographic location of the address where the 

study participants lived at during the 12 months prior to enrollment. The high-resolution 

exposure model is a strength of the analysis as it incorporated both monitored data and 

geographic variables including those obtained from satellite data using a land-use regression 

and kriging model approach. We relied on annual average estimates of air pollution exposure 

that incorporated monitoring data for a given year. Previous studies have suggested that 

a one-year average estimate of air pollution exposure is an adequate proxy for long-term 

exposure (Hart et al., 2015), but it is possible that the year selected may not have best 

represented the relevant exposure period. However, over half of our participants lived at this 

residence for at least ten years. Thus, exposure estimates may well represent longer-term 

exposure to the extent that PM2.5 components do not change dramatically over time.

Women were classified into PM25 component clusters based on data from 2010, a year 

after baseline. However, PM25 component levels have changed over time in some areas 

(Blanchard et al., 2013) and thus, it is unclear whether these PM2.5 component clusters 

adequately represent the PM2.5 mixture that women were exposed to at the time of baseline 

interview. If that were the case, we would expect the associations to be less likely to hold for 
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women who enrolled earlier in the cohort. When stratifying by enrollment year, we observed 

that in general associations remained similar, especially for the Levine clock, suggesting that 

the role of these clusters as modifiers of the association between PM2.5 and age acceleration 

may be consistent over time. Additionally, many of the clusters are defined by components 

that confirm well-established regional features that would likely not vary substantially over 

a few years (e.g., marine aerosols and agricultural emissions for California-based Cluster 

4 and western-soil trace elements for Cluster 7). However, we did note some variation in 

estimates across the enrollment period, especially for the Hannum clock and for the clusters 

with smaller sample sizes, suggesting some caution is necessary in interpreting these results.

There are some other noteworthy limitations to this analysis. Exposure measurements were 

estimated for the residential ambient outdoor levels and cannot incorporate the variability 

in individual exposure due to personal activity patterns, including commuting, time at 

work in a different environment, and time spent outdoors. The clusters varied notably 

by geographic region; there may be systematic differences across geographic regions in 

addition to the characteristic composition of their particulate air pollution, and some of those 

differences could confound our results by themselves being effect modifiers for particulate 

air pollution. PM10 components also vary geographically; we did not have information on 

PM10 component data and thus were unable to consider heterogeneity by PM10 components. 

We attempted to address residual confounding by socioeconomic status by adjusting for 

census-tract and individual-level education and income. Although our conclusions remained 

the same, we cannot rule out the possibility of residual confounding. Both the air pollution 

exposure model and the k-means clustering approaches incorporate geographic covariates to 

improve prediction and these may have influenced the clusters that were identified. Finally, 

these are cross-sectional data and we do not have information on changes in epigenetic aging 

over time.

An important strength of this study is the inclusion of the k-means clusters to evaluate 

the role of PM2.5 component profiles as a modifier of the association between PM2.5 and 

epigenetic age. PM is a complex mixture and it is important to consider its components, as 

evidenced by the significant heterogeneity in our effect estimates across component clusters. 

It is not feasible to estimate all of the individual PM2.5 component levels at a participant's 

residence. By using k-means clustering to predict cluster membership, this approach allows 

for the consideration of the components in relation to health outcomes. These clusters 

were developed using an unsupervised method that identifies exposure mixtures without 

regard to a specific health outcome or study population, so there may be clusters that 

were not identified that are even stronger modifiers of the association between PM and 

DNAm. Another strength of this study was the use of multiple epigenetic clocks to define 

epigenetic age acceleration. Previous studies have suggested that associations may not be 

consistent across clocks (Carroll et al., 2017; Levine et al., 2018; Quach et al., 2017). We 

have previously demonstrated that the Levine clock shows particularly stronger associations 

with occupational shift working (White et al., 2019) consistent with our findings here 

where associations with PM2.5 component clusters were strongest for the Levine clock. 

The sensitivity of the Levine clock may be due to the use of mortality-associated clinical 

biomarkers in addition to chronological age in the predictive models.
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In conclusion, we observed notable heterogeneity in the association between age 

acceleration and PM2.5 air pollution exposure by PM2.5 component cluster membership. 

Overall, these findings support a relationship between air pollution and epigenetic age, 

a marker of mortality and chronic disease risk. Our results suggest that the effects of 

environmental exposures such as air pollution may be better captured using integrated 

methylation measures, such as epigenetic age acceleration, rather than considering 

individual CpG sites. Further, these results underscore the importance of considering the 

variability in air pollution composition and support the use of epigenetic clocks to assess 

epigenetic modifications related to environmental exposures.
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Fig. 1. 
Sister Study participant enrollment locations by PM2.5 component clusters. Adapted from 

Keller et al.(2017).
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Fig. 2. 
Relative composition (standardized log transformed species mass fractions) of selected 

PM2.5 components by predictive k-means cluster centers identified in the 2010 annual 

average PM25 component data.

Adapted from Keller et al.(2017).
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