GigaScience, 8, 2019, 1-10
n
(GlgA) 0 Technical Note
CIEN<.E

TECHNICAL NOTE

Peter Georgeson 12 Anna Syme ®%3', Clare Sloggett!, Jessica Chung?,
Harriet Dashnow 4> Michael Milton @16 Andrew Lonsdale ©%7,
David Powell®, Torsten Seemann ©%° and Bernard Pope 91,210

Melbourne Bioinformatics, The University of Melbourne, 187 Grattan Street, Carlton, Victoria, Australia 3053;
2Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Victorian
Comprehensive Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia 3000; 3Royal Botanic Gardens
Victoria, Birdwood Avenue, Melbourne, Victoria, Australia 3004; *Bioinformatics, Murdoch Children’s Research
Institute, Royal Children’s Hospital, Flemington Road, Parkville, Victoria, Australia 3052 ; >School of
BioSciences, The University of Melbourne, Royal Parade, Parkville, Victoria, Australia 3052; *Melbourne
Genomics Health Alliance, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, Australia 3052;
’ ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Royal
Parade, Parkville, Victoria, Australia 3052; 8Monash Bioinformatics Platform, Biomedicine Discovery Institute,
Faculty of Medicine, Nursing and Health Sciences, 15 Innovation Walk, Monash University, Clayton, Victoria,
Australia 3800; °Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity,
The University of Melbourne, 792 Elizabeth Street Melbourne, Victoria, Australia 3000 and °Department of
Medicine, Central Clinical School, Monash University, Clayton, Victoria, Australia 3800

*Correspondence address. Bernard Pope, Victoria, Australia. E-mail: bjpope@unimelb.edu.au © http://orcid.org/0000-0002-4840-1095.
"These authors contributed equally to this work.

Background: Bioinformatics software tools are often created ad hoc, frequently by people without extensive training in
software development. In particular, for beginners, the barrier to entry in bioinformatics software development is high,
especially if they want to adopt good programming practices. Even experienced developers do not always follow best
practices. This results in the proliferation of poorer-quality bioinformatics software, leading to limited scalability and
inefficient use of resources; lack of reproducibility, usability, adaptability, and interoperability; and erroneous or inaccurate
results. Findings: We have developed Bionitio, a tool that automates the process of starting new bioinformatics software
projects following recommended best practices. With a single command, the user can create a new well-structured project
in 1 of 12 programming languages. The resulting software is functional, carrying out a prototypical bioinformatics task, and
thus serves as both a working example and a template for building new tools. Key features include command-line
argument parsing, error handling, progress logging, defined exit status values, a test suite, a version number, standardized
building and packaging, user documentation, code documentation, a standard open source software license, software
revision control, and containerization. Conclusions: Bionitio serves as a learning aid for beginner-to-intermediate

Received: 29 April 2019; Revised: 16 July 2019; Accepted: 13 August 2019

© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

http://www.oxfordjournals.org
http://orcid.org/0000-0002-5096-4735
http://orcid.org/0000-0002-9906-0673
https://orcid.org/0000-0001-8433-6270
https://orcid.org/0000-0002-8965-2595
https://orcid.org/0000-0002-0292-2880
http://orcid.org/0000-0001-6046-610X
http://orcid.org/0000-0002-4840-1095
mailto:bjpope@unimelb.edu.au
http://orcid.org/0000-0002-4840-1095
http://orcid.org/0000-0002-4840-1095
http://creativecommons.org/licenses/by/4.0/

bioinformatics programmers and provides an excellent starting point for new projects. This helps developers adopt good
programming practices from the beginning of a project and encourages high-quality tools to be developed more rapidly.
This also benefits users because tools are more easily installed and consistent in their usage. Bionitio is released as open
source software under the MIT License and is available at https://github.com/bionitio-team/bionitio.

Keywords: bioinformatics; software development; best practices; training

Software development is a central part of bioinformatics, span-
ning the gamut of activities including data transformation,
scripting, workflows, statistical analysis, data visualization, and
the implementation of core analytical algorithms. However, de-
spite the critical and far-reaching nature of this work, there is
a high degree of variability in the quality of bioinformatics soft-
ware tools being developed, reflecting a broader trend across all
scientific disciplines [1-3].

A common approach to defining software quality is to
consider how well it meets its requirements. These can be
functional—identifying what the software should do, and non-
functional—identifying how it should work. Given the results-
driven nature of research, the functional aspects of scien-
tific programs (e.g., whether expected inputs produce expected
outputs) are heavily emphasized at the expense of the non-
functional ones (e.g., usability, maintainability, interoperability,
efficiency) [4]. Additionally, the highly complex and evolving
nature of scientific software can make software requirements
specifications infeasible, and therefore they are rarely defined
in practice [4, 5].

The underlying causes of poor bioinformatics software qual-
ity are multifaceted; however, 2 important factors have been
highlighted in the literature: (1) the lack of software engineer-
ing training amongst bioinformaticians [2, 3, 6-11] and (2) the
fact that research groups have limited time and money to spend
on software quality assurance [10, 12-15]. As a result many bad
practices are recurrently observed in the field. Lack of code doc-
umentation and user support makes tools hard to install, under-
stand, and use. Limited or non-existent testing can result in un-
reliable and buggy behaviour. A high degree of coupling with the
local computing environment and software dependencies im-
pedes portability. The consequences of using poor-quality soft-
ware can have a significant impact on scientific outcomes. Sub-
stantial amounts of users’ time can be wasted in trying to get
programs to work, scientific methods can be difficult to repro-
duce, and in the worst-case scenario, scientific results can be
invalid owing to program errors or incorrect use [3, 7, 8, 10, 12,
13, 16, 17].

The aforementioned problems are well known and have
prompted remedial action in a number of areas. Activities to
increase software development training amongst scientists are
under way, the most notable examples being the highly success-
ful Software Carpentry and Data Carpentry workshops [2, 3]. Ad-
ditionally, there are many useful recommendations in the lit-
erature offering practical advice for beginners [9, 12, 16, 18] in-
cluding specific advice for biologists new to programming [19].
Significant efforts have also been made in producing software
package collections where best-practice guidelines and curation
provide minimum standards of software quality, such as Biocon-
ductor for R [20], and Bioconda for bioinformatics command-
line tools [21], to name 2 prominent examples. Operating sys-
tem virtualization services, such as Docker [22], and workflow

specification languages, such as the Common Workflow Lan-
guage (CWL) [23], have improved portability and reproducibility
of tools and pipelines [12, 24-26], while systems such as Bou-
tiques [27] have enhanced the findability of tools by facilitat-
ing the publication of persistent metadata. Increasing the re-
sources available for scientific software development remains
a complex challenge. The Software Sustainability Institute in
the UK demonstrates one successful model where pooled re-
search funding enables the provision of consultancy, training,
and advocacy for scientific software development on a national
level [28].

In this work we adopt a pragmatic approach to improving
bioinformatics software quality that is summarized by Rule 7
in Carey and Papin’s “Ten simple rules for biologists learning
to program”: “develop good habits early on” [19]. The idea is
that new bioinformatics tools should be started by copying and
modifying a well-written existing example. This allows bioin-
formaticians to get started quickly on solving the crux of their
problem but also ensures that all the ingredients of good pro-
gramming style and functionality are present from the begin-
ning. Based on this concept we have developed a tool called Bio-
nitio that automates the process of starting new bioinformat-
ics software projects with recommended software best practices
built in. With a single command the user can create a new well-
structured project in 1 of (currently) 12 programming languages.
The resulting software is functional, carrying out a prototypi-
cal bioinformatics task, and thus serves as both a working ex-
ample and a template for building new tools. It is expected that
users will incrementally modify this program to ultimately sat-
isfy the requirements of their task at hand. The key point is
that they are building on solid foundations, and because a lot
of the mundane-but-important boilerplate is provided by Bioni-
tio, there are fewer barriers to adopting good practices from the
start. Specifically, every new Bionitio-created project includes
command-line argument parsing, error handling, progress log-
ging, defined exit status values, a test suite, a version number,
standardized building and packaging, user documentation, code
documentation, a standard open source software license, soft-
ware revision control, containerization with Docker, and a CWL
wrapper. In this article we describe the design and implementa-
tion of Bionitio and demonstrate how it can be used to quickly
start new bioinformatics projects.

The closest related work to Bionitio is the Cookiecutter
project [29]. It also takes advantage of the templating approach
for starting new software projects, but it is targeted at a different
audience. Cookiecutter provides a more general-purpose tem-
plating system that is best suited to starting new software sys-
tems in specific programming languages, such as the instanti-
ation of web applications based on particular web framework
libraries. Conversely, Bionitio provides many instances of the
same prototypical bioinformatics tool implemented in different
programming languages. While Bionitio could theoretically be
implemented on top of a system such as Cookiecutter, we be-
lieve that the extra complexity is not warranted and would be a
barrier to understanding for our target audience.

https://github.com/bionitio-team/bionitio

bionitio bootstrap script

bionitio.project —
on GitHub bionitio-r computer
1. choose
bionitio- | . language (e.g.
python [’ python) and clone
the repository
bionitio-c

bionitio-
ﬁ python

2. rename repository
to new project name
(e.g. newproj)

user's GitHub
account

3. push to user's
GitHub account

newproj ﬂ newproj

|

user can enable
continuous integration
testing with TravisClI

user can modify program
as needed and commit
changes to GitHub

Figure 1: Overview of the automated process for creating new projects performed by the Bionitio bootstrap script.

Bionitio is designed around 2 components. The first com-
ponent is a prototypical bioinformatics tool that has been
re-implemented in (currently) 12 different programming lan-
guages. Each implementation of the tool carries out exactly the
same task, and each is stored in its own repository on GitHub
underneath the bionitio-team project.

Each of the repositories acts as a self-contained exemplar of
how to implement the prototypical tool in the given program-
ming language, carrying out good programming practices (e.g.,
command-line argument parsing) in a language-idiomatic way.

The second component is a “bootstrap” script that automates
the process of creating a new software project based on 1 of the
language-specific repositories. With a single invocation of the
bootstrap script the user can quickly start a new project; all they
need to do is specify a new project name and the programming
language to use (the $ sign indicates the command-line prompt):

$ bionitio-boot.sh -n newproj -i python

The example above creates a new local repository called
“newproj” on the user’s computer by cloning and then renam-
ing the bionitio-python repository. Optionally, the user can also
specify their GitHub username, which will cause the bootstrap
script to create and populate a remote repository on GitHub for
the new project. The repository comes with a test suite, allowing
continuous integration testing to easily be enabled via GitHub’s
integration with Travis CI [30]. The overall process carried out by
the bootstrap script is illustrated in Fig. 1.

The prototypical bioinformatics tool is intended to be easy
to understand and modify. Therefore it has only minimal
functionality—just enough to demonstrate all the key features
of a real bioinformatics command-line program without cre-
ating distraction with unnecessary complexity. In essence, the
tool streams input from >1 FASTA files, computes several sim-
ple statistics about each file, and prints a tabulated summary of
results on standard output. For example, the command below
illustrates the behaviour of the tool on a single input FASTA file
called “file1.fa”:

$ bionitio filel.fa
FILENAME NUMSEQ TOTAL MIN AVG MAX
filel.fa 5264 3801855 31 722 53540

The output is in tab-delimited format, consisting of a header
row, followed by >1 rows of data, 1 for each input file. Each
data row contains the name of the input file, followed by the
total number of sequences in the file (NUMSEQ), the sum of
the length of all the sequences in the file (TOTAL), followed by
the minimum (MIN), average (AVG), and maximum (MAX) se-
quence lengths encountered in the file. An optional command-
line argument --minlen can be supplied, causing the program to
ignore sequences with length strictly less than the given value.

Each implementation is self-contained and ready to be in-
stalled and executed. Consequently, Bionitio is an excellent re-
source for programmer training. However, the main intended
use case is that Bionitio will be used as the starting point for
new projects and we expect users to rewrite parts of it to carry
out their own desired functionality. Given that much of the boil-
erplate is already provided, modifying the program should be
significantly easier than starting from scratch.

The 12 current implementation languages were chosen to
represent the most commonly used languages in bioinformat-
ics [17] (C, C++, Java, JavaScript, Perl, Python, R, and Ruby)
but also to provide examples in up-and-coming languages and
paradigms (C#, Clojure, Haskell, and Rust). The fact that each
instance implements the same prototypical tool provides im-
portant consistency amongst the different instances. It means
that they all have common functionality, they can be easily
compared, they can share the same test suite, their user doc-
umentation in the form of a README file can be templated, and
the inclusion of new programming language implementations
is straightforward. Over time we hope that new language imple-
mentations will be contributed by the community.

All the components of Bionitio are released under the terms
of the MIT license; however, we explicitly grant users permis-
sion to choose their own license for derivative works. The boot-
strap script optionally allows the user to choose 1 of several stan-
dard open source licenses for newly created projects (Apache-
2.0, BSD-2-Clause, BSD-3-Clause, GPL-2.0, GPL-3.0, and MIT). If

Table 1: Standard libraries and tools used by each implementation of Bionitio

FASTA Command-line argument

Language Build/deploy reading parsing
C make kseq getopt
C++ cmake Segan boost::program_options
C# dotnet .Net Bio Microsoft.Extensions.

CommandLineUtils
Clojure lieningen Bioclojure clojure.tools.cli
Java maven biojava Apache Commons
JavaScript node fasta-parser commander
Haskell stack BioHaskell optparse-applicative
Perl CPAN BioPerl Getopt::ArgParse
Python pip biopython argparse
R R seqinr optparse
Ruby gem bioruby optparse
Rust cargo bio:io:fasta argparse

Instances where no appropriate option was available are marked with N/A.

no license is specified, the MIT is chosen as the default. The
terms of the license are copied into the LICENSE file in the top
level of the repository, and all references to the license in source
files are updated accordingly.

The bootstrap script also accepts optional author name and
email address arguments, which, if supplied, are inserted into
the source code and documentation files at appropriate places.
Newly created projects are committed to fresh Git [31] reposito-
ries. All instances of the word “bionitio” are replaced with the
new project name, including in file paths and file contents, and
all files are checked into a new Git repository with a pristine
commit history.

In the remainder of this section we outline the main features
incorporated into Bionitio’s prototypical tool that facilitate good
programming practices and, where possible, relate them to the
relevant recommendations in the literature. In the following sec-
tion we demonstrate by example how Bionitio can be used to
create a new software project.

We provide a standard command-line interface that follows
modern Unix conventions [32, 33|, including providing argu-
ments for help and the program version [18, 34|, and provision
of single-dash notation for short argument names and double-
dash notation for long argument names. Most importantly, the
--help argument causes the program to display usage informa-
tion, including a description of each argument and its expected
parameters. Where possible we use standard library code for
implementing command-line argument parsing (Table 1), which
tends to simplify the process of adding new arguments and en-
sures that usage documentation is generated.

Bioinformatics tools are often strung together in pipelines. A
common Unix paradigm is that each tool should “expect the
output of every program to become the input to another, as
yet unknown, program” [35]. Consequently, the tool can take
input from >1 files or from the standard input device (stdin),
which may be piped from the output of another program.

Similarly, output is written to the standard output device (std-

Static
Unit testing Logging analysis Code format
assert custom lint clang-format
catch boost::log cppcheck clang-format
Microsoft.VisualStudio. Serilog N/A N/A
TestTools.UnitTesting
clojure.test timbre Eastwood cljfmt
junit custom checkstyle checkstyle
mocha winston N/A standard
hspec hslogger hlint N/A
Test::More Log::Logé4perl perlcritic perltidy
unittest logging pylint N/A
testthat logging lintr N/A
Test::Unit logger N/A N/A
native test feature of log, logdrs N/A rustfmt
Rust

out) in a tab-delimited format. Additionally, we ensure that er-
ror messages are always written to the standard error device
(stderr) [18].

We provide an optional progress-logging facility (--log), pro-
viding useful metadata about a computation that can aid debug-
ging and provenance [11]. Progress-logging messages are written
to a specified output file. The log file includes the command line
used to execute the program, and entries indicating which files
have been processed so far. Events in the log file are annotated
with their date and time of occurrence. Where possible we use
standard library code for the provision of logging services (Ta-
ble 1) because these easily facilitate advanced features such as
timestamping of log messages, log file rollover, support for con-
currency, and different levels of logging output (e.g., messages,
warnings, errors).

There are several tasks in bioinformatics that are common
across analyses. For example, many tools will need to parse se-
quence files in FASTA format. Rather than rewrite code for this,
it is better to use existing libraries. “Don’t repeat yourself” is a
maxim that can be applied at multiple levels when programming
[11, 12, 36]. Millions of lines of high-quality open source software
are freely available on the Web. It is typically better to find an
established library or package that solves a problem than to at-
tempt to write one’s own routines for well-established problems
[3], and this also improves reusability [10]. We demonstrate this
principle by using existing bioinformatics library code to parse
the input files (Table 1). This also allows Bionitio to demonstrate
how non-standard library dependencies can be specified in
the software package description, such as the “setup.py” file
for Python that specifies a dependency on the biopython [37]
library.

Processes on most operating systems return an integer exit sta-
tus code upon termination. The Unix convention is to use zero
for success and non-zero for error. Exit status values provide
essential information about the behaviour of executed programs

and are relied upon when programs are called within larger sys-
tems, such as bioinformatics pipelines. Such pipelines can be-
come large and complex and can run for long periods; therefore,
the likelihood of errors is high. Improper indication of success or
failure can have significant consequences for such systems. For
example, erroneous reporting of exit status zero, for a compu-
tation that actually failed, can cause a pipeline to continue pro-
cessing on incomplete results, yielding unpredictable behaviour,
or worse, silent errors. Non-zero exit status values can also pro-
vide useful debugging information by distinguishing different
classes of errors. Bionitio demonstrates good programming style
by defining the exit status values as constants, provides well-
defined exit points in the program, and documents the meaning
of the status values in the README file.

Software testing enables us to verify that the various compo-
nents of the program work as expected; it allows us to modify
the codebase while maintaining established functionality; and
it provides examples that demonstrate how to use the software
along with its expected behaviour [16].

Bionitio includes examples of both unit tests and integra-
tion tests. A unit test runs a single method in isolation and en-
ables the verification that each method in the implementation
behaves as expected without concern for its extended environ-
ment. Where possible we use unit-testing library frameworks
appropriate for each programming language because they offer
significant extended functionality over hand-written tests and
can facilitate better output reporting (Table 1). Integration tests
ensure that the program behaves correctly as an entire entity,
with all the components working together. Given that all imple-
mentations of Bionitio are expected to behave in the same way,
they all share the same underlying testing data and automated
integration-testing shell script. The README file for the project
shows how the user can run a simple test to ensure that the pro-
gram is working as expected, which increases their confidence
that it was installed correctly [12].

Continuous integration is a software development practice
that requires all changes to a software project’s code base to
be integrated, compiled, and tested as changes are made. Travis
is an online provider of continuous integration testing that en-
ables automatic execution of tests whenever changes are com-
mitted to a source repository, and is currently available free to all
GitHub users. This benefits software development by enabling
any introduced problems to be identified faster [38] and avoids
the introduction of breaking changes into the code. Each Bioni-
tio implementation includes all the necessary Travis configura-
tion files and demonstrates how continuous integration can be
used to run both the unit and integration tests at each commit
to the GitHub repository. The Bionitio wiki on GitHub contains
detailed instructions about how to enable Travis for newly cre-
ated projects. The README file also includes the URL to show the
status badge for Travis testing, providing a quick way for users
to see the status of continuous integration testing (e.g., a green
icon badge showing successful “build passing”).

Version numbers allow users to track the provenance of their
work [11, 12, 18]. This is particularly important in science, where
reproducibility is a primary concern. Bionitio comes with a

clearly defined version number that is defined as a constant in
a single place in the source code, which can be displayed to the
user of the program via the version command-line argument.
We do not prescribe a particular versioning scheme to use (e.g.,
Semantic Versioning [39]); rather we prefer to let the user decide
on the most appropriate mechanism for their work. Our main
objective is that a version number be defined, that it can be easily
discovered by the user, and that it be easy to update and modify
in a single place in the program source code.

The installation process can be one of the most cumbersome
and frustrating parts of using bioinformatics software because
many tools do not provide much assistance to the user [10]
and complex dependency chains can clash with local settings
[25]. Difficult-to-install software reduces reproducibility, is less
likely to be used, and can cause problems with reliability due
to differences between the developer and user computing envi-
ronments. These problems can be addressed by using standard
build tools and software packaging systems [12]. Such systems
can automate the process of ensuring that correct and complete
versions of software dependencies are installed [18], and by fol-
lowing conventional practice, they allow tools to integrate with
the broader software ecosystem and follow the principle of least
surprise [40]. Bionitio does this by adopting the idiomatic pack-
age and installation mechanisms for each implementation lan-
guage. For example in Python we use pip, in C we use GNU au-
totools and make, and in C++ we use CMake. A full list of the
building and packaging systems used in each implementation
is provided in Table 1.

Standard packaging also helps with containerization, which
is becoming increasingly useful in bioinformatics [41]. Docker
containers are a popular implementation of this concept, where
the underlying operating system is virtualized and packaged
alongside tools and their dependencies. This makes it easy to
install “containerized” software on any platform that supports
Docker and facilitates reproducibility by enabling the exact same
software build to be used on every system. Each Bionitio imple-
mentation comes with a “Dockerfile” that encodes all the neces-
sary information needed to create a containerized version of the
tool. As an added benefit, the Docker container is used in Travis
continuous integration testing, which both simplifies the use of
Travis and also enables the functionality of the container itself
to be included in the tests.

When software is distributed without a license it is generally in-
terpreted to mean that no permission has been granted from
the creators of the software to use, modify, or share it. This is
counterproductive to adoption. A standard open source license
provides minimum fuss for users and increases the chances
that software will be widely used [11], partly because it removes
barriers to widespread access and partly because it encourages
transparency, reuse, and collaboration [16]. Many license options
are available [42]. As mentioned above, new projects started with
Bionitio use the MIT license by default, but the user can choose
from a number of standard options. The terms of the license are
copied into the LICENSE file in the top level of the repository, and
the name of the license is indicated prominently in the README
file, and in source code files.

Software documentation broadly falls into 2 categories: user
documentation that explains how to install and use the code
and developer documentation that explains how the program is
designed and intended to work. For the intended use case of Bio-
nitio we believe that it is important to strike a balance between
the extensiveness of documentation and the effort required to
maintain it. Therefore we adopt pragmatic recommendations
from the literature that offer a good compromise between cost
and functionality.

For user documentation we provide 2 critical components: a
README file that appears at the top level of the repository, and
comprehensive command-line usage output via the --help argu-
ment [18, 34, 38| as discussed above. The README file includes
a program description, dependencies, installation instructions,
inputs and outputs, example usage, and licensing information
[12, 43]. To ease the burden of adding new implementations of
Bionitio and to ensure consistency across current implemen-
tations, we build each README file from a template, such that
common parts of the documentation are shared, and language-
specific details (such as installation instructions) can be instan-
tiated as needed.

Good developer documentation tries to explain the reason-
ing behind the code rather than recapitulating its operations in
text [3], and it can improve code readability, usability, and debug-
ging [34]. In Bionitio we adopt the following conventions in each
implementation. Every source code file begins with header doc-
umentation that contains at least the following information: the
name of the module, a brief description of its purpose, copyright
information (author names and date of creation), license infor-
mation, a maintainer email address, and a concise summary of
the main components and processes undertaken in the mod-
ule. Author names, creation dates, license name, and maintainer
email address can be automatically populated by the bootstrap
script. Every non-trivial component of code (such as type def-
initions and procedures) is accompanied by a brief description
of the purpose of the component, plus descriptions of the argu-
ments and results of methods, including any conditions that are
assumed to uphold.

Software revision control provides a systematic way to manage
software updates, allowing multiple branches of development to
be maintained in parallel, and provides a critical means of coor-
dinating groups of developers [11, 12, 38]. Modern revision con-
trol systems such as Git [31] provide flexible and scalable modes
of collaboration, supporting individual programmers all the way
up to large—and potentially geographically distributed—teams.
The collaborative advantages of Git are complemented by the
GitHub code hosting web application [44], currently the most
popular repository for bioinformatics code [17]. GitHub adds
issue tracking, documentation publishing, lightweight release
management, integration with external tools such as continu-
ous integration testing, and perhaps most importantly, an easy-
to-use web interface for source browsing and discovery. Bio-
nitio takes advantage of Git and GitHub in 2 ways. First, the
Bionitio project itself is hosted on GitHub, including each of
the 12 language-specific implementations of our prototypical
bioinformatics tool. The bootstrap script creates new projects
by cloning from GitHub, and therefore GitHub acts as our web-
accessible content management system. Where possible, com-
mon features amongst the implementations, such as testing

data, are shared via Git submodules, avoiding repetition. Sec-
ond, the bootstrap script makes it easy for users to create new
GitHub-hosted projects by optionally automating the initializa-
tion and population of new repositories via the GitHub API. This
saves the user’s time, encourages the use of revision control
from the start of the project, and facilitates sharing the code
with collaborators.

Each implementation of Bionitio aims to follow the program-
ming conventions of the implementation language. This in-
cludes the adoption of standard tools and libraries as well as ad-
hering to programming style guidelines, such as PEP 8 in Python.
By following these practices we enhance integration with the
language ecosystem, avoid common pitfalls, and encourage con-
tributions from external developers [38, 45]. Where possible, we
have adopted automated code formatting tools to ensure that
we adhere to recommended style, and static analysis tools to
identify likely infelicities and possible sources of error. A full list
of the code formatting and static analysis tools used in each im-
plementation is provided in Table 1.

Bioinformatics pipelines—where multiple tools are chained to-
gether to perform an overall analysis—create further challenges
for reproducible science. This has motivated the creation of
pipeline frameworks that allow the logic of such computations
to be abstracted from the details of how they are executed. An
emerging standard in this area is CWL, which is supported by
several popular workflow engines. CWL comprises 2 declarative
sub-languages: workflow descriptions, which define data flow
patterns between pipeline stages; and command-line tool de-
scriptions, which define the interfaces of tools in a platform-
independent manner. Each Bionitio implementation provides a
CWL tool description “bionitio.cwl” that facilitates its incorpo-
ration into CWL pipelines and takes advantage of CWL’s support
for invoking programs within Docker containers.

In this section we demonstrate how to create a new bioinformat-
ics software project using the Bionitio bootstrap script. In order
to follow this process the user requires a GitHub account, and
installation of Git on their local computer.

The Bionitio prototypical bioinformatics tool is currently imple-
mented in 12 programming languages: C, C++, C#, Clojure, Java,
JavaScript, Haskell, PerlS, Python, R, Ruby, or Rust. The user must
choose which of these languages they want to use for their new
project. For users relatively new to programming, with no prior
constraints on their choice of language, we recommend they
choose a high-level interpreted language such as Python or R.
The user must also choose a new name for their project. Op-
tionally, the user may also choose an open source license for
their code. The current available options are Apache-2.0, BSD-
2-Clause, BSD-3-Clause, GPL-2.0, GPL-3.0, and MIT. If no license
is specified, the MIT license is selected by default. In this ex-
ample we assume that Python is chosen as the implementation

language, the project name is “newproj,” and the BSD-3-Clause
license is desired.

The Bionitio bootstrap script is a BASH shell script that auto-
mates the process of creating new projects. In principle, if Bio-
nitio is already installed on the user’s computer, then the boot-
strap script can be run like so:

$ bionitio-boot.sh -i python -n newproj -c BSD-3-Clause

A user may find it inconvenient to have Bionitio installed just
to run the bootstrap script; therefore, they may instead prefer to
use Curl [46] to simplify the process, by downloading the script
directly from GitHub before running it locally:

$ URL=https://raw.githubusercontent.com/\

bionitio-team/bionitio/master/boot/bionitio-boot.sh

$ curl -sSf $URL | bash -s -- -i python -n newproj -c\
BSD-3-Clause

Alternatively, the bootstrap script can be run from a Docker
container published on DockerHub [47]:

$ docker run -it -v "$(pwd):/out" --rm\
bionitio/bionitio-boot -i python -n newproj\
-c BSD-3-Clause

The user may optionally specify an author name and email
address, which will be substituted for placeholders in the source
code and documentation at appropriate places:

$ bionitio-boot.sh -i python -n newproj\
-c BSD-3-Clause -a "Example Author"\
-e example.email@institute.org

Finally, the user may specify a GitHub username. In this cir-
cumstance the bootstrap script will create a new remote repos-
itory under the specified project name on GitHub and push the
project to that repository:

$ bionitio-boot.sh -i python -n newproj\
-c BSD-3-Clause -a "Example Author"\
-e example.email@institute.org -g\
example_github_user

Each new repository created by the bootstrap script contains
a testing directory called “functional_tests”. Within that direc-
tory is an automated testing shell script called (in this exam-
ple) “newproj-test.sh” and a sub-directory of test data and cor-
responding expected outputs. The test script can be run like so:

$ newproj-test.sh -p newproj -d test_data

The test script reports how many tests passed and failed, and
an optional -v (to enable verbose mode) will cause it to report
more details about each test case that is run. Obviously, the test
cases are specific to the expected behaviour of the prototypical
bioinformatics tool implemented by Bionitio. It is expected that
the user will replace these tests to suit the requirements of their
new project. Despite this, the user will benefit from much of the
testing infrastructure provided by the script.

If the user has created a remote repository for their project on
GitHub, they can quickly enable continuous integration testing
via Travis CI. Each new project created by Bionitio includes the
necessary Travis configuration files that are needed to install the
prototypical bioinformatics tool and run the integration and unit
test scripts.

From this point onwards we expect that the user will go on
to modify the program in order to carry out their intended task.
This includes changing the code of the program itself, updating
library dependencies, and importantly, adding appropriate test
cases.

Software development is a complex task, involving many con-
cepts and processes that can be daunting for beginners. Many
bioinformaticians are not trained in software engineering, and
research-oriented projects have limited budgets for quality as-
surance. The results-driven focus of science means that many
important non-functional software requirements are often over-
looked. Unfortunately these factors mean that shortcuts are of-
ten taken for the sake of making something “that works,” lead-
ing to a proliferation of lower-quality bioinformatics tools.

Bionitio takes a pragmatic approach to addressing this prob-
lem. Our ambition is to help beginner and intermediate bioin-
formaticians develop good habits early on. We aim to achieve
this by automating much of the drudgery involved in setting up
new projects by providing a simple working example that has
the necessary boilerplate in place. By providing a fast and sim-
ple way to start new projects from solid foundations we believe
that good practices are more likely to be adopted.

The challenges faced by the bioinformatics and science com-
munities in building better-quality software are well known, and
there is no shortage of practical recommendations to be found
in the literature. These guidelines are undoubtedly useful to be-
ginners; however, we believe they fall short in 2 ways. First, they
are spread over multiple papers that only partially overlap in
their recommendations; therefore, some level of consolidation
is needed. Second, they are static artefacts that point to good
practices but do not remove the considerable burden of applying
them in real code. These 2 observations motivated the creation
of Bionitio, both as a way of collecting commonly recommended
best practices and as a way of demonstrating and facilitating
their use. Therefore a significant contribution of our work is to
build a tool that can both illustrate best practices by example
but also make it easy to use them in new projects. In this sense
Bionitio takes a much more active role in the dissemination and
compliance with these principles.

In very recent work Tractenberg et al. have developed a Mas-
tery Rubric for Bioinformatics with the goal of better defining
skills development and competencies in the discipline [48]. In
this framework, competency in computational methods ranges
through 5 levels, from novice (stage 1) to independent bioinfor-
matics practitioner (stage 5). One of the goals of Bionitio is to
support education and training for advancing bioinformaticians
from stage 3—learning best practices in programming, and writ-
ing basic code—to stage 5—developing new software that is use-
ful, efficient, standardized, well-documented, and reproducible.
As an example of this application, Bionitio was used as the ba-
sis for a whole-day workshop on best practices in bioinformat-
ics software development at the Australian Bioinformatics and

mailto:

Computational Biology Society (ABACBS) Annual Conference in
November 2018 [49], delivered to an audience of 50 bioinformati-
cians from research and clinical institutes around Australia. In
the first half of the workshop participants learnt how to setup a
new software repository using Bionitio, allowing time for explo-
ration of the codebase, discussion of key aspects of high-quality
software, and an explanation of the processes that are auto-
mated by Bionitio. In the second half of the workshop partici-
pants learnt about test-driven development and undertook an
exercise to extend the codebase with new features, documen-
tation, corresponding test cases, and linkage to revision control
and continuous integration testing. In this setting, Bionitio’s de-
sign as a simple-yet-realistic bioinformatics exemplar provides
both a common codebase for coordination of workshop materi-
als and an extensible platform for the delivery of hands-on prac-
tical activities. Additionally, by providing complete working ex-
amples in many different languages, Bionitio acts as a kind of
“Rosetta Stone” and is therefore likely an excellent vehicle for
comparative programming skills transfer.

In an effort to facilitate continued benefit from the digital
assets related to data-intensive science, representatives from
academia, industry, funding agencies, and publishers have
proposed the FAIR Data Principles that aim to make experimen-
tal artefacts findable, accessible, interoperable, and reusable
for machines and people [50]. Jiménez et al. have argued that
poor development practices result in lower-quality outputs that
negatively impact reproducibility and reusability of research
[51], and they propose 4 principles for open source software
development (OSS recommendations) that align well with the
FAIR principles: (1) make source code publicly accessible from
day 1; (2) make software easy to discover by providing software
metadata via a popular community registry; (3) adopt a license
and comply with the license of third-party dependencies; and
(4) define clear and transparent contribution, governance, and
communication processes. Tools developed with Bionitio have
a head start on satisfying both the FAIR principles and the first
3 0SS recommendations:

® they are publicly accessible in GitHub repositories with
clearly indicated standard open source licenses and user doc-
umentation,;

¢ they are interoperable with other tools via standardized in-
puts and outputs and interfaces that follow long-established
conventions;

* they are reusable by virtue of the adoption of standard build
procedures, the provision of clear documentation relating to
installation and usage, containerization with Docker, and in-
tegration into CWL;

* where appropriate, specific versions (with defined version
numbers) can be made findable by the allocation of Digital
Object Identifiers facilitated by Zenodo [52] through GitHub.

Importantly, Bionitio facilitates compliance with these prin-
ciples, which is seen by Jiménez et al. as the final (and, in our
opinion, most difficult) step in organizational adoption.

® Project name: Bionitio

® Project home
bionitio

® Operating system(s): Any POSIX-like system

® Programming language: Users can choose from C, C++,
C#, Clojure, Java, JavaScript, Haskell, Perl, Python, R, Ruby,
Rust

¢ Other requirements: BASH, Curl, and Git are required for
bionitio-boot.sh

® License: MIT

* RRID:SCR-017259

® An archival copy of the code is available via the GigaScience
database, GigaDB [53].

page: https://github.com/bionitio-team/

ABACBS: Australian Bioinformatics and Computational Biology
Society; API: Application Programming Interface; CWL: Com-
mon Workflow Language; FAIR: findable, accessible, interoper-
able, reusable; OSS: open source software; POSIX: Portable Oper-
ating System Interface; URL: universal resource locator.

The authors declare that they have no competing interests.

B.P. is supported by a Victorian Health and Medical Research
Fellowship. H.D. is supported by an Australian Government Re-
search Training Program (RTP) Scholarship, an Australian Ge-
nomics Health Alliance top up scholarship, and a Murdoch Chil-
dren’s Research Institute top up scholarship. A.L. is supported
by an Australian Government Research Training Program (RTP)
Scholarship. P.G. is supported by an Australian Government Re-
search Training Program (RTP) scholarship.

T.S., AL, H.D., and B.P. conceived of the project. All authors con-
tributed to the design, implementation, testing, and documen-
tation of Bionitio. A.S,, C.S., A.L,, H.D,, P.G., and B.P. contributed
to manuscript drafting. All authors contributed to manuscript
proofreading and final editing.

The authors would like to thank Melbourne Bioinformatics for
providing computing resources for the development of Bioni-
tio, and the many users of the tool who have provided feedback
about its use.

1. BakerM. 1,500 scientists lift the lid on reproducibility. Nature
2016;533:452-4.

2. Wilson G. Software Carpentry: lessons learned. F1000Res
2014;3:62.

3. Wilson G, Aruliah DA, Brown CT, et al. Best practices for sci-
entific computing. PLoS Biol 2014;12:e1001745.

4. Verma D, Gesell], Siy H, et al. Lack of software engineering
practices in the development of bioinformatics software. In:

https://github.com/bionitio-team/bionitio
https://scicrunch.org/resolver/RRID:SCR_017259

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

ICCGI 2013: Eighth International Multi-Conference on Com-
puting in the Global Information Technology, Nice, France.
IARIA; 2013:57-62.

Segal], Morris C. Developing scientific software. IEEE Softw
2008;25:18-20.

Hannay JE, MacLeod C, Singer J, et al. How do scientists de-
velop and use scientific software?In: Proceedings of the 2009
ICSE Workshop on Software Engineering for Computational
Science and Engineering, Vancouver, BC, Canada. Washing-
ton, DC: IEEE; 2009, doi:10.1109/SECSE.2009.5069155.

Merali Z. Error: why scientific programming does not com-
pute. Nature 2010;467:775-7.

Joppa LN, Mclnerny G, Harper R, et al. Troubling trends
in scientific software wuse. Science 2013;340(6134):
814-5.

Baxter SM, Day SW, Fetrow]S, et al. Scientific software de-
velopment is not an oxymoron. PLoS Comput Biol 2006;2:
e87.

Lawlor B, Walsh P. Engineering bioinformatics: building re-
liability, performance and productivity into bioinformatics
software. Bioengineered 2015;6:193-203.

List M, Ebert P, Albrecht F. Ten simple rules for developing
usable software in computational biology. PLoS Comput Biol
2017;13:e1005265.

Taschuk M, Wilson G. Ten simple rules for making re-
search software more robust. PLoS Comput Biol 2017;13:
€1005412.

Prins P, de Ligt J, Tarasov A, et al. Toward effective soft-
ware solutions for big biology. Nat Biotechnol 2015;33:
686-7.

Umarji M, Seaman C, Gunes Koru A, et al. Software en-
gineering education for bioinformatics. In: 2009 22nd
Conference on Software Engineering Education and
Training, Hyderabad, Andhra Pradesh, India. IEEE; 2009,
doi:10.1109/CSEET.2009.44.

Howison], Deelman E, McLennan M]J, et al. Understanding
the scientific software ecosystem and its impact: current and
future measures. Res Eval 2015;24:454-70.

Leprevost F da V, Barbosa VC, Francisco EL, et al. On best
practices in the development of bioinformatics software.
Front Genet 2014;5:199.

Russell PH, Johnson RL, Ananthan S, et al. A large-scale
analysis of bioinformatics code on GitHub. PLoS One
2018;13:e0205898.

Seemann T. Ten recommendations for creating usable
bioinformatics command line software. Gigascience 2013;2,
doi:10.1186/2047-217X-2-15.

Carey MA, Papin JA. Ten simple rules for biolo-
gists learning to program. PLoS Comput Biol 2018;14:
€1005871.

Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-
throughput genomic analysis with Bioconductor. Nat Meth-
ods 2015;12:115-21.

Griining B, Dale R, Sjodin A, et al. Bioconda: sustainable and
comprehensive software distribution for the life sciences.
Nat Methods 2018;15:475-6.

Docker. https://www.docker.com/. Accessed 8 July 2019.

Amstutz P, Crusoe MR, Tijani¢ N, et al. Com-
mon Workflow Language, v1.0. Figshare 2016,
doi:10.6084/m9.figshare.3115156.v2.

Jackman SD, Mozgacheva T, Chen S, et al. ORCA:
a comprehensive bioinformatics container environ-

ment for education and research. Bioinformatics 2019,
doi:10.1093/bioinformatics/btz278.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Belmann P, Droge], Bremges A, et al. Bioboxes: standardised
containers for interchangeable bioinformatics software. Gi-
gaScience 2015;4:47.

O’Connor BD, Yuen D, Chung V, et al. The Dockstore:
enabling modular, community-focused sharing of Docker-
based genomics tools and workflows. F1000Res 2017;6:
52.

Glatard T, Kiar G, Aumentado-Armstrong T, et al. Bou-
tiques: a flexible framework to integrate command-line
applications in computing platforms. Gigascience 2018;7,
doi:10.1093/gigascience/giy016.

Crouch S, Hong NC, Hettrick S, et al. The Software Sustain-
ability Institute: changing research software attitudes and
practices. Comput Sci Eng 2013;15(6):74-80.

Greenfeld AR. Cookiecutter. https://github.com/audreyr/coo
kiecutter. Accessed 8 July 2019.

Travis CI - Test and Deploy Your Code with Confidence. https:
//travis-ci.org/. Accessed 21 March 2019.

The Git Project. Git. https:/git-scm.com/. Accessed 14 April
2019.

IEEE and The Open Group. The Open Group Base Spec-
ifications Issue 7, 2018 edition. 2018. Report No. 1003.1-
2008. http://pubs.opengroup.org/onlinepubs/9699919799/b
asedefs/V1.chap12.html

Free Software Foundation, Inc. GNU Coding Standards. 2019
. https://www.gnu.org/prep/standards/standards.html.

Lee BD. Ten simple rules for documenting scientific software.
PLoS Comput Biol 2018;14:e1006561.

Mcllroy MD, Pinson EN, Tague BA. UNIX Time-Sharing Sys-
tem: Foreword. Bell Syst Tech] 1978;57:1899-904.

Andrew H, David T. The Pragmatic Programmer: From Jour-
neyman to Master. Redwood City, CA: Addison Wesley Long-
man; 2000.

Cock PJA, Antao T, Chang JT, et al. Biopython: freely

available Python tools for computational molecular
biology and bioinformatics. Bioinformatics 2009;25:
1422-3.

Karimzadeh M, Hoffman MM. Top considerations for creat-
ing bioinformatics software documentation. Brief Bioinform
2018;19:693-9.

Preston-Werner T. Semantic Versioning 2.0.0. https://semv
er.org/spec/v2.0.0.html. Accessed 4 March 2019.

Raymond ES. The Art of UNIX Programming. Addison-
Wesley Professional; 2003.

Gruening B, Sallou O, Moreno P, et al. Recommendations for
the packaging and containerizing of bioinformatics software
[version 2; peer review: 1 approved, 1 approved with reserva-
tions]. F1000Res 2019, doi:10.12688/f1000research.15140.2.
Choose an open source license. https://choosealicense.com
/. Accessed 4 March 2019.

Johnson M. Building a better ReadMe. Tech Commun
1997;44:28-36.

Perez-Riverol Y, Gatto L, Wang R, et al. Ten simple rules
for taking advantage of Git and GitHub. PLoS Comput Biol
2016;12:€1004947.

Glass RL. Facts and Fallacies of Software Engineering.
Addison-Wesley Professional; 2003.

The Curl developers. Curl: command line tool and library for
transferring data with URLs. https://curl.haxx.se/. Accessed
12 April 2019.

bionitio boot https://cloud.docker.com/u/bionitio/repository
/docker/bionitio/bionitio-boot.

Tractenberg RE, Lindvall JM, Attwood TK, et al. The mas-
tery rubric for bioinformatics: supporting design and evalua-

https://www.docker.com/
https://github.com/audreyr/cookiecutter
https://travis-ci.org/
https://git-scm.com/
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://www.gnu.org/prep/standards/standards.html
https://semver.org/spec/v2.0.0.html
https://choosealicense.com/
https://curl.haxx.se/
https://cloud.docker.com/u/bionitio/repository/docker/bionitio/bionitio-boot

49.

50.

tion of career-spanning education and training. bioRxiv 2019,
doi:10.1101/655456.

Australian Bioinformatics and Computational Bi-
ology Society (ABACBS) 2018 Annual Conference.
https://www.abacbs.org/conference2018/about. Accessed 18
June 2019.

Wilkinson MD, Dumontier M, Aalbersberg IJ], et al. The FAIR
Guiding Principles for scientific data management and stew-
ardship. Sci Data 2016;3:160018.

51. Jiménez RC, Kuzak M, Alhamdoosh M, et al. Four simple rec-

52.
53.

ommendations to encourage best practices in research soft-
ware [version 1; peer review: 3 approved]. F1000Res 2017;6,
doi:10.12688/f1000research.11407.1.

Zenodo. https://zenodo.org/. Accessed 18 June 2019.
Georgeson P, Syme A, Sloggett C, et al. Supporting data
for “Bionitio: demonstrating and facilitating best practices
for bioinformatics command-line software.” GigaScience
Database 2019. http://dx.doi.org/10.5524/100640.

https://www.abacbs.org/conference2018/about
https://zenodo.org/
http://dx.doi.org/10.5524/100640

