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The homeostatic challenge may provide unique opportunities for quantitative assessment of the health-promoting effects of
nutritional interventions in healthy individuals. Objective. The present study is aimed at characterizing and validating the use of
acute aerobic exercise (AAE) on a treadmill at 60% of VO2max for 30min, in assessing the antioxidative and anti-inflammatory
effects of a nutritional intervention. In a controlled, randomized, parallel trial of Korean black raspberry (KBR) (n = 24/group),
fasting blood and urine samples collected before and following the AAE load at either baseline or 4-week follow-up were
analyzed for biochemical markers, 1H-NMR metabolomics, and transcriptomics. The AAE was characterized using the placebo
data only, and either the placebo or the treatment data were used in the validation. The AAE load generated a total of 50
correlations of 44 selected markers, based on Pearson’s correlation coefficient analysis of 105 differential markers. Subsequent
mapping of selected markers onto the KEGG pathway dataset showed 127 pathways relevant to the AAE load. Of these, 54
pathways involving 18 key targets were annotated to be related to oxidative stress and inflammation. The biochemical responses
were amplified with the AAE load as compared to those with no load, whereas, the metabolomic and transcriptomic responses
were downgraded. Furthermore, target-pathway network analysis revealed that the AAE load provided more explanations on
how KBR exerted antioxidant effects in healthy subjects (29 pathways involving 12 key targets with AAE vs. 12 pathways
involving 2 key targets without AAE). This study provides considerable insight into the molecular changes incurred by AAE and
furthers our understanding that AAE-induced homeostatic perturbation could magnify oxidative and inflammatory responses,
thereby providing a unique opportunity to test functional foods for antioxidant and anti-inflammatory purposes in clinical
settings with healthy subjects.

1. Introduction

With people living longer, the attention toward functional
foods that promote health maintenance and chronic disease

prevention has increased at an alarming rate. Accordingly,
to ensure consumer protection from fraud labeling and
encourage industry innovation, many governments in global
societies have launched strategies to ensure that functional
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foods promoting health claims in humans are supported by
scientific evidence [1]. However, proving health benefits in
apparently healthy individuals remains a significant bottle-
neck that limits the development of functional foods. One
of the critical reasons for this difficulty is because the robust-
ness of homeostasis and large interindividuality may easily
mask many small and subtle intervention effects [2]. There-
fore, a new experimental approach is urgently needed to
magnify the effect size of the intervention in a clinical trial.

Temporary and reversible perturbation of homeostasis
mimics the early stage of chronic disease, leading to a signifi-
cant increase in the values of response magnitudes in healthy
subjects [3]. The most well-known example is the oral glucose
load, which has long been applied to determine the effective-
ness of nutritional interventions for improving glucose and
insulin metabolism. Recent liquid chromatography-mass
spectrometry studies have added other detailed scientific
information by characterizing the specific metabolic changes
occurring in healthy subjects receiving an oral glucose load
[4, 5]. In the meanwhile, over the past 30 years, acute aerobic
exercise (AAE) has been applied to test various antioxidant
agents with a simple assumption that it may increase the pro-
duction of reactive oxygen species [6]. However, a compre-
hensive understanding of how AAE affects physiological
processes related to oxidation and inflammation remains
unknown [7–11].

This research group recently published data identifying
prognostic metabolites for predicting responsiveness to
nutritional intervention with Korean black raspberry (KBR)
against AAE-induced oxidative stress and inflammation in
a placebo-controlled, randomized clinical trial [12]. In the
present study, we extend the previous work to characterize
and validate the impact of an AAE load of a treadmill
exercise at 60% of VO2max for 30min on the antioxidative
and anti-inflammatory effects of a KBR nutritional interven-
tion. First, we conducted a comprehensive investigation into
the changes before and following AAE using data obtained
from the placebo group. Then, we validated whether the
AAE load may be useful to assess the effects of antioxidative
and anti-inflammatory nutritional interventions, by compar-
ing the response magnitude to KBR intervention under the
conditions with and without the AAE load. In both cases,
we determined markers that were differently altered in paral-
lel with the AAE load or KBR intervention, by a linear mixed
effect (LME) model analysis of biochemical markers, 1H-
NMR metabolomics, and RNA-sequencing transcriptomics
(RNA-Seq). Finally, we employed the correlation network
analysis to obtain system-level insights into the AAE-
induced oxidative stress and the effect of KBR on the preven-
tion of oxidative stress and inflammation.

2. Materials and Methods

2.1. Study Design, Ethical Approval, and Sample Collection.
The experimental protocol, execution, and analytical methods
of the intervention study have previously been described in
detail [12] and are summarized in Figure 1(a). In short,
apparently healthy but overweight (body mass index of
25 ± 2 kg/m2) and sedentary (2.5 h/week of exercise) subjects

(45 ± 8 years of age) were supplemented freeze-dried powder
of KBR or a color/flavor-matched placebo for 4 weeks, in a
randomized controlled trial. At baseline and end points,
participants fasted overnight before presenting at the labora-
tory between 08:30 and 10:00 h. After consuming one sachet
of placebo or KBR, a single session of AAE was given on a
motor-driven treadmill for 30min at an intensity of 60% of
maximal oxygen consumption (VO2max). The intensity of
exercise was adjusted throughout the protocol by monitoring
the participants’ heart rate. Blood and urine samples were
collected before and immediately after the completion of
each exercise session and examined using biochemical analy-
ses, 1H-NMR metabolic profiling, and RNA-Seq. The study
was approved by the Institutional Review Boards of Ewha
Womans University (Seoul, Korea) using procedures in
accordance with the revised Helsinki Declaration of 1983.
It is registered as KCT0000644 in the WHO International
Clinical Trials Registry Platform.

Each participant’s VO2max (67 ± 6mL/kg/min) was
determined on the screening day, using a motor-driven
treadmill (T150; Cosmed, Rome, Italy) and a computer-
controlled respiratory gas analyzer (Quark CPET; Cosmed).
The initial velocity was between 4.5 and 6.6 km/h, and
the initial grade was between 0.0 and 10.0%. The velocity
was increased by 1 km/h, or the grade increased by 2.0%
every 2min until exhaustion. Oxygen uptake was calcu-
lated from measures of ventilation, and the oxygen and car-
bon dioxide in the expired air and the maximal level were
determined at or near test completion. Heart rate was mea-
sured continuously (Polar T34 transmitter; Polar Electro,
Kempele, Finland).

2.2. Biochemical Measurements. Plasma malondialdehyde
was analyzed by high-performance liquid chromatography.
Plasma oxidized low-density lipoprotein, interleukin-6 (IL-6),
and tumor necrosis factor-α were analyzed by enzyme-
linked immunosorbent assays. Activities of lactate dehydro-
genase (LDH) and creatine kinase (CK), nitrite/nitrate, and
albumin were determined in plasma by spectrophotometric
methods. Activities of glutathione peroxidase (GPx), super-
oxide dismutase, catalase (CAT), and reduced/oxidized glu-
tathione (GSH/GSSG) in erythrocytes were assessed by
spectrophotometric methods.

2.3. 1H-NMR Metabolic Profiling. Plasma and urine samples
were sent to the Pusan National University (Busan, Repub-
lic of Korea) for nontargeted quantitative metabolome anal-
ysis by 1H-NMR spectroscopy using a Varian 600MHz
spectrometer (Varian, Palo Alto, CA, USA), as detailed by
Kim et al. [12]. The resulting 1H-NMR dataset contained
31 metabolites in plasma samples and 63 metabolites in
urine samples.

2.4. Total RNA Preparation, RNA Sequencing, and Analysis.
Whole blood sample was transferred to PAXgene blood
RNA tubes (PreAnalytiX, Qiagen/BD, Hilden, Germany)
and sent to the Theragen Bio Institute (Suwon, Korea) for
total RNA preparation and RNA sequencing on a HiSeq
2500 high-throughput RNA sequencer (Illumina, San Diego,
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CA, USA). Total RNA was isolated using TRIzol (Invitrogen,
Carlsbad, CA, USA). RNA concentrations were quantified
using a NanoDrop spectrophotometer (Thermo Scientific,
Wilmington, Germany), and the 260/280 nm ratio was
confirmed to be between 1.7 and 2.0. The RNA integrity
was evaluated using an Agilent 2100 Bioanalyzer system
(Agilent, Santa Clara, CA, USA). An RNA integrity number
> 7 0 and high-quality RNA (28S/18S > 1) were used for
the subsequent experiment. According to the manufacturer’s
protocol, mRNA molecules were polyA-selected, chemi-
cally fragmented, converted into single-stranded cDNA by
random-hexamer priming, 3′-end-repaired and adenylated,

sequencing adapter-ligated, and polymerase chain reaction-
amplified. Libraries for Illumina sequencing were constructed
from cDNA. Illumina HiSeq2500 sequencing was conducted
according to the manufacturer’s specifications, to obtain
the 100 bp pair-end sequences. RNA-Seq data were analyzed
as described elsewhere [13]. Briefly, reads were mapped
against the human reference genome (Ensembl release 72)
using STAR 2.3.0e. The transcript expression levels were
estimated by the software Cufflinks v.2.1.1, as fragments
per kilobase of exon per million fragments mapped, result-
ing in a set of 23,378 genes. The original gene expression
data were log2 normalized.
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Figure 1: Overview of the study: (a) study design. (b) schematic diagram of statistical analysis.
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2.5. Statistical Approaches to Data Integration and Pathway
Analysis. The statistical analyses were carried out using
SAS 9.4 (version 9.4; SAS Institute, Cary, NC, USA) and R
(http://www.r-project.org/) with a sequence illustrated
in Figure 1(b). Supervised partial least square to latent
structure-discriminant analysis (PLS-DA) was used to visu-
alize separation between before and following AAE load
conditions for each dataset (biochemical markers, metabo-
lites, and transcripts), using the “ropls” package of the R sta-
tistical software version 3.4.2. Explanatory variables were
centered at mean before the analysis.

In LME modeling, the repeatedly measured responses,
such as “Y” and “ΔY,” were represented as a function of an
intercept, where “group” (placebo and KBR; “G”), “AAE
load” (before and after AAE; “E”), “period” (week 0 and week
4; “W”), and their interactions. Here, “ΔY” represents abso-
lute changes in markers between baseline and end of the 4-
week intervention, and all the covariates were represented
as the categorical fixed effect factors. A subject effect (b)
and random error (ε) were included in the following LME
model as random variables:

Yijkl = β0 + β1Gij + β2Eik + β3Wil + β4GijEik

+ β5EikWil + β6GijWil + bi

+ εijkl, bi ~ N 0, σ2
b , εijkl ~ N 0, σ2 ,

1

where Yijkl is outcome response for subject i in group j with/-
without an AAE load k at period l, and βs represent the
effects of the covariates on “E” (Y). A similar model can be
derived for “ΔY.” After fitting the LME model, the inference
on the main-effect means was made using the R “lsmeans”
package [14]. For biochemical markers and metabolites, the
p values were adjusted for multiple testing by controlling
the false discovery rate (FDR); the significance threshold
was set to FDR q < 0 05. For transcript data, differentially
expressed genes were identified if they satisfied both p values
(<0.05) and were above the absolute value of beta estimate
(>0.5). The criterion of beta estimates was equivalent to a
fold-change above 1.4-fold and below 0.6-fold. The results
were displayed as a heat map using the R “heat map.2”
function. For characterization of the AAE load, only the
placebo group was included, with adjustment of “period”
factor. For validation of the applicability of the AAE load
to assess treatment effects, the “period” factor was excluded
by using “ΔY”.

Pearson’s correlations were calculated from all pairwise
comparisons of selected markers and then filtered for corre-
lation coefficient ∣r∣ ≥ 0 70. Correlation networks were con-
structed with Pearson’s correlation coefficients as edges,
and node size corresponds to the number of edges being
aggregated, using the R “igraph” package. We then compared
the network topology to identify which were present in one
and missing in the other, by assuming that a disparity differ-
entiates characteristics of the state and provides potential
clues to the functionality of the process. Next, the target-
pathway network was constructed and visualized using
Cytoscape (http://www.cytoscape.org). All critical targets in

the correlation network were extracted, and their corre-
sponding pathways of oxidative stress and inflammation
were retrieved from the Kyoto Encyclopedia of Genes and
Genomes (KEGG, http://www.genome.jp/kegg) database.
The nodes in the network included key targets and pathways
while the edges represented the target-pathway pairs.

3. Results

3.1. Characterization of the AAE Load. The PLS-DA of 14
biochemical, 31 plasma/63 urine metabolomic, and 23,378
transcriptomic data, respectively, demonstrated an appar-
ent separation between before (red) and following (blue)
the AAE load in each panel (Figure 2(a)). The following
LME model analysis allowed us to identify a total of 105
differential markers that were differently changed by the
AAE load, including 5 biochemical markers, 11 metabo-
lites, and 89 transcripts. The information on the estimates,
FDR p values, and full names is detailed in Supplementary
Table S1. The heat map in Figure 2(b) visualized the overall
magnitude of the difference between before and after the
AAE load.

Next, Pearson’s correlation coefficient was used to test
the association among 105 differential markers, generating
50 significant correlations (52% positive and 48% nega-
tive) between 5 biochemical markers (yellow), 6 metabolites
(orange), and 33 transcripts (green) (Figure 2(c)). The
markers with associations were then mapped onto the KEGG
pathway database, identifying 127 pathways relevant to the
AAE load. Of these, 54 major pathways were annotated to
be related to the oxidative stress and inflammation pathways
(appear as purple V-shape against grey arrow). Eighteen
markers involved in these multiple KEGG pathways were
as follows: CAT, GSH, IL-6, and LDH (yellow); formate,
glucose, glycerol, lysine, and succinate (orange); and bile salt
export pump (BSEP/ABCB11), creatine kinase mitochondrial
2 (CKMT2), epiregulin (EREG), FBJ murine osteosarcoma
viral oncogene homolog (FOS), FBJ murine osteosarcoma
viral oncogene homolog B (FOSB), insulin-like growth factor
2 (IGF2), nerve growth factor receptor (NGFR), phosphodi-
esterase 6C (PDE6C), and WNT5A (green) (Figure 2(d)
and Supplementary Table S2).

3.2. Validation of the Use of an AAE Load to Magnify the
Responses to Nutritional Intervention. The magnitude of
biochemical responses to KBR consumption was compared
under two conditions (with and without the AAE load),
showing that the AAE load provided more quantitative
information on the antioxidative biochemical effects of
KBR intervention than no load (Figure 3(a)). Antioxidant
effects of KBR were significant only under AAE load con-
ditions, as measured by GSSG (q = 0 043), GSH :GSSG
ratio (q = 0 033), and GPx (q = 0 019) in erythrocytes, but
the anti-inflammatory effect of KBR was similarly significant
in either condition, as measured by IL-6 (q = 0 013 with no
load versus q = 0 017 with AAE load). To understand the
underlying physiological processes, we determined alter-
ations in metabolomics and transcriptomics under each state
using the LME model analysis (Supplementary Table S3).
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Figure 2: Continued.
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(c)

(d)

Figure 2: Comprehensive analysis of biochemical and omics data for characterization of AAE load: (a) PLS-DA from biochemical markers,
1H-NMR metabolites in plasma and urine, and RNA-sequencing transcripts based on the presence (blue) or absence (red) of AAE load. (b)
Heat map of differentially changed biochemical markers, metabolites, and transcripts before and following AAE load. (c) Correlation network
between AAE-induced differential markers. The blue and red edges indicate negative and positive correlations. (d) Target-pathway network
involved in AAE-induced oxidative stress and inflammation. The nodes in the yellow circle, orange diamond, green square, and purple V-
shape indicate biochemical markers, metabolites, transcripts, and pathways, respectively. Grey nodes and lines indicate nonsignificant
markers and linkages between targets and pathways, respectively. AAE: acute aerobic exercise; NMR: nuclear magnetic resonance; PLS-
DA: partial least squares-discriminant analysis.
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Figure 3: Continued.
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Figure 3: Continued.
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No load

AAE load

(c)

Figure 3: Validation of the use of AAE load using the results of 4-week Korean black raspberry intervention in sedentary overweight subjects
by comparing with no load: the AAE load (a) increased the magnification of biochemical effects and decreased the degree of variations in (b)
the correlation network and (c) the target-pathway network. The nodes in the yellow circle, orange diamond, green square, and purple V-
shape indicate biochemical markers, metabolites, transcripts, and pathways, respectively. Grey nodes and lines indicate nonsignificant
markers and linkages between targets and pathways, respectively. AAE: acute aerobic exercise.
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As a result, we identified 87 differential markers (6 urinary
metabolites and 81 transcripts) under the AAE load versus
162 differential markers (7 urinary metabolites and 155
transcripts) under no load condition.

Pearson’s correlation coefficient analysis was then per-
formed to identify the associations among all differential
markers under each condition. Eight significant correlations
(37.5% positive and 62.5% negative) were generated between
IL-6 (yellow) and 8 transcripts (green) under no load while
31 significant correlations (51.6% positive and 48.4% negative)
were generated between 4 biochemical markers (yellow), 4
metabolites (orange), and 20 transcripts (green) under the
AAE load (Figure 3(b)). The full information is detailed
in Supplementary Table 4S. Subsequent mapping of the
associated markers onto the KEGG pathway database in
each condition demonstrated 120 pathways under no load
versus 128 pathways under the AAE load. Of these, pathways
annotated to be related to oxidative stress and inflammation
(appear as purple V-shape against grey arrow) were 12
pathways involving IL-6 (yellow), HIST1H4H, IL-4, and killer
cell lectin-like receptor subfamily C1 (KLRC1) (green)
under no load versus 29 pathways involving GSSG, GSSG/
GSH ratio, GPx, IL-6 (yellow), glycine (orange), adenylate
kinase 2 (AK2), calcium channel subunit (CACNA2DA),
complement factor B (CFB), lysophosphatidic acid receptor
1 (LPAR1), deoxyribonucleotidase-2 (dNT-2/NT5M), toll-
like receptor 5 (TLR5), and transient receptor potential A1
(TRPA1) (green) under the AAE load (Figure 3(c) and
Supplementary Table S5).

4. Discussion

To the best of our knowledge, we are the first to characterize
and validate the use of an AAE load as a tool to induce oxida-
tive and inflammatory stress, by applying advanced statistical
and systems biology techniques to the data obtained from a
comprehensive clinical trial of KBR. A PubMed search of
the clinical studies published in the last 10 years revealed that
the AAE load was used to test the impacts on vascular endo-
thelial function, hemostasis, and cognitive performance, with
no knowledge of protocol characteristics. Most studies have
been conducted using either treadmill or cycle ergometer
exercise at 55–70% VO2max for less than 1h. In the present
study, we utilized a medium duration (30min) of moderate
intensity (60% of VO2max) treadmill exercise for the AAE
load, expecting to induce oxidative and inflammatory stress
without eliciting detrimental oxidative injury such as struc-
tural damage of muscle tissue due to physical overexertion
[15]. To monitor tissue damage and physiological cell turn-
over, we determined the release of intracellular enzymes CK
and LDH into plasma and found a significant increase of
LDH but no changes in CK levels with the AAE load. The
CK is an enzyme specific to the muscle and responsible for
catalyzing ATP-dependent phosphorylation of creatine,
while the LDH is an ubiquitously expressed enzyme respon-
sible for catalyzing anaerobic conversion of pyruvate to lac-
tate [16]. Therefore, the elevated plasma level of CK is used
as an early and indirect marker of exercise-induced damage

in muscle tissue [17, 18], whereas that of LDH can indicate
ubiquitous tissue damage derived from oxidative stress [19].

To assist in understanding the physiological process
and quantifying the changes occurring throughout the
body in response to KBR consumption with the AAE load
in a clinical trial [20], we applied combined transcriptomic
and metabolomic analysis. The PBMC gene expression
pattern was postulated to be highly correlated with those
in various tissues [21, 22] since alterations occurring in
individuals throughout the body can leave genetic foot-
prints of physiological changes induced by environmental
stresses or dietary interventions, in the blood [23]. Meta-
bolic profiling was also expected to provide further poten-
tial insights into the conclusive information regarding the
alterations in transcriptomes [24]. Together with omics
technologies, advanced statistical analysis considerably
strengthened our research. The LME model analysis was
used to identify differential biochemical and omics markers.
The LME model allows a systematic approach to predict
essential outcomes by dealing with the categorical grouping
factor and between-subject baseline differences [25, 26]
and, thus, has recently captured great attention in clinical tri-
als [27]. Finally, in the hope of gaining insight into the influ-
ence of the AAE load and KBR consumption on the
interactions of targets from our data and the molecular net-
work, a correlation network analysis was carried out [28].
As a result, we identified various AAE-induced differential
molecular markers, including CAT, GSH, IL-6, LDH, for-
mate, glucose, glycerol, lysine, succinate, ABCB11, CKMT2,
EREG, FOS, FOSB, IGF2, NGFR, PDE6C, and WNT5A,
which were implicated in 54 pathways related to oxidative
and inflammatory stress. The selected biochemical markers
were consistent with those from previous studies using a
similar intensity as our protocol [6, 29]. Of all 54 metabo-
lism and signaling pathways identified in this study, the
ABC transporters and bile salt secretion [30, 31], glyoxylate
and dicarboxylate [32], pyruvate metabolism [33, 34],
FOXO [35], glucagon [32], HIF-1 [36], IL-17 [37], MAPK,
and PI3K-Akt [38] signaling pathways were most highlighted
by the data mining of published data of the low level oxida-
tive stress.

A complex biological process involved in health and dis-
ease can be classified into three stages: the normal, the predis-
ease, and the disease. Chen et al. [39] suggested that the
predisease stage features larger fluctuations and low resil-
ience and robustness to perturbations as compared with the
normal stage. This concept agrees with those of van Ommen
et al. [2, 20] and Elliott et al. [40], who proposed that acute
challenges might be useful to amplify the degree of homeo-
static perturbation and thereby enable quantifying the health
status capture. Based on these concepts, we assumed that the
AAE load might induce a temporary transition from the nor-
mal to the predisease stage, facilitating the quantification of
the intervention effect, due to the weakening of the homeo-
static robustness. Our assumption was supported by the find-
ings that the AAE load decreased the degree of variations in
gene expressions and metabolic regulatory processes, as well
as increased the magnification of biochemical effects related
to oxidative stress and inflammation as compared with no
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load. These findings concurred with a recent study by Fazel-
zadeh et al. [41], who introduced the use of a mixed-meal
challenge to better explore the capacity of coping with meta-
bolic stressors.

Furthermore, in this study, we proved that AAE-
induced oxidative stress, as evidenced by the changes in
GSH redox status, was reversed by KBR intervention, sug-
gesting that the AAE load appropriately targets oxidation
and inflammation. The redox balance is commonly assessed
via the dynamic interplay of the GSH-GSSG couple in con-
junction with GSH-dependent enzymes [6, 36]. The GSH, a
major intracellular nonprotein sulfhydryl (-SH) compound,
plays an important role as the first line of direct defense
against oxidative stress [42]. The reactive oxygen species
generated under oxidative stress conditions might cause
GSH oxidation, leading to GSSG generation and the intra-
cellular decrease in the levels of GSH and its dependent
enzymes [43]. In this way, erythrocyte GSH protects hemo-
globin and other cellular constituents from oxidation that
causes changes in the micromembrane elasticity or whole
cell deformability [44]. The changes in GSH redox status
were further supported in this study by the alterations of
glutamate-centered metabolism, including the alanine,
aspartate,and glutamate metabolism, and the lysine degrada-
tion, which, together, were considered to be the most rele-
vant pathways involved in oxidative stress [45, 46] and
inflammation [47].

In the meantime, we found that the KBR intervention sig-
nificantly reversed the AAE load-induced oxidation of GSH
and its related enzymes. This result was further explored by
the integrated pathway network analysis, to provide insight
into the molecular changes. The GSH metabolism [48, 49],
ABC transporters [30, 50], HIF-1 [36], and Jak-STAT [51]
signaling pathways were found to be involved in the restora-
tion of erythrocyte GSH balance and relevant oxidative
stress. Taken together, based on the previously established
concepts [20], we validated that the AAE load can serve a
valuable tool to advance our knowledge in developing nutri-
tional interventions against oxidative and inflammatory
stress for maintaining health and preventing disease. For
example, now we could extend our study to claim that the
KBR intervention may help to improve oxidative stress by
restoring the erythrocyte GSH balance.

It is notable that the limitation of the present study was
not to measure the exogenous metabolite (food metabo-
lome) alterations in biosamples obtained by the proposed
method. Walton et al. [52] reported that antioxidant capac-
ity might be attributed to the metabolites of phytochemicals
rather than the phytochemicals themselves. Simultaneous
exogenous and endogenous metabolite profiling will be
exceptionally informative when coupled with a nutrition
system approach and can be used to provide explanations
for the synergistic mechanisms of action. Furthermore,
considering the catalytic cycle of redox reaction involves
several enzymes, such as xanthine oxidase, GSH reduc-
tase, and GPx [36]; analysis of single nucleotide polymor-
phisms for mutations in these enzymes would be helpful
to identify subjects with the highest likelihood of benefit from
an intervention.

5. Conclusions

The attention toward functional foods has brought chal-
lenges for the development of a new experimental methodol-
ogy in a human clinical trial. This study sought to define the
AAE load (treadmill exercise at 60% of VO2max for 30min)
that could reliably cause a temporary and reversible per-
turbation of homeostasis by using omics platforms (meta-
bolomics and transcriptomics) and statistical modeling.
Findings from the present study suggest that the AAE load
can be utilized as a homeostatic load model, reaffirming
the previous findings and providing physiological and molec-
ular mechanisms involved in the regulation of oxidative and
inflammatory stress. It was also subsequently proved that the
AAE load could be exploited to detect the beneficial effect
of a nutritional intervention against oxidative and inflam-
matory stress in apparently healthy subjects. This AAE
load may have further implications for defining appropriate
surrogate markers of disease progression related to oxidative
and inflammatory stress, validating experimental nutri-
tional interventions and discovering prognostic molecular
biomarkers for predicting the response to nutritional inter-
vention. Further expansion of the exercise challenge model
could also be performed to drive the development of new
nutritional interventions related to the other health pro-
motion (for example, a resistance exercise model for muscle
protein synthesis).
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