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Abstract 

Background:  Among the various molecular fingerprints available to describe small organic molecules, extended 
connectivity fingerprint, up to four bonds (ECFP4) performs best in benchmarking drug analog recovery studies 
as it encodes substructures with a high level of detail. Unfortunately, ECFP4 requires high dimensional representa‑
tions (≥ 1024D) to perform well, resulting in ECFP4 nearest neighbor searches in very large databases such as GDB, 
PubChem or ZINC to perform very slowly due to the curse of dimensionality.

Results:  Herein we report a new fingerprint, called MinHash fingerprint, up to six bonds (MHFP6), which encodes 
detailed substructures using the extended connectivity principle of ECFP in a fundamentally different manner, 
increasing the performance of exact nearest neighbor searches in benchmarking studies and enabling the applica‑
tion of locality sensitive hashing (LSH) approximate nearest neighbor search algorithms. To describe a molecule, 
MHFP6 extracts the SMILES of all circular substructures around each atom up to a diameter of six bonds and applies 
the MinHash method to the resulting set. MHFP6 outperforms ECFP4 in benchmarking analog recovery studies. By 
leveraging locality sensitive hashing, LSH approximate nearest neighbor search methods perform as well on unfolded 
MHFP6 as comparable methods do on folded ECFP4 fingerprints in terms of speed and relative recovery rate, while 
operating in very sparse and high-dimensional binary chemical space.

Conclusion:  MHFP6 is a new molecular fingerprint, encoding circular substructures, which outperforms ECFP4 for 
analog searches while allowing the direct application of locality sensitive hashing algorithms. It should be well suited 
for the analysis of large databases. The source code for MHFP6 is available on GitHub (https​://githu​b.com/reymo​nd-
group​/mhfp).

Keywords:  Virtual screening, Similarity search, Fingerprints, Locality sensitive hashing, Approximate k-nearest 
neighbor search

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Journal of Cheminformatics

*Correspondence:  daniel.probst@dcb.unibe.ch 
Department of Chemistry and Biochemistry, National Center 
for Competence in Research NCCR TransCure, University of Berne, 
Freiestrasse 3, 3012 Bern, Switzerland

Introduction
Many uses of cheminformatics require the quantification 
of the similarity between molecules. As the underlying 
data structure used to represent molecules is a graph, this 
problem is equivalent to a subgraph isomerism problem, 
which is at least NP-complete [1]. Molecular fingerprints 
reduce this problem to the comparison of vectors, ena-
bling further application of approximation methods and 
heuristics, thus speeding up the computation [2–5].

Among the assortment of fingerprints for the com-
parison of molecules in use today, extended connectiv-
ity fingerprint (ECFP) is the most prominent due to its 
outstanding performance in molecular structure com-
parisons requiring the identification of compounds with 
similar bioactivity, as assessed in benchmarking stud-
ies [6, 7]. However, the performance of ECFP results 
from a precise encoding of molecular structure, which 
is achieved by using high-dimensional vectors, typically 
d ≥ 1024 , with the consequence that linear searching 
becomes slow when applied to very large databases such 
as GDB, PubChem or ZINC [8–10]. For more complex 
tasks such as constructing k-nearest neighbor graphs, 
linear search takes O(dn2) time, becoming prohibitively 
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slow. This problem occurs even when applying com-
monly used optimized search algorithms such as k–d or 
ball trees, as well as algorithms from the R- and B-tree 
families, because their performance degrades to linear 
time due to the curse of dimensionality [11–13]. In addi-
tion, given the often binary, relatively sparse, and high 
dimensional nature of ECFP, Lp metrics generally per-
form badly, further limiting the number of available opti-
mization techniques. In the past, several approaches to 
remove the curse of dimensionality’s impact on nearest 
neighbor searching have been presented by the chem-
informatics community. Most notably the BitBound 
method, which exploits simple bounds on similarity 
measures and indexing to achieve sub-linear speed on 
exact nearest neighbor searches with a time complexity 
of O(n0.6) for many metrics, including Jaccard similarity 
[14, 15]. In our effort to facilitate the exploration of very 
large databases such as GDB, we previously used lower 
dimensionality fingerprints such as MQN (Molecular 
Quantum Number, 42D) or SMIfp (SMILES fingerprint, 
34D) for similarity searches, however, such fingerprints 
only encode molecular composition and do not allow 
precise structural similarity calculation [16–18].

Herein we report a new family of fingerprints termed 
MHFP (MinHash fingerprint) which combine the 

circular nature of ECFP with w-shingling and MinHash, 
which are encoding and comparison methods used in 
natural language processing and text mining [19–21] 
(Fig.  1). These methods are commonly used in appli-
cations such as discarding already indexed web pages 
during web-crawling, signal processing or plagiarism 
detection [22, 23]. We obtain our MHFP by first writing 
out circular substructures around each atom as SMILES, 
a process which we call molecular shingling in analogy to 
the w-shingling scheme used for the above-mentioned 
text mining applications. We then apply the MinHash 
hashsing scheme to assign these SMILES to bit values in 
our MHFP.

MinHash is a locality sensitive hashing (LSH) scheme 
which applies a family of hashing functions to the sub-
strings in a molecular shingling and stores the mini-
mum hash generated from each hashing function in a 
set. These sets, containing the minimum hash values, 
have the interesting property that they can be indexed 
by an LSH algorithm for approximate nearest neighbor 
search (ANN), removing the curse of dimensionality 
[24]. While a previously reported LSH implementation 
for chemical structure indexing and searching was based 
on embeddings in Euclidean space, MinHash allows for 
the indexing of chemical structures in extremely sparse 

Fig. 1  MHFP, ECFP workflow comparison. a Comparison of hashing and approximate nearest neighbor search indexing of ECFP with Annoy (gray) 
and MHFP via molecular shingling and MinHash with LSH Forest (orange). In addition, MinHash is applied to unfolded ECFP hashes and indexed 
using LSH Forest as well (green), resulting in the hybrid fingerprint MHECFP. The latter was used as a control to separate the influences of molecular 
shingling and applying MinHash on the measured performance. b Circular substructure SMILES of an input molecule are computed with each 
heavy atom as the center (examples for MHFP4 shown in red and blue). In addition, SMILES for each ring are extracted (examples shown in black). 
Circular substructure SMILES are rooted at the central atom. All substructure SMILES are canonicalized and kekulized
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Jaccard (Tanimoto) space, a metric more appropriate for 
fingerprint-based similarity calculations [25, 26]. Note 
that LSH search algorithms cannot be directly applied 
to ECFP hashes due to the nature of the primary hashing 
scheme used to assign circular substructures to bit val-
ues. Furthermore, ECFP encodes circular substructures 
by iteratively hashing atomic invariants. Common imple-
mentations of ECFP, as found in RDKit or Open Babel, 
contain a default or hardcoded selection of atomic invari-
ants to be hashed that is targeted towards applications 
in medicinal chemistry, thereby making assumptions 
regarding the importance of atomic features such as acid-
ity or charge, thereby introducing a potential bias which 
is entirely avoided in MHFP, as it takes all information 
encoded in the SMILES into account [6, 27–29].

To assess the performance of MHFP we compare 
it to variants of ECFP as well as to a hybrid fingerprint 
MHECFP which applies MinHash to unfolded ECFP 
hashes. We find that the performance of MHFP surpasses 
that of ECFP and MHECFP in a ligand-based virtual 
screening benchmark [7]. Furthermore, MHFP allows for 
ANN searching using the LSH Forest algorithm, which 
enables the search of the very sparse and high-dimen-
sional binary chemical space without folding, thus bet-
ter preserving locality. MHFP6, encoding substructures 
up to a diameter of 6 bonds, performs best and should 
be considered as replacement for ECFP4 to improve 
searches in very large databases. The source code for 
MHFP is available on GitHub (https​://githu​b.com/reymo​
nd-group​/mhfp).

Methods
Jaccard similarity
The Jaccard similarity is also referred to as Jaccard index, 
Jaccard similarity coefficient or Tanimoto index. Given 
two sets A and B , the Jaccard similarity coefficient of the 
molecules is calculated as:

The Jaccard distance is a metric defined as 1− J (A,B) 
[30]. Both, the Jaccard similarity coefficient and distance 
have been shown to be appropriate for fingerprint-based 
similarity calculations [25].

MinHash
MinHash is used to estimate the Jaccard similarity 
between two sets [19]. Given sets of integers, such as 
hash values, MinHash is applied as follows:

Let a and b be k-dimensional vectors with elements 
set to unique randomly generated integers such that 
ai, bi ∈

{

0, . . . , 232 − 1
}

 and let H be the set of all 
hash values 

{

0, . . . , 232 − 1
}

 . Given a family of sets 

(1)J (A,B) =
|A ∩ B|

|A ∪ B|

F = {S1, . . . Sn} over H where each set represents a mol-
ecule, the MinHash function hmin(Si, a, b) is applied to 
each set Si in F  . Let s be the vector form of a set S from F  
and p be the Mersenne prime 261 − 1 . The MinHash of a 
molecular graph is then calculated as:

The set form Smin of smin can then be used to estimate 
the Jaccard similarity coefficient of two sets Si , Sj using 
Eq. 1 [31].

The expected error of estimating the Jaccard similarity 
coefficient between two sets using MinHash is O

(

1
log(n)

)

 , 
where n is the number of hash functions used [32].

LSH forest
The local sensitivity hashing (LSH) forest algorithm is 
an extension to LSH similarity indexing [33, 34]. Intro-
ducing self-tuning indices, the algorithm renders data-
dependent manual parameter tuning superfluous by 
storing the hashes in multiple prefix-trees that make up 
the LSH Forest.

Estimate number of hash collisions
As hash functions for strings are non-injective, so-called 
hash collisions occur when two or more non-identical 
strings are being hashed to an identical integer. The num-
ber of hash collisions can be estimated through a gener-
alization of the birthday problem [35]: 

where m is the number of hashed values and N  is the 
maximum hash value.

Annoy
Approximate Nearest Neighbors Oh Yeah (Annoy) is an 
approximate nearest neighbor searching library imple-
mented by Spotify Technology S.A. to enable music rec-
ommendations [36]. While other distance metrics are 
available, the cosine distance is the metric supported by 
Annoy best suited for binary fingerprint indexing. The 
cosine similarity is defined as:

The cosine distance is, analogous to the Jaccard dis-
tance, defined as 1− C(A,B).

(2)
hmin(si, a, b) = min

(((

a · sTi + b
)

modp
)

mod
(

232 − 1
))

(3)c(m,N ) = m− N

(

1−

(

N − 1

N

)m)

C(A,B) =

∑n
i=1 AiBi

√

∑n
i=1 A

2
i

√

∑n
i=1 B

2
i
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Statistical methods
The confidence level α is 0.05 for both the independent 
(unpaired) t-tests and the pairwise post hoc Friedman 
tests. The independent (unpaired) t-tests are computed 
using SciPy (1.1.0), the pairwise post hoc Friedman tests 
are part of the open-source platform to benchmark fin-
gerprints for ligand-based virtual screening [7].

Python implementation
The methods for generating molecular shinglings and 
computing the MinHash values described above were 
implemented in a Python (3.6.3) script that takes a 
SMILES string as an input and returns a NumPy (1.15.1) 
array of hashes, describing the molecule [37]. The chem-
informatics library RDKit (2017_09_1) was used to 
parse the SMILES and extract substructures form the 
molecular graph (Fig.  1b) [27]. In order to evaluate the 
performance of MHFP in combination with LSH-based 
methods, a Python script implementing the locality sen-
sitive hashing (LSH) forest algorithm for k-nearest neigh-
bor searching according to the datasketch Python library 
was written [33, 38, 39]. The LSH Forest script returns the 
approximate k-nearest neighbors of a query compound 
encoded as an MHFP fingerprint. In order to compensate 
for approximation errors, kc · k neighbors are searched 
for internally and their actual distance to the query mol-
ecule is computed using linear scan. kc is supplied as an 
optional parameter that defaults to kc = 10 . After this 
intermediate step, the top k hits are then returned as the 
result of the LSH Forest query. Both scripts are available 
on GitHub (https​://githu​b.com/reymo​nd-group​/mhfp).

Results and discussion
Fingerprint design
The MinHash fingerprint (MHFP) described herein 
combines the concept of extended connectivity used for 
ECFP with MinHash as a hashing scheme to later enable 
LSH-based ANN searches. As a first step, we enumerate 
all circular substructures around each atom in a molecule 
and write these out as SMILES [6]. This operation yields 
O(n(r + 1)) SMILES strings for a molecule with a heavy 
atom count (HAC) of n and a maximum radius r . As for 
either small radii r or macrocycles the ring information 
of a molecule is lost, we also extract the SMILES string 
for each ring of the symmetrized smallest set of smallest 
rings in the molecule. We then filter the SMILES strings 
for duplicates and combine them to a set S(A) represent-
ing the molecular shingling of the molecule A.

We denote the process described above as “shingling 
of a molecule” and the resulting set S(A) as “molecu-
lar shingling”. A molecular shingling differs from 
the w-shingling of a document, where a w-shingling 

consists of n-grams with n = w , in that it includes 
SMILES strings of different lengths, with the maxi-
mum length depending on the maximum radius r and 
the size of the rings in the molecule. The number of 
hashed unique SMILES-encoded molecular subgraphs 
with radius r grows according to Heaps’ law with lower 
β than ECFP hashes with radius r when processing 
1.7 million compounds from ChEMBL24 (Additional 
file 1: Fig. S1) [40, 41]. Given the molecular shinglings 
S(Ma) and S(Mb) of two molecules Ma and Mb , the Jac-
card similarity coefficient of the molecules is calculated 
according to Eq. 1 (see “Methods” section).

As the MinHash scheme cannot be applied directly 
to strings, the SMILES in a molecular shingling are 
first hashed to a 32-bit unsigned integer using a func-
tion f : Ω →

{

0, . . . , 232 − 1
}

 . There is a trade-off 
when choosing this relatively small 32-bit hash, as the 
number of collisions (two or more different strings 
being hashed to the same integer value) during hash-
ing is inversely proportional to the length of the 
hash. To estimate the number of collisions, molecular 
shingles with r = 2 were extracted from 1.7 million 
ChEMBL24 compounds, yielding a total number of 
197,604 unique SMILES. Applying Eq.  3 (see “Meth-
ods” section), the number of expected collisions yields 
c
(

k = 197, 604,N = 232 − 1
)

= 4.546. Increasing the 
maximum radius to r = 3 results in an increase to 
2022,448 unique SMILES and 476.098 expected colli-
sions. The measured numbers of collisions when hash-
ing molecular shinglings from ChEMBL24 were 3 and 
481 for r = 2 and r = 3 , respectively, proving Eq.  3 to 
be a good estimator for SMILES hashing collisions. 
Substituting the 32-bit (SHA-1) hash with a 64-bit 
(SHA-1) hash would lower the number of estimated 
collisions to 0. However, a 64-bit hash would have the 
numbers of most calculations during MinHash compu-
tation exceed 64 bits, potentially slowing the MinHash 
computation and further processing by a factor of 2 on 
current hardware. In addition, the space requirement 
of the MinHash would double as well. Thus, SMILES 
contained within molecular shinglings are hashed to a 
32-bit (SHA-1) hash.

To transform the hashed molecular shingling into our 
final fingerprints, we finally apply MinHash according to 
Eq. 2 (see “Methods” section). In the present study we cal-
culated MinHash fingerprints for hashed molecular shin-
glings with r ∈ {2, 3, 4} and k ∈ {128, 1024, 2048, 4096} . 
We considered radii r = 2 (MHFP4), r = 3 (MHFP6), and 
r = 4 (MHFP8), resulting in 12 fingerprints with different 
level of structural encoding and compression (accord-
ing to common notation, the numbers in the fingerprint 
names represent the maximum diameter rather than the 
maximum radius).

https://github.com/reymond-group/mhfp
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Benchmarking study
To validate the SMILES-strings based approach as well as 
the chosen hash function, we used a platform to bench-
mark fingerprints for ligand-based virtual screening with 
Jaccard similarity as a metric [7]. The benchmark per-
forms statistically valid comparisons of fingerprints using 
structural and activity data drawn from DUD, MUV, and 
ChEMBL [40, 42, 43]. The benchmark evaluates 7 metrics: 
The area under the receiver operating characteristic (ROC) 
curve (AUC), the enrichment factor (EF) for χ = 0.01 
and χ = 0.05 , the Boltzmann-enhanced discrimination of 
ROC (BEDROC) for α = 20 and α = 100 , and the robust 
initial enhancement (RIE) for α = 20 and α = 100.

First, we compared the hashed molecular shinglings to 
ECFP hashes before folding, as well as to ECFP*, a vari-
ant of ECFP considering only atomic numbers as invari-
ants, all with r = 2 and r = 3 . This comparison showed 
that the hashed molecular shingling method with a 
radius of r = 3 is superior to ECFP hashing, as it beats 
unfolded ECFP (with either radius r = 2 or r = 3 ) sig-
nificantly in 2 out of 7 values (AUC, EF 5%) and with a p 
value above 0.05 in 5 out of 7 (EF 1%, BEDROC20, BED-
ROC100, RIE20 and RIE100) metrics (Fig. 2, Additional 

file 1: Fig. S5). ECFP* performed significantly worse with 
both r = 2 and r = 3 in all metrics compared to molecu-
lar shingling with r = 3.

To establish whether results based on evaluating 
hashed molecular shinglings carry over to minhashed 
molecular shinglings, we then compared our 12 differ-
ent MHFPs variants with each other. Comparing these 
different fingerprints in the benchmark confirmed that 
MHFP6 (MinHash applied to hashed molecular shin-
glings with r = 3 ) performed better than both MHFP4 
( r = 2 ) and MHFP8 ( r = 4 ) for medium (1024-D, 2048-
D) to high dimensional (4096-D) variants (Fig.  3). The 
data further suggested that low dimensional variants 
such as 128-D perform better with r = 2 . As MHFP8 
failed to perform better than MHFP6, it was discounted 
from further experiments. MHFP4, while also perform-
ing worse than MHFP6, was kept for further experiments 
as a comparison to ECFP variants with r = 2.

Given the results of benchmarking unfolded ECFP 
hashes and hashed molecular shinglings (Fig. 2), as well 
as the results of benchmarking different MHFP radii 
(Fig. 3), we finally selected the following fingerprints for a 
detailed comparison aimed at identifying the best finger-
print: (1) Folded ECFP4 and ECFP6; (2) MinHash molec-
ular shinglings with radii 2 and 3, henceforth denoted 
MHFP4 and MHFP6; (3) MinHash ECFP4 and ECFP6, 
henceforth denoted MHECFP4 and MHECFP6, respec-
tively, used here to control for the performance of encod-
ing SMILES (MHFP) as opposed to hashes of invariants 
(ECFP) by applying the minhashing scheme to unfolded 
ECFP values (Fig.  1). For each fingerprint four different 
dimensionalities were evaluated.

An average rank comparison according to the bench-
mark is shown in Fig. 4. Comparing the average ranking 
of the fingerprints as a function of the chosen radius, both 
ECFP4 and MHECFP4 perform marginally better than 
their respective counterparts, ECFP6 and MHECFP6, in 
the vast majority of cases. In contrast, MHFP6 generally 
performs better than MHFP4. This result confirms the 
observations from Fig.  2 where hashed molecular shin-
glings performed better with r = 3 than with r = 2 , while 
the ECFP4 hashes outperformed ECFP6 hashes. With 
the exception of the 128-D variant, MHFP4/6 exhibit 
strictly better performance in AUC compared to both 
MHECFP4/6 and ECFP4/6, while both MHFP4/6 and 
MHECFP4/6 perform better than ECFP4/6 in early rec-
ognition metrics EF1 and EF5, suggesting that the AUC 
performance gains are a result of the molecular shin-
gling approach, while the gains in early recognition can 
be attributed to minhashing. Note that MHFP6 (both 
2048-D and 4096-D) did not perform significantly worse 
than path-based methods (TT and AP, [7]) in AUC, while 
performing generally significantly better in other metrics, 

Fig. 2  Results of benchmarking hashing methods across 88 
benchmark targets. Hashed molecular shingling with r = 2 (orange, 
solid) and r = 3 (orange, dashed) are both ranked better than 
ECFP4/6 (green) and ECFP4/6* (purple) in AUC. However, only 
hashed molecular shingling with r = 3 was ranked better than 
all other fingerprints in every metric (AUC, EF1, EF5, BEDROC20, 
BEDROC100, RIE20, and RIE100). The control, a variant of ECFP, ECFP* 
(purple), considering only atomic numbers as invariants, performed 
significantly worse than both hashed molecular shingling and ECFP. 
Pairwise post hoc Friedman tests of the average rank were performed 
as part of the benchmark, resulting p values shown in Additional 
file 1: Fig. S5
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which is in contrast to ECFP fingerprints, which perform 
worse in AUC benchmarks than path based fingerprints 
(Additional file 1: Fig. S4).

The above comparisons established that MHFP6 pro-
vided the best overall performance across all fingerprints 
considered, with the 2048-D offering a good compro-
mise between performance and size. In detail, 2048-D 
MHFP6 significantly outperformed 2048-D ECFP4 in 
AUC, EF1 and EF5, while performing non-significantly 
better in BEDROC20, BEDROC100, RIE20 and RIE100. 
In fact, 2048-D MHFP6 was comparable to 16,384-D 
ECFP4, although it still performed better in terms of 
BEDROC20 and RIE20. 2048-D MHFP6 also performed 
significantly better in AUC than 2048-D MHECFP4 
while non-significantly better in EF1, EF5, BEDROC100 
and RIE100 and worse in BEDROC20 and BEDROC100. 
While 2048-D MHFP6 ranked significantly worse than 
4096-D MHECFP4 in AUC, 4096-D MHFP6 significantly 
outranked 4096-D MHECFP4 in AUC (Additional file 1: 
Fig. S6). Further analysis of the data suggested that gains 
by MHFP6 over ECFP4 was largely due to better perfor-
mance on benchmark targets selected from ChEMBL24, 
while performing approximately equal on DUD and 

MUV data (Fig. 5, see full target-level performance com-
parisons between 2048-D MHFP6 and 2048-D ECFP4 
and MHECFP4 in Additional file  1: Figs.  S2 and S3, 
respectively).

To further compare MHFP6 and ECFP4, we explored 
the respective Jaccard distance measurements between 
molecules within three sets: (1) A subset of hydrocar-
bons extracted from GDB-13 ( n = 3, 824 ), (2) Drug-
bank ( n = 9, 300 ), and (3) a matched molecular pairs 
(MMP) set ( n = 240, 322 ) [44–46]. For the hydrocar-
bon and Drugbank sets, 50 compounds were randomly 
selected from each, and their Jaccard distance to all the 
compounds in their respective set was computed. In the 
MMP set, the Jaccard distance between each pair was 
computed. While the distances in all data sets show mod-
erate to strong linear correlation ( r = 0.659 , r = 0.792 , 
and r = 0.829 for GDB-13 hydrocarbons, Drugbank, and 
MMP respectively), we observed interesting differences. 
While the distribution of measured distances is similar 
for MHFP6 and ECFP4 for the GDB-13 subset, ECFP4 
seems to measure a distance of 0.0 between clearly dif-
ferent molecules (Fig. 6a, d). In addition, gaps appear in 
measured ECFP4 distances, resulting in a multimodal 

Fig. 3  Average ranks of MHFP variants across 88 benchmark targets. Performance comparison of MHFP variants MHFP4/6/8 across dimensionalities 
128-D, 1024-D, 2048-D, and 4096-D. While performance increases with an increase of the radius from r = 2 to r = 3 , a further increase of the radius 
to r = 4 does not translate to further performance gains but a decrease, especially in BEDROC20, BEDROC100, RIE20 and RIE100 rankings. The 
benchmark used was a platform to benchmark fingerprints for ligand-based virtual screening with Jaccard similarity as a metric [7]



Page 7 of 12Probst and Reymond ﻿J Cheminform           (2018) 10:66 

Fig. 4  Average ranks of ECFP4/6, MHECFP4/6 and MHFP4/6 across 88 benchmark targets. The benchmark was run for a total of 24 fingerprint 
variants. MHFP6 generally outperforms MHFP4, while ECFP4 and MHECFP4 are always ranked equal or better than ECFP6 and MHECFP6, respectively. 
MHFP6 matches or outperforms ECFP4/6 and MHECFP4/6 in virtually all metrics across benchmarked dimensionalities (pairwise post hoc Friedman 
tests of the average rank were performed as part of the benchmark, resulting p values in Additional file 1: Fig. S6). (*) The 4096-D variants of 
MHECFP4/6 and MHFP4/6 were compared to the 16,384-D variant of ECFP4/6 as this is the highest reported dimensionality applied with ECFP

Fig. 5  Performance comparison between MHFP6 2048-D and ECFP4 2048-D. Colors highlighting the difference in the AUC, EF1 and BEDROC20 
values for 88 targets between MHFP6 2048-D (orange) and ECFP4 2048-D (green). MHFP6 significantly outperforms MHECFP4 in the AUC and EF1 
metrics (see pairwise post hoc Friedman tests of the average rank results in Additional file 1: Fig. S6a). Comparisons to EF5, BEDROC100, RIE20 and 
RIE100 can be found in Additional file 1: Fig. S2, comparisons of all metrics between MHFP6 and MHECFP4 (both 2048-D) in Additional file 1: Fig. S3
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distribution—an effect that cannot be fully attributed 
to the folding operation of ECFP4, as MHECFP4 shows 
a similar pattern (Additional file 1: Fig. S8a, d). The dis-
tances measured in Drugbank show a strong correlation, 
however, both fingerprints seem to measure a distance 
of 1.0 in molecules where a finer grained distance meas-
ure could prove beneficial (Fig. 6b, e). The MMP data set 
exposes the inability of ECFP4 to distinguish between 
highly similar molecules that differ only in the size of one 
ring compared to MHFP6, which seems to express higher 
resolution for distance measurements between very simi-
lar compounds.

As MHFP6 significantly outperformed both MHECFP4 
and ECFP4 (Figs.  4, 5, and Additional file  1: S6), a fin-
gerprint variant on MHFP’s SMILES-based circular 
substructure hashing scheme, folded by the same mod-
ulo n operation that is used by ECFP, was compared to 

both minhashed MHFP and folded ECFP with r ∈ {2, 3} 
and D = 2048 (Fig.  7). We denoted this variant SECFP 
(SMILES extended connectivity fingerprint). While 
SECFP4/6 were outperformed by MHFP4/6 respec-
tively, SECFP6 performed significantly better than both 
ECFP4/6 (Additional file 1: Fig. S9). These results suggest 
that SECFP6 can be readily used as a drop-in replace-
ment for ECFP4 with beneficial results. By performing 
significantly worse compared to MHFP6, acting as a con-
trol, SECFP6 further validates the minhashing approach 
as compared to folding (Additional file 1: Fig. S10). How-
ever, as the minhashed MHFP is based on a sparse repre-
sentation of the 232-dimensional binary hash space with 
a fixed number ( D ) of set bits, search optimization algo-
rithms assuming D-dimensional binary vectors such as 
BitBound cannot be applied to it.

Fig. 6  Comparing measured distances between MHFP6 and ECFP4 (2048-D) in different data sets. The distances in all data sets show moderate to 
strong linear correlation of r = 0.659, r = 0.792, and r = 0.829 for GDB-13 hydrocarbons, Drugbank, and MMP respectively. a, d While the distribution 
of measured distances is similar for MHFP6 and ECFP4 for the GDB-13 subset, ECFP4 seems to measure a distance of 0.0 between clearly different 
molecules. Gaps appear in measured ECFP4 distances, resulting in a multimodal distribution. b, e The distances measured in Drugbank show a 
strong correlation. Both fingerprints seem to measure a distance of 1.0 in molecules where a finer grained distance measure could proof beneficial. 
c, f The MMP data set exposes the inability of ECFP4 to distinguish between highly similar molecules that differ only in the size of one ring whereas 
MHFP6 seems to express higher resolution for distance measurements between very similar compounds



Page 9 of 12Probst and Reymond ﻿J Cheminform           (2018) 10:66 

Approximate k‑nearest neighbor (ANN) searches
In the context of big data, the key advantage of our 
MHFP over ECFP consists in the implementation of Min-
Hash (Fig.  7), which enables the use of the LSH Forest 
algorithm to perform ANN searching in the sparse, 232
-dimensional hash space. As a comparison, ECFP hashes 
are folded into binary arrays, indexed and searched using 
the ANN algorithm Annoy [33, 36]. Annoy is used by 
the R package eiR for accelerated structure similarity 
searching of very large small molecule data sets [26]. To 
establish whether the performance of LSH Forest can 
be compared to that of state-of-the-art ANN algorithms 
when indexing chemical fingerprints, we compared 
2048-D MHFP6 fingerprints and 2048-D ECFP4 finger-
prints indexed by LSH Forest and Annoy, respectively. A 
benchmark based on all compounds found in ChEMBL24 
( n = 1, 712, 978 ) was set up. From ChEMBL24, 20 com-
pounds were randomly selected as query compounds. 
Next, for each of the 20 query compounds, the Jaccard 
distances to all compounds from ChEMBL24 were cal-
culated using brute-force linear scan, resulting in 20 
sorted lists. These steps were performed for MHFP6, 
and ECFP4 based Jaccard distances. Finally, the recovery 

rates of k-nearest neighbors for k ∈ {5, 10, 50, 100} of 
approximate k-nearest neighbor algorithms (LSH For-
est for MHFP6 and Annoy for ECFP4) were calculated 
and the respective query times measured. For each 
value of k , the benchmark was repeated over parameter 
kc ∈ {1, 10, 20, . . . , 90, 100}.

LSH Forest and Annoy were each benchmarked 
with l ∈ {8, 16, 32, 64, 128, 256} prefix and Annoy trees, 
respectively. While LSH Forest performs better for 
k = 5 and k = 10 nearest neighbors, Annoy surpasses 
LSH Forest for k = 50 and k = 100 (Fig. 8a). By increas-
ing the number of nearest neighbors by a factor of kc , 
the performance of both ANN neighbor methods can 
be greatly improved. LSH Forest (orange) shows worse 
performance compared to Annoy (green) for kc < 20 , 
however, for kc ≥ 20 it surpasses Annoy (Fig.  8b). 
As LSH Forest and Annoy both construct multiple 
trees (prefix and binary trees respectively) in order to 
approximate optimal nearest neighbor search, increas-
ing the number of trees l  increases the recovery rate for 
both methods at the expense of main memory. Annoy 
performs slightly better for l = {8, . . . , 128} , however, 
performance of LSH Forest increases at a greater rate, 
overtaking Annoy at the final value of l = 256 (Fig. 8c).

Increasing values of parameters kc and k affects query 
times of Annoy negatively, while the average query time 
for LSH Forest only shows a small increase and remains 
below 100 ms for k = 50 and k = 100 , Annoys average 
query time increases to above 100 and 200 ms respec-
tively (Fig.  8d, e). The comparatively steep increase in 
query time for Annoy with kc > 1 is caused by cosine 
similarity computations, which are more resource 
demanding than Jaccard distance computations. A 
major difference between the two methods is the effect 
of parameter l on query time. As the number of pre-
fix trees l, and thus the recovery rate, in LSH Forest 
increases, the query time decreases. On the other hand, 
an increase in Annoy trees, while having a beneficial 
effect on recovery rate, has a negative effect on query 
time (Fig. 8f ).

The combination of MHFP and LSH Forest allows for 
fast and accurate searching in sparse, high-dimensional 
binary chemical spaces. Its performance is comparable to 
methods such as Annoy which rely on the folding of fin-
gerprint vectors, although the presented implementation 
is limited in terms of speed and scope of data set size due 
to in-memory processing and Python.

Conclusion
MHFP6 is a new fingerprint based on the circular nature 
of ECFP combined with methods from natural language 
processing and data mining. The data presented here 
and the earlier benchmark study [7] demonstrate that 

Fig. 7  Average ranks of 2048-D ECFP4/6, MHFP4/6 and SECFP4/6 
across 88 benchmark targets. The SMILES-based circular substructure 
hashing scheme applied by MHFP was folded using ECFP’s module n 
method. This fingerprint variant was denoted SECFP. While SECFP4/6 
were outperformed by MHFP4/6 respectively, SECFP6 performed 
significantly better than both ECFP4/6. These results suggest that 
SECFP6 can be readily used as a drop-in replacement for ECFP with 
beneficial results. By performing significantly worse compared to 
MHFP6, acting as a control, SECFP6 further validates the minhashing 
approach as compared to folding
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MHFP6 performs better than any currently used fin-
gerprint in a ligand-based virtual screening. Further-
more, MHFP6 enables approximate k-nearest neighbor 
searches in sparse and high-dimensional binary chemi-
cal spaces without folding through the direct applica-
tion of ANN algorithms such as LSH Forest, thereby 
successfully removing the curse of dimensionality while 
preserving locality. In addition to improving k-near-
est neighbor search speed by two orders of magnitude, 
LSH Forest, in combination with MHFP6, also has the 
potential to significantly increase search accuracy com-
pared to other methods for ANN. The remarkable per-
formance of MHFP6 makes the new fingerprint a highly 
recommended alternative to ECFP4 for virtual screen-
ing experiments as well as for querying and analyzing 
large chemical databases. Furthermore, the input agnos-
tic MinHash encoding scheme facilitates the creation of 
use-case based variants of the fingerprint through the 
inclusion of additional chemically relevant features. The 
source code for MHFP6 is available on GitHub (https​://
githu​b.com/reymo​nd-group​/mhfp).
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