Skip to main content
. 2018 Dec 14;10:61. doi: 10.1186/s13321-018-0316-5

Table 3.

Performance of different logP methods against the Avdeef dataset

Predictor Performance %Binned absolute errors
RMSE < 0.5 0.5–1 1–1.5 1.5–2 ≥ 2
JPlogP-library 0.63 68.91 20.6 7.12 2.25 1.12
LogP4Average 0.65 71.91 16.11 7.49 3.37 1.12
AlogP (Vega) 0.65 70.04 18.35 6.74 3 1.87
Biobyte CLogP 0.76 70.41 17.23 4.12 3.75 4.49
XlogP3—AA 0.77 69.29 15.36 8.24 3.75 3.37
SlogP 0.79 49.06 34.46 10.49 4.12 1.87
Molinspiration 0.80 63.30 20.23 10.49 3.37 2.62
JPlogP-coeff 0.81 47.94 32.58 13.48 4.49 1.5
ACD 0.83 68.17 19.10 8.24 1.87 2.62
KowWIN 0.84 73.78 14.97 5.99 2.25 3.00
MlogP (Vega) 0.85 67.04 16.85 6.74 5.24 4.12
AlogPS logP 0.86 66.29 23.60 7.12 2.25 0.75
Myelan (Vega) 0.89 65.54 15.73 9.74 4.49 4.49
XLogP2 1.05 56.93 20.22 8.99 7.12 6.74
Mannhold LogP 1.43 26.22 24.72 20.97 13.86 14.23
AAM 1.62 21.35 23.97 18.73 12.73 23.22
AlogP (CDK) 2.57 7.87 10.49 19.1 14.61 47.94