Skip to main content
. 2019 Sep 20;26(1):1073274819876598. doi: 10.1177/1073274819876598

Table 1.

Classification Accuracies Obtained in the Wisconsin Breast Cancer Database With Propositions From the Literature.

Source Method Accuracy (%)
Kong et al11 FS and DA 93.85
Quinlan12 DT/LP 94.74
Nauck and Kruse13 FS and NN 95.06
Lee et al14 FS 95.14
Abonyi and Szeifert8 FS 95.57
Verikas and Bacauskiene15 NN 96.44
Setiono16 NN 96.58
Setiono17 NN 96.70
Street et al5 DT/LP 97.30
Peña-Reyes and Sipper18 FS 97.80
Fogel et al6 NN 98.05
Abbass19 NN 98.10
Polat and Günes20 S/SVM 98.53
Albrecht et al21 DT/LP 98.80
Marcano-Cedeño et al7 NN 99.26
Akay2 S/SVM 99.51
Marcano-Cedeño et al9 NN 99.63
Onan10 FT 99.71

Abbreviations: DA, discriminant analysis; DT/LP, Decision Trees/Linear Programming; FS, feature selection; FT, fuzzy theory; NN, neural network; S/SVM, statistics/support vector machine.