Table 1.
Classification Accuracies Obtained in the Wisconsin Breast Cancer Database With Propositions From the Literature.
Source | Method | Accuracy (%) |
---|---|---|
Kong et al11 | FS and DA | 93.85 |
Quinlan12 | DT/LP | 94.74 |
Nauck and Kruse13 | FS and NN | 95.06 |
Lee et al14 | FS | 95.14 |
Abonyi and Szeifert8 | FS | 95.57 |
Verikas and Bacauskiene15 | NN | 96.44 |
Setiono16 | NN | 96.58 |
Setiono17 | NN | 96.70 |
Street et al5 | DT/LP | 97.30 |
Peña-Reyes and Sipper18 | FS | 97.80 |
Fogel et al6 | NN | 98.05 |
Abbass19 | NN | 98.10 |
Polat and Günes20 | S/SVM | 98.53 |
Albrecht et al21 | DT/LP | 98.80 |
Marcano-Cedeño et al7 | NN | 99.26 |
Akay2 | S/SVM | 99.51 |
Marcano-Cedeño et al9 | NN | 99.63 |
Onan10 | FT | 99.71 |
Abbreviations: DA, discriminant analysis; DT/LP, Decision Trees/Linear Programming; FS, feature selection; FT, fuzzy theory; NN, neural network; S/SVM, statistics/support vector machine.